1
|
Wu F, Yu H. The role of the NOTCH1 signaling pathway in the maintenance of mesenchymal stem cell stemness and chondrocyte differentiation and its potential in the treatment of osteoarthritis. J Orthop Surg Res 2025; 19:772. [PMID: 39754211 PMCID: PMC11697486 DOI: 10.1186/s13018-024-05236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation. METHODS Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence. Through the construction of lentiviruses overexpressing and knocking out NOTCH1, the effects of NOTCH1 on the stemness of MSCs and chondrocyte differentiation were investigated. Additionally, the effects of NOTCH1 on chondrocyte homeostasis and apoptosis were evaluated by adding the EZH2 inhibitor GSK126 and the endoplasmic reticulum stress inducer tunicamycin. RESULTS Experimental results demonstrated that NOTCH1 expression can influence the maintenance of MSC stemness and chondrocyte differentiation by regulating EZH2. Knockout of NOTCH1 decreased the expression of chondrocyte markers, while overexpression increased their expression. Under conditions of endoplasmic reticulum stress, NOTCH1 expression helped reduce the expression of stress-related proteins, maintain chondrocyte homeostasis, and inhibit apoptosis. CONCLUSION The NOTCH1 signaling pathway plays a crucial role in maintaining the stemness of MSCs, differentiating into chondrocytes, and in the treatment of osteoarthritis. NOTCH1 influences the differentiation fate of MSCs and the homeostasis of chondrocytes by regulating EZH2 and other related genes, offering new targets and strategies for the treatment of diseases like osteoarthritis.
Collapse
Affiliation(s)
- Fuming Wu
- Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China
| | - Haiquan Yu
- Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
| |
Collapse
|
2
|
He W, Zhao J, Liu J, Wang F, Xu Z. Adipose-derived mesenchymal stem cells combined with platelet-rich plasma are superior options for the treatment of osteoarthritis. J Orthop Surg Res 2025; 20:2. [PMID: 39748384 PMCID: PMC11697913 DOI: 10.1186/s13018-024-05396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND There is currently no definitive treatment for osteoarthritis. We examined the therapeutic effects and underlying mechanisms of platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells (ADSCs), individually or in combination, in a rat model of anterior cruciate ligament-induced degenerative osteoarthritis (OA) of the knee. This study seeks to advance clinical approaches to OA treatment. METHODS Eight- to nine-week-old male Sprague-Dawley (SD) rats were randomly assigned to two groups: (1) a normal control group (Group A) and (2) a model group. The control group received no treatment. The model group underwent treatment and was further subdivided into six groups: Group B (an injury control group), Group C (high-dose ADSCs), Group D (PRP combined with high-dose ADSCs), Group E (low-dose ADSCs), Group F (PRP combined with low-dose ADSCs), and Group G (PRP alone). PRP and/or ADSCs were administered via intra-articular injection on Days 7, 37, and 67 post-surgery. Daily observations recorded activity levels and behavior, while weight changes were monitored weekly. Digital radiography (DR) was conducted on Days 30, 60, and 90 post-surgery to assess joint surface and contour alterations. Histopathological examination and inflammatory factor analysis were performed on cartilage and synovial tissue. RESULTS No abnormal reactions were observed in any rats, and body weights increased as expected (P > 0.05). Significant differences in knee swelling rates and Wakitani scores were observed between Groups A and B (P < 0.01). Knee swelling rates also differed significantly between Group B and Groups C-G (P < 0.01). Wakitani scores decreased on Days 60 and 90 in Groups C-G. TNF-α and IL-1β expression levels were significantly higher in Group B compared to Group A (P < 0.05). Expression levels of these genes were significantly lower in Groups C-G than in Group B (P < 0.05). CONCLUSIONS Repeated intra-articular injections of PRP and ADSCs alleviated inflammation and pain, promoted tissue repair, and modulated immune responses in rats with surgically induced OA. The combination of PRP and ADSCs demonstrated enhanced therapeutic efficacy, suggesting its potential as a treatment option for OA.
Collapse
Affiliation(s)
- Weijie He
- Department of Center of Precision Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China
| | - Jie Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China
| | - Jiafei Liu
- Quality Department, Guang Dong First Condor Biotechnology Co. Ltd., Xincheng Road, 523000, Dongguan, Guangdong, China
| | - Fangxing Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China
| | - Zhenyu Xu
- Department of Center of Precision Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
3
|
Pawlak M, Wałecka J, Lubiatowski P. Biological strategies in rotator cuff repair: a clinical application and molecular background. EFORT Open Rev 2024; 9:1156-1169. [PMID: 39620574 PMCID: PMC11619734 DOI: 10.1530/eor-24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Conventional repair of rotator cuff tears bears a variable but significant risk of incomplete healing. Biological therapies that accompany surgical rotator cuff repair include platelet-rich plasma, stem cells of different origins, and biological scaffolds. Biological therapies facilitate the regeneration of the correct microarchitecture of the tendon attachment to the bone and reduce failures after surgical rotator cuff repair.
Collapse
Affiliation(s)
| | | | - Przemysław Lubiatowski
- Rehasport Clinic, Poznań-Gdańsk, Poland
- Sport Traumatology and Biomechanics Unit, Department of Traumatology, Orthopaedics and Hand Surgery, Poznań University of Medical Science, Poznań, Poland
| |
Collapse
|
4
|
Bahari Golamkaboudi A, Vojoudi E, Babaeian Roshani K, Porouhan P, Houshangi D, Barabadi Z. Current Non-Surgical Curative Regenerative Therapies for Knee Osteoarthritis. Stem Cell Rev Rep 2024; 20:2104-2123. [PMID: 39145857 DOI: 10.1007/s12015-024-10768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.
Collapse
Affiliation(s)
- Ali Bahari Golamkaboudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pejman Porouhan
- Department of Radiation Oncology, Vasee Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - David Houshangi
- Department of Biomedical Engineering, University of Houston, Houston, United States
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Kashte SB, Kadam S, Maffulli N, Potty AG, Migliorini F, Gupta A. Osteoinductive potential of graphene and graphene oxide for bone tissue engineering: a comparative study. J Orthop Surg Res 2024; 19:527. [PMID: 39215309 PMCID: PMC11365281 DOI: 10.1186/s13018-024-05028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Bone defects, especially critical-size bone defects, and their repair pose a treatment challenge. Osteoinductive scaffolds have gained importance given their potential in bone tissue engineering applications. METHODS Polycaprolactone (PCL) scaffolds are used for their morphological, physical, cell-compatible and osteoinductive properties. The PCL scaffolds were prepared by electrospinning, and the surface was modified by layer-by-layer deposition using either graphene or graphene oxide. RESULTS Graphene oxide-coated PCL (PCL-GO) scaffolds showed a trend for enhanced physical properties such as fibre diameter, wettability and mechanical properties, yield strength, and tensile strength, compared to graphene-modified PCL scaffolds (PCL-GP). However, the surface roughness of PCL-GP scaffolds showed a higher trend than PCL-GO scaffolds. In vitro studies showed that both scaffolds were cell-compatible. Graphene oxide on PCL scaffold showed a trend for enhanced osteogenic differentiation of human umbilical cord Wharton's jelly-derived Mesenchymal Stem Cells without any differentiation media than graphene on PCL scaffolds after 21 days. CONCLUSION Graphene oxide showed a trend for higher mineralisation, but this trend is not statistically significant. Therefore, graphene and graphene oxide have the potential for bone regeneration and tissue engineering applications. Future in vivo studies and clinical trials are warranted to justify their ultimate clinical use.
Collapse
Affiliation(s)
- Shivaji Bhikaji Kashte
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur, 416006, India
| | - Sachin Kadam
- Sophisticated Analytical and Technical Help Institute, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, ST5 5BG, UK
| | - Anish G Potty
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX, 78045, USA
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano, Bolzano, Italy.
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA, 30043, USA.
| |
Collapse
|
6
|
Lundeen M, Hurd JL, Hayes M, Hayes M, Facile TR, Furia JP, Maffulli N, Alt C, Alt EU, Schmitz C, Pearce DA. Management of partial-thickness rotator cuff tears with autologous adipose-derived regenerative cells is safe and more effective than injection of corticosteroid. Sci Rep 2023; 13:19348. [PMID: 37935850 PMCID: PMC10630470 DOI: 10.1038/s41598-023-46653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Symptomatic, partial-thickness rotator cuff tears (sPTRCT) are problematic. This study tested the hypothesis that management of sPTRCT with injection of fresh, uncultured, unmodified, autologous, adipose-derived regenerative cells (UA-ADRCs) is safe and more effective than injection of corticosteroid even in the long run. To this end, subjects who had completed a former randomized controlled trial were enrolled in the present study. At baseline these subjects had not responded to physical therapy treatments for at least 6 weeks, and were randomly assigned to receive respectively a single injection of UA-ADRCs (n = 11) or a single injection of methylprednisolone (n = 5). Efficacy was assessed using the ASES Total score, pain visual analogue scale (VAS), RAND Short Form-36 Health Survey and range of motion at 33.2 ± 1.0 (mean ± SD) and 40.6 ± 1.9 months post-treatment. Proton density, fat-saturated, T2-weighted MRI of the index shoulder was performed at both study visits. There were no greater risks connected with injection of UA-ADRCs than those connected with injection of corticosteroid. The subjects in the UA-ADRCs group showed statistically significantly higher mean ASES Total scores than the subjects in the corticosteroid group. The MRI scans at 6 months post-treatment allowed to "watch the UA-ADRCs at work".
Collapse
Affiliation(s)
- Mark Lundeen
- Sanford Orthopedics and Sports Medicine Fargo, Fargo, ND, USA
| | - Jason L Hurd
- Sanford Orthopedics and Sports Medicine Sioux Falls, Sioux Falls, SD, USA
| | | | | | | | - John P Furia
- SUN Orthopedics of Evangelical Community Hospital, Lewisburg, PA, USA
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University School of Medicine, Stoke on Trent, UK
| | - Christopher Alt
- InGeneron, Inc., Houston, TX, USA
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
- Isar Klinikum, Munich, Germany
| | - Eckhard U Alt
- InGeneron, Inc., Houston, TX, USA
- Isar Klinikum, Munich, Germany
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, USA
| | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - David A Pearce
- Sanford Health, Sioux Falls, SD, USA.
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
- Sanford Research, Sioux Falls, SD, USA.
| |
Collapse
|
7
|
Sawada H, Kazama T, Nagaoka Y, Arai Y, Kano K, Uei H, Tokuhashi Y, Nakanishi K, Matsumoto T. Bone marrow-derived dedifferentiated fat cells exhibit similar phenotype as bone marrow mesenchymal stem cells with high osteogenic differentiation and bone regeneration ability. J Orthop Surg Res 2023; 18:191. [PMID: 36906634 PMCID: PMC10007822 DOI: 10.1186/s13018-023-03678-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/04/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are known to have different differentiation potential depending on the tissue of origin. Dedifferentiated fat cells (DFATs) are MSC-like multipotent cells that can be prepared from mature adipocytes by ceiling culture method. It is still unknown whether DFATs derived from adipocytes in different tissue showed different phenotype and functional properties. In the present study, we prepared bone marrow (BM)-derived DFATs (BM-DFATs), BM-MSCs, subcutaneous (SC) adipose tissue-derived DFATs (SC-DFATs), and adipose tissue-derived stem cells (ASCs) from donor-matched tissue samples. Then, we compared their phenotypes and multilineage differentiation potential in vitro. We also evaluated in vivo bone regeneration ability of these cells using a mouse femoral fracture model. METHODS BM-DFATs, SC-DFATs, BM-MSCs, and ASCs were prepared from tissue samples of knee osteoarthritis patients who received total knee arthroplasty. Cell surface antigens, gene expression profile, and in vitro differentiation capacity of these cells were determined. In vivo bone regenerative ability of these cells was evaluated by micro-computed tomography imaging at 28 days after local injection of the cells with peptide hydrogel (PHG) in the femoral fracture model in severe combined immunodeficiency mice. RESULTS BM-DFATs were successfully generated at similar efficiency as SC-DFATs. Cell surface antigen and gene expression profiles of BM-DFATs were similar to those of BM-MSCs, whereas these profiles of SC-DFATs were similar to those of ASCs. In vitro differentiation analysis revealed that BM-DFATs and BM-MSCs had higher differentiation tendency toward osteoblasts and lower differentiation tendency toward adipocytes compared to SC-DFATs and ASCs. Transplantation of BM-DFATs and BM-MSCs with PHG enhanced bone mineral density at the injection sites compared to PHG alone in the mouse femoral fracture model. CONCLUSIONS We showed that phenotypic characteristics of BM-DFATs were similar to those of BM-MSCs. BM-DFATs exhibited higher osteogenic differentiation potential and bone regenerative ability compared to SC-DFATs and ASCs. These results suggest that BM-DFATs may be suitable sources of cell-based therapies for patients with nonunion bone fracture.
Collapse
Affiliation(s)
- Hirokatsu Sawada
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuki Nagaoka
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Uei
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
8
|
Safety and Efficacy of Autologous Stem Cell Treatment for Facetogenic Chronic Back Pain. J Pers Med 2023; 13:jpm13030436. [PMID: 36983621 PMCID: PMC10058908 DOI: 10.3390/jpm13030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Background: Chronic back pain due to facet joint syndrome is a common and debilitating condition. Advances in regenerative medicine have shown that autologous unmodified adipose tissue-derived regenerative cells (ADRC) provide several beneficial effects. These regenerative cells can differentiate into various tissues and exhibit a strong anti-inflammatory potential. ADRCs can be obtained from a small amount of fatty tissue derived from the patient’s abdominal fat. Methods: We report long-term results of 37 patients (age 31–78 years, mean 62.5) suffering from “Facet Joint Syndrome” The pathology was confirmed by clinical, radiological examinations and fluoroscopically guided test injections. Then, liposuction was performed. An amount of 50–100 cc of fat was harvested. To recover stem cells from adipose tissue, we use the CE-certified Transpose RT™ system from InGeneron GmbH. The cells were then injected under fluoroscopic control in the periarticular fat. Follow-up examinations were performed at 1 week, 1 year, and 5 years. Results: Every patient reported improved VAS pain at any follow-up (1 week, 1 year, and 5 years) with ADRCs compared to the baseline. Conclusions: Our observational data indicate that facet joint syndrome patients treated with unmodified adipose tissue-derived regenerative cells experience improved the quality of life in the long term.
Collapse
|
9
|
The Composition of Adipose-Derived Regenerative Cells Isolated from Lipoaspirate Using a Point of Care System Does Not Depend on the Subject's Individual Age, Sex, Body Mass Index and Ethnicity. Cells 2022; 12:cells12010030. [PMID: 36611823 PMCID: PMC9818477 DOI: 10.3390/cells12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Uncultured, unmodified, autologous, adipose-derived regenerative cells (UA-ADRCs) are a safe and effective treatment option for various musculoskeletal pathologies. However, it is unknown whether the composition of the final cell suspension systematically varies with the subject's individual age, sex, body mass index and ethnicity. UA-ADRCs were isolated from lipoaspirate from n = 232 subjects undergoing elective lipoplasty using the Transpose RT system (InGeneron, Inc.; Houston, TX, USA). The UA-ADRCs were assessed for the number of nucleated cells, cell viability and the number of viable nucleated cells per gram of adipose tissue harvested. Cells from n = 37 subjects were further characterized using four-channel flow cytometry. The present study shows, for the first time, that key characteristics of UA-ADRCs can be independent of the subject's age, sex, BMI and ethnicity. This result has important implications for the general applicability of UA-ADRCs in regeneration of musculoskeletal tissue. Future studies must determine whether the independence of key characteristics of UA-ADRCs of the subject's individual age, sex, BMI and ethnicity only applies to the system used in the present study, or also to others of the more than 25 different experimental methods and commercially available systems used to isolate UA-ADRCs from lipoaspirate that have been described in the literature.
Collapse
|
10
|
Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res 2022; 17:424. [PMID: 36153551 PMCID: PMC9509599 DOI: 10.1186/s13018-022-03305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Shilajit has been widely used remedy for treating a numerous of illness such as bone defects in Iran traditional folk medicine since hundreds of years ago. The aim of the present study was to explore the effect of Shilajit on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (ASCs) in two- (2D) and three-dimensional (3D) cultures. MATERIALS AND METHODS ASCs were seeded in 3D 1% alginate (Alg) hydrogel with or without Shilajit (500 µg/mL) and compared with 2D cultures. Then, characterization was done using electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), alkaline phosphatase (ALP) activity, alizarin red staining and Raman confocal microscopy. RESULTS Adding Shilajit had no impact on the Alg scaffold degradability. In the 3D hydrogel and in the presence of osteogenic medium (OM), Shilajit acted as enhancer to increase ALP activity and also showed osteoinductive property in the absence of OM compared to the 2D matched groups at all time points (days 7 and 21 both P = 0.0006, for 14 days P = 0.0006 and P = 0.002, respectively). In addition, calcium deposition was significantly increased in the cultures exposed to Shilajit compared to 2D matched groups on days 14 (P < 0.0001) and 21 (P = 0.0003 and P = 0.003, respectively). In both 3D and 2D conditions, Shilajit induced osteogenic differentiation, but Shilajit/Alg combination starts osteogenic differentiation in a short period of time. CONCLUSION As Shilajit accelerates the differentiation of ASCs into the osteoblasts, without changing the physical properties of the Alg hydrogel, this combination may pave the way for more promising remedies considering bone defects.
Collapse
Affiliation(s)
- Parisa Kangari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Abstract
Interest in use of perinatal allogenic tissues including clinical-grade minimally manipulated umbilical cord tissue-derived allograft formulations to treat knee osteoarthritis (OA) patients is increasing. Limited studies have characterized these formulations and evaluated their safety and efficacy in knee OA patients. We developed such formulation and reported the presence of growth factors, cytokines, hyaluronic acid, and exosomes. We reported that its administration is safe, and resulted in 50% pain reduction and improvement in knee injury and osteoarthritis outcome score (over 10%) and 36-item short form survey (25%). Another study reported no adverse events post injection of similar formulation and statistically significant ( P <0.001) improvement in visual analog scale and Western Ontario and McMaster Universities Osteoarthritis Index scores and reduction in medication usage in patients (77.8%). We also summarized the clinical trials registered on ClinicalTrials.gov utilizing umbilical cord tissue for knee OA treatment. In conclusion, available studies are preliminary but pave the way to higher level appropriately powered investigations, and these formulations should be considered as nonoperative alternative to manage knee OA.
Collapse
|
12
|
Methodological Flaws in Meta-Analyses of Clinical Studies on the Management of Knee Osteoarthritis with Stem Cells: A Systematic Review. Cells 2022; 11:cells11060965. [PMID: 35326416 PMCID: PMC8946093 DOI: 10.3390/cells11060965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Conclusions of meta-analyses of clinical studies may substantially influence opinions of prospective patients and stakeholders in healthcare. Nineteen meta-analyses of clinical studies on the management of primary knee osteoarthritis (pkOA) with stem cells, published between January 2020 and July 2021, came to inconsistent conclusions regarding the efficacy of this treatment modality. It is possible that a separate meta-analysis based on an independent, systematic assessment of clinical studies on the management of pkOA with stem cells may reach a different conclusion. (2) Methods: PubMed, Web of Science, and the Cochrane Library were systematically searched for clinical studies and meta-analyses of clinical studies on the management of pkOA with stem cells. All clinical studies and meta-analyses identified were evaluated in detail, as were all sub-analyses included in the meta-analyses. (3) Results: The inconsistent conclusions regarding the efficacy of treating pkOA with stem cells in the 19 assessed meta-analyses were most probably based on substantial differences in literature search strategies among different authors, misconceptions about meta-analyses themselves, and misconceptions about the comparability of different types of stem cells with regard to their safety and regenerative potential. An independent, systematic review of the literature yielded a total of 183 studies, of which 33 were randomized clinical trials, including a total of 6860 patients with pkOA. However, it was not possible to perform a scientifically sound meta-analysis. (4) Conclusions: Clinicians should interpret the results of the 19 assessed meta-analyses of clinical studies on the management of pkOA with stem cells with caution and should be cautious of the conclusions drawn therein. Clinicians and researchers should strive to participate in FDA and/or EMA reviewed and approved clinical trials to provide clinically and statistically valid efficacy.
Collapse
|