1
|
Ahmadi A, Hosseini F, Rostami M, Soukhtanloo M. Anticancer effects of alpha-lipoic acid, a potent organosulfur compound by modulating matrix metalloproteinases and apoptotic markers in osteosarcoma MG-63 cells. J Steroid Biochem Mol Biol 2024:106664. [PMID: 39694075 DOI: 10.1016/j.jsbmb.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Osteosarcoma (OS), an extremely aggressive form of bone tumor primarily affects young adults. Despite significant advancements in clinical trials, the ability of cancer cells to metastasize and resist apoptosis remains a major challenge. To address these issues, novel therapeutic interventions with high specificity for these processes are essential. Alpha-lipoic acid (ALA), an organosulfur compound derived from octanoic acid, possesses a range of pharmacological properties. This study hypothesizes that ALA would inhibit metastasis and induce cell apoptosis in OS. To evaluate the potential of ALA, its effects on the migration, metastasis, and cell cycle of MG-63 OS cells were assessed, along with its ability to trigger apoptosis. To these aims, MG-63 cells were exposed to varying concentrations of ALA, and cell viability was measured using the alamarBlue assay. The impact of ALA on cell cycle progression, apoptosis, migration, and metastasis was analyzed through flow cytometry, scratch assay, and gelatin zymography. After validating the expression of MMP2, MMP9, VEGF, VEGFR, BAX, BCL-2, and P53 by the GEO database, the expression levels of these genes were examined through quantitative PCR (qPCR). Eventually, molecular docking was employed to simulate the interactions between ALA and matrix metalloproteinase (MMPs). The results demonstrated that ALA significantly inhibited cell migration, induced cell cycle arrest, and promoted apoptosis by upregulating P53 and BAX expression while downregulating BCL-2 levels. Furthermore, ALA was found to suppress the activity and expression of MMP2 and MMP9 and reduce the expression of angiogenesis markers. Notably, ALA interacted directly with the active site of MMP2 and MMP9. These findings suggest that ALA has the potential to be a promising agent with anti-cancer effects on MG-63 cells, warranting further preclinical investigations.
Collapse
Affiliation(s)
- Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Petrosiute A, Musvicaitė J, Petroška D, Ščerbavičienė A, Arnold S, Matulienė J, Žvirblienė A, Matulis D, Lučiūnaitė A. CCL2-CCR2 Axis Inhibition in Osteosarcoma Cell Model: The Impact of Oxygen Level on Cell Phenotype. J Cell Physiol 2024. [PMID: 39587819 DOI: 10.1002/jcp.31489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Treatment of osteosarcoma is hampered by tumor hypoxia and requires alternative approaches. Although the CCL2-CCR2 axis is indispensable in tumor-induced inflammation and angiogenesis, its blockade has not been effective to date. This study aimed to characterize how CCR2 inhibition affects the crosstalk of osteosarcoma cells with immune cells to better delineate tumor resistance mechanisms that help withstand such treatment. In this study, 143B cells were exposed to healthy donor PBMC supernatants in a transwell assay lacking direct cell-to-cell contact and subjected to different oxygen concentrations. In addition, mice bearing orthotopic 143B tumors were subjected to CCR2 antagonist treatment. Our findings show that hypoxic conditions alter cytokine and cancer- related protein expression on cells and impair CCR2 antagonist effects in the experimental osteosarcoma model. CCL2-CCR2 axis blockade in the 143B xenografts, which are positive for hypoxia marker CAIX, did not slow 143B tumor growth or metastasis but altered tumor microenvironment by VEGFR downregulation and shift in the CD44-positive cell population towards high CD44 expression. This study highlights differential responses of tumor cells to CCR2 antagonists in the presence of different oxygen saturations and expands our knowledge of compensatory mechanisms leading to CCL2-CCR2 treatment resistance.
Collapse
Affiliation(s)
- Agne Petrosiute
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justina Musvicaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Donatas Petroška
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Alvilė Ščerbavičienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Sascha Arnold
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jurgita Matulienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Department of Immunology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Lučiūnaitė
- Department of Immunology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Gola C, Massimini M, Morello E, Maniscalco L, Conti LC, Romanucci M, Olimpo M, Della Salda L, De Maria R. Prognostic Significance of Microvessel Density and Hypoxic Markers in Canine Osteosarcoma: Insights into Angiogenesis and Tumor Aggressiveness. Animals (Basel) 2024; 14:3181. [PMID: 39595235 PMCID: PMC11591178 DOI: 10.3390/ani14223181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Canine osteosarcoma (OSA) is an aggressive and highly malignant tumor of bone with a poor prognosis and it mirrors the disease in humans. Angiogenesis, the formation of new blood vessels, is driven by hypoxia-induced factors such as HIF-1α and VEGF, both of which play a crucial role in tumor growth and metastasis. However, the role of angiogenesis in OSA remains a topic of ongoing debate. This study aimed to investigate the relationship between angiogenesis, measured by intratumoral microvessel density (MVD), hypoxic markers, and clinical outcomes in 28 dogs diagnosed with appendicular OSA. Clinicopathological data such as age, breed distribution, tumor localization, histopathological subtypes, and metastatic behavior were consistent with reported epidemiologic characteristics of canine OSA, though no significant correlation was found among these variables. The results indicated a significant association between higher MVD and high-grade OSA (p = 0.029), suggesting that increased tumor vascularization is linked to more aggressive tumor behavior. Additionally, elevated VEGF expression was strongly correlated with disease-free interval DFI), with a p-value of 0.045. Although HIF-1α positivity showed a trend towards poorer survival, the results did not reach statistical significance (p = 0.07). These findings highlight the potential role of VEGF as a valuable prognostic marker in canine OSA, which could have potentially important implications for therapeutic targeting and clinical management of the disease. This study advances the understanding of angiogenesis in canine OSA, while emphasizing the need for continued research into the complex mechanisms regulating the interplay between hypoxia, angiogenesis and tumor progression.
Collapse
Affiliation(s)
| | - Marcella Massimini
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.M.); (M.R.); (L.D.S.)
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (E.M.); (L.M.); (L.C.C.); (M.O.); (R.D.M.)
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (E.M.); (L.M.); (L.C.C.); (M.O.); (R.D.M.)
| | - Luiza Cesar Conti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (E.M.); (L.M.); (L.C.C.); (M.O.); (R.D.M.)
| | - Mariarita Romanucci
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.M.); (M.R.); (L.D.S.)
| | - Matteo Olimpo
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (E.M.); (L.M.); (L.C.C.); (M.O.); (R.D.M.)
| | - Leonardo Della Salda
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.M.); (M.R.); (L.D.S.)
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (E.M.); (L.M.); (L.C.C.); (M.O.); (R.D.M.)
| |
Collapse
|
4
|
Lacinski RA, Dziadowicz SA, Roth CA, Ma L, Melemai VK, Fitzpatrick B, Chaharbakhshi E, Heim T, Lohse I, Schoedel KE, Hu G, Llosa NJ, Weiss KR, Lindsey BA. Proteomic and transcriptomic analyses identify apo-transcobalamin-II as a biomarker of overall survival in osteosarcoma. Front Oncol 2024; 14:1417459. [PMID: 39493449 PMCID: PMC11527601 DOI: 10.3389/fonc.2024.1417459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background The large-scale proteomic platform known as the SomaScan® assay is capable of simultaneously measuring thousands of proteins in patient specimens through next-generation aptamer-based multiplexed technology. While previous studies have utilized patient peripheral blood to suggest serum biomarkers of prognostic or diagnostic value in osteosarcoma (OSA), the most common primary pediatric bone cancer, they have ultimately been limited in the robustness of their analyses. We propose utilizing this aptamer-based technology to describe the systemic proteomic milieu in patients diagnosed with this disease. Methods To determine novel biomarkers associated with overall survival in OSA, we deployed the SomaLogic SomaScan® 7k assay to investigate the plasma proteomic profile of naive primary, recurrent, and metastatic OSA patients. Following identification of differentially expressed proteins (DEPs) between 2-year deceased and survivor cohorts, publicly available databases including Survival Genie, TIGER, and KM Plotter Immunotherapy, among others, were utilized to investigate the significance of our proteomic findings. Results Apo-transcobalamin-II (APO-TCN2) was identified as the most DEP between 2-year deceased and survivor cohorts (Log2 fold change = 6.8, P-value = 0.0017). Survival analysis using the Survival Genie web-based platform indicated that increased intratumoral TCN2 expression was associated with better overall survival in both OSA (TARGET-OS) and sarcoma (TCGA-SARC) datasets. Cell-cell communication analysis using the TIGER database suggested that TCN2+ Myeloid cells likely interact with marginal zone and immunoglobin-producing B lymphocytes expressing the TCN2 receptor (CD320) to promote their proliferation and survival in both non-small cell lung cancer and melanoma tumors. Analysis of publicly available OSA scRNA-sequencing datasets identified similar populations in naive primary tumors. Furthermore, circulating APO-TCN2 levels in OSA were then associated with a plasma proteomic profile likely necessary for robust B lymphocyte proliferation, infiltration, and formation of intratumoral tertiary lymphoid structures for improved anti-tumor immunity. Conclusions Overall, APO-TCN2, a circulatory protein previously described in various lymphoproliferative disorders, was associated with 2-year survival status in patients diagnosed with OSA. The relevance of this protein and apparent immunological function (anti-tumor B lymphocyte responses) was suggested using publicly available solid tumor RNA-sequencing datasets. Further studies characterizing the biological function of APO-TCN2 and its relevance in these diseases is warranted.
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Clark A. Roth
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Li Ma
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Vincent K. Melemai
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Brody Fitzpatrick
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Edwin Chaharbakhshi
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Tanya Heim
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ines Lohse
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karen E. Schoedel
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Nicolas J. Llosa
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kurt R. Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brock A. Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
6
|
Liu M, Jiang D, Zhao X, Zhang L, Zhang Y, Liu Z, Liu R, Li H, Rong X, Gao Y. Exploration in the Mechanism of Ginsenoside Rg5 for the Treatment of Osteosarcoma by Network Pharmacology and Molecular Docking. Orthop Surg 2024; 16:462-470. [PMID: 38086608 PMCID: PMC10834211 DOI: 10.1111/os.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE Osteosarcoma is a primary malignancy originating from mesenchymal tissue characterized by rapid growth, early metastasis and poor prognosis. Ginsenoside Rg5 (G-Rg5) is a minor ginsenoside extracted from Panax ginseng C.A. Meyer which has been discovered to possess anti-tumor properties. The objective of current study was to explore the mechanism of G-Rg5 in the treatment of osteosarcoma by network pharmacology and molecular docking technology. METHODS Pharmmapper, SwissTargetPrediction and similarity ensemble approach databases were used to obtain the pharmacological targets of G-Rg5. Related genes of osteosarcoma were searched for in the GeneCards, OMIM and DrugBank databases. The targets of G-Rg5 and the related genes of osteosarcoma were intersected to obtain the potential target genes of G-Rg5 in the treatment of osteosarccoma. The STRING database and Cytoscape 3.8.2 software were used to construct the protein-protein interaction (PPI) network, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. AutoDock vina software was used to perform molecular docking between G-Rg5 and hub targets. The hub genes were imported into the Kaplan-Meier Plotter online database for survival analysis. RESULTS A total of 61 overlapping targets were obtained. The related signaling pathways mainly included PI3K-Akt signaling pathway, Proteoglycans in cancer, Lipid and atherosclerosis and Kaposi sarcoma-associated herpesvirus infection. Six hub targets including PIK3CA, SRC, TP53, MAPK1, EGFR, and VEGFA were obtained through PPI network and targets-pathways network analyses. The results of molecular docking showed that the binding energies were all less than -7 kcal/mol. And the results of survival analysis showed TP53 and VEGFA affect the prognosis of sarcoma patients. CONCLUSION This study explored the possible mechanism of G-Rg5 in the treatment of osteosarcoma using network pharmacology method, suggesting that G-Rg5 has the characteristics of multi-targets and multi-pathways in the treatment of osteosarcoma, which lays a foundation for the follow-up experimental and clinical researches on the therapeutic effects of G-Rg5 on osteosarcoma.
Collapse
Affiliation(s)
- Ming‐yang Liu
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Dong‐xin Jiang
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Xiang Zhao
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Liang Zhang
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Yu Zhang
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Zhen‐dong Liu
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Run‐ze Liu
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Hai‐jun Li
- Department of Immunity, Institute of Translational MedicineThe First Hospital of Jilin UniversityJilinChina
| | - Xiao‐yu Rong
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Yan‐zheng Gao
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| |
Collapse
|
7
|
KE L, ZHI M, TANG P, HE D. Preparation of total triterpenoids from Antrodia cinnamomea fermentation mycelium and their in vitro inhibitory effects on hepatocellular carcinoma. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.005923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Leqin KE
- Hangzhou Vocational & Technical College, China
| | - Mingyu ZHI
- Hangzhou Vocational & Technical College, China
| | - Ping TANG
- Hangzhou Vocational & Technical College, China
| | - Da HE
- Hangzhou Vocational & Technical College, China
| |
Collapse
|
8
|
Safety and Efficacy of Treatment with/without Ramucirumab in Advanced or Metastatic Cancer: A Meta-Analysis of 11 Global, Double-Blind, Phase 3 Randomized Controlled Trials. JOURNAL OF ONCOLOGY 2022; 2022:2476469. [DOI: 10.1155/2022/2476469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
Ramucirumab, as a vascular endothelial growth factor receptor-2 inhibitor, was first approved in 2014 for treated advanced or metastatic gastric/gastroesophageal junction (GEJ) adenocarcinoma. This study deeply analyzed the efficacy and safety of advanced or metastatic cancer treated with ramucirumab, which included 11 global, double-blind, phase 3 randomized controlled trials with a total of 7410 patients. Subgroup analysis based on different cancer types showed that standard regimens plus ramucirumab significantly increased progression-free survival and overall survival compared with placebo groups in patients with advanced non-small-cell lung cancer (NSCLC), hepatocellular carcinoma, gastric cancer, or GEJ adenocarcinoma. Although a higher proportion of patients achieved overall response and disease control than those treated with placebo, the overall response was not statistically significant between the two groups in advanced NSCLC. Grade 3 or worse treatment-emergent adverse events (TEAEs) that occurred in at least 5% of patients were neutropenia (30.5% in the ramucirumab group vs. 23.5% in the placebo group), leucopenia (14.8% vs. 9.2%), weight decreased (14.2% vs. 8.0%), myalgia (11.7% vs. 7.7%), fatigue (10.9% vs. 7.7%), hypertension (9.2% vs. 2.3%), and anaemia (6.2% vs. 7.7%). In the TEAEs of special interest, the ramucirumab group had a significantly higher incidence of bleeding (mainly grade 1-2 epistaxis and gastrointestinal bleeding), hypertension, proteinuria, liver injury/failure (grade 1-2), venous thromboembolism (grade 1-2), and gastrointestinal perforation (grade ≧3) than the control group.
Collapse
|
9
|
Liu D, Li Z, Zhang K, Lu D, Zhou D, Meng Y. N 6-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04337-y. [PMID: 36171455 DOI: 10.1007/s00432-022-04337-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE N6-methyladenosine (m6A) modification is a pivotal transcript chemical modification of eukaryotics, which has been identified to play critical roles on tumor metabolic reprogramming. However, the functions of m6A-reading protein YTH N6-methyladenosine RNA-binding protein 3 (YTHDF3) in osteosarcoma is still unclear. This research planned to investigate the bio-functions and mechanism in osteosarcoma tumorigenesis. METHODS The aerobic glycolysis of osteosarcoma cells were calculated by glucose uptake, lactate production analysis, ATP analysis and metabolic flux analysis for extracellular acidification rate (ECAR). Molecular binding was identified by RIP-qPCR, RNA decay analysis. RESULTS Results indicated that YTHDF3 is upregulated in the osteosarcoma tissue samples and cells, and closely correlated to the poor prognosis of osteosarcoma patients. Functionally, gain and loss-of-functional assays illustrated that YTHDF3 promoted the proliferation and aerobic glycolysis of osteosarcoma cells in vitro, and accelerated the tumor growth in vivo. Mechanistically, a m6A-modified PGK1 mRNA functioned as the target of YTHDF3, and YTHDF3 enhanced the PGK1 mRNA stability via m6A-dependent manner. CONCLUSIONS In conclusion, these findings indicated that YTHDF3 functioned as an oncogene in osteosarcoma tumorigenesis through m6A/PGK1 manner, providing a therapeutic strategy for human osteosarcoma.
Collapse
Affiliation(s)
- Deyin Liu
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Zhong Li
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Kun Zhang
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Daigang Lu
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Dawei Zhou
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Yibin Meng
- Department of Spine Surgery, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China.
| |
Collapse
|