1
|
Hafezi B, Kazemi Mehrjerdi H, Moghaddam Jafari A. Effect of captopril on paraplegia caused by spinal cord ischemia-reperfusion injury in rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:379-385. [PMID: 39257463 PMCID: PMC11383196 DOI: 10.30466/vrf.2024.2019729.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/07/2024] [Indexed: 09/12/2024]
Abstract
This study investigated the effect of captopril (Cap) on spinal cord ischemia-reperfusion injury (SCII) in rats. Twenty-four adults male Wistar rats were randomly divided into four groups of six animals each: spinal cord ischemia-reperfusion (SCI-R) with Cap (SCI-R + Cap), SCI-R, sham-operated with Cap (SHAM + Cap), and SHAM. The 24 hr and 90 min before ischemia induction, Cap was administered intragastrically (100 mg kg-1) to the SHAM + Cap and SCI-R + Cap groups. Abdominal aortic clamping was performed in the SCI-R and SCI-R + Cap groups for 40 min. Hindlimb motor function was evaluated using the Tarlov Scale at 4, 6, 12, 24, 48, and 60 hr after SCII. The malondialdehyde (MDA), the ferric-reducing ability of plasma (FRAP) and prooxidant-antioxidant balance (PAB) values were also measured. Throughout the study period, the SCI-R group had significantly lower motor function scores compared to the other groups. The MDA and PAB levels were higher and the FRAP value was lower in the SCI-R group compared to in the SHAM group. The SCI-R + Cap had higher motor function scores compared to the SCI-R group at all time points. There were no significant differences in MDA concentration, FRAP and PAB values between the SCI-R + Cap and SCI-R groups. Captopril may act as a protective agent against SCII in rats based on hind limb motor function assessment.
Collapse
Affiliation(s)
- Bahareh Hafezi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Guo X, He J, Zhang R, Wang T, Chen J, Wang J, Wang Z, Chang G, Niu Y, Niu Z, Song J. N-Acetylcysteine alleviates spinal cord injury in rats after early decompression surgery by regulating inflammation and apoptosis. Neurol Res 2022; 44:605-613. [PMID: 35000568 DOI: 10.1080/01616412.2021.2024737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Decompression surgery in patients with spinal cord injury (SCI) has a neuroprotective effect by alleviating secondary injury and improving neurological outcomes. N-Acetylcysteine (NAC), a drug approved by the United States Food and Drug Administration, has been shown to play neuroprotective roles via attenuation of apoptosis and inflammation. The purpose of the present study was to investigate the effects of early or late decompression surgery in combination with NAC administration on acute SCI, as well as investigate the underlying mechanisms of its actions. METHODS In this study, an acute SCI model was established in rats. The rats were treated with decompression surgery 24/48 h post-SCI in combination with or without NAC. RESULTS The results showed that decompression surgery in combination with NAC lead to a better outcome than decompression alone, as demonstrated by the higher Basso, Beattie, and Bresnahan scores. Histopathological examination demonstrated that early decompression surgery in combination with NAC exerted the best therapeutic effect on spinal cord recovery, which was further confirmed by the extent of inflammation and apoptosis. Additionally, we found that NAC might compensate for a lack of late surgery. CONCLUSIONS Collectively, early decompression surgery and NAC could be a promising combination for the treatment of acute SCI, and its therapeutic effects may be associated with the regulation of inflammation and apoptosis.
Collapse
Affiliation(s)
- Xing Guo
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Jindong He
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Rongping Zhang
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Tiechui Wang
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Jinjin Chen
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Jinyu Wang
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Zihang Wang
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Guan Chang
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Yubo Niu
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Zhiyong Niu
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| | - Junjie Song
- Department of Orthopedics, Jincheng General Hospital, Jincheng, China
| |
Collapse
|
3
|
Chen NW, Gao JL, Li HL, Xu H, Wu LF, Meng FG, Chen W, Cao YF, Xie WH, Zhang XQ, Liu SH, Jin J, He Y, Lv JW. The protective effect of manganese superoxide dismutase from thermophilic bacterium HB27 on hydrochloric acid-induced chemical cystitis in rats. Int Urol Nephrol 2021; 54:1681-1691. [PMID: 34783980 PMCID: PMC9184365 DOI: 10.1007/s11255-021-03054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Purpose To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. Methods Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. Results Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. Conclusions Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.
Collapse
Affiliation(s)
- Nai-Wen Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Jin-Lai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Hai-Long Li
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Xu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Ling-Feng Wu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Fan-Guo Meng
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yi-Fang Cao
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Wen-Hua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Shi-Hui Liu
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Jian-Wei Lv
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
4
|
Awad H, Efanov A, Rajan J, Denney A, Gigax B, Kobalka P, Kelani H, Basso DM, Bozinovski J, Tili E. Histological Findings After Aortic Cross-Clamping in Preclinical Animal Models. J Neuropathol Exp Neurol 2021; 80:895-911. [PMID: 34534333 PMCID: PMC8783616 DOI: 10.1093/jnen/nlab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord ischemic injury and paralysis are devastating complications after open surgical repair of thoracoabdominal aortic aneurysms. Preclinical models have been developed to simulate the clinical paradigm to better understand the neuropathophysiology and develop therapeutic treatment. Neuropathological findings in the preclinical models have not been comprehensively examined before. This systematic review studies the past 40 years of the histological findings after open surgical repair in preclinical models. Our main finding is that damage is predominantly in the grey matter of the spinal cord, although white matter damage in the spinal cord is also reported. Future research needs to examine the neuropathological findings in preclinical models after endovascular repair, a newer type of surgical repair used to treat aortic aneurysms.
Collapse
Affiliation(s)
- Hamdy Awad
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Alexander Efanov
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jayanth Rajan
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Denney
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Bradley Gigax
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Kobalka
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Hesham Kelani
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - D Michele Basso
- Department of Neuroscience, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA
| | - John Bozinovski
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Esmerina Tili
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Ahadi S, Zargari M, Khalatbary AR. Assessment of the neuroprotective effects of (-)-epigallocatechin-3-gallate on spinal cord ischemia-reperfusion injury in rats. J Spinal Cord Med 2021; 44:725-732. [PMID: 31809244 PMCID: PMC8477957 DOI: 10.1080/10790268.2019.1691862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: Paraplegia or paraparesis due to spinal cord ischemia is one of the complications following thoracoabdominal aortic surgery. Recent studies revealed the neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) on a variety of neurological disorders. The purpose of this study was to determine the neuroprotective effects of EGCG following spinal cord ischemia-reperfusion injury (IRI).Design: The present study was conducted on four groups of rats each as follows: Sham-operated group (laparotomy alone); Control group (with IRI); EGCGI group (50-mg/kg, i.p., before IRI), and EGCGII group (50-mg/kg, i.p., after IRI). Neurological function evaluated with motor deficit index (MDI) test. Spinal cord samples were taken 48 h after IRI and studied for determination of malodialdehyde (MDA) level, histopathology, and immunohistochemistry of caspase-3, TNF-α, and iNOS.Setting: Mazandaran University of Medical Sciences, Sari, Iran.Results: The level of MDA was significantly decreased in EGCG-treated rats. Attenuated caspase-3, TNF-α, and iNOS expression could be significantly detected in the EGCG-treated rats. Also, EGCG reduced the extent of degeneration of the spinal cord neurons, in addition to a significant reduction of MDI.Conclusion: The results suggest that pre- and post-treatment with EGCG may be effective in protecting spinal cord from IRI.
Collapse
Affiliation(s)
- Sahar Ahadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry and Genetic/Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence to: Ali Reza Khalatbary, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
The Protective Effect of Curcumin on a Spinal Cord Ischemia-Reperfusion Injury Model. Ann Vasc Surg 2017; 42:285-292. [DOI: 10.1016/j.avsg.2016.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 02/02/2023]
|
7
|
Hydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8640284. [PMID: 28685010 PMCID: PMC5480044 DOI: 10.1155/2017/8640284] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 11/25/2022]
Abstract
Autophagy is upregulated in spinal cord ischemia reperfusion (SCIR) injury; however, its expression mechanism is largely unknown; moreover, whether autophagy plays a neuroprotective or neurodegenerative role in SCIR injury remains controversial. To explore these issues, we created an SCIR injury rat model via aortic arch occlusion. Compared with normal controls, autophagic cell death was upregulated in neurons after SCIR injury. We found that autophagy promoted neuronal cell death during SCIR, shown by a significant number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling- (TUNEL-) positive cells colabeled with the autophagy marker microtubule-associated protein 1 light chain 3, while the autophagy inhibitor 3-methyladenine reduced the number of TUNEL-positive cells and restored neurological and motor function. Additionally, we showed that oxidative stress was the main trigger of autophagic neuronal cell death after SCIR injury and N-acetylcysteine inhibited autophagic cell death and restored neurological and motor function in SCIR injury. Finally, we found that hydrogen sulfide (H2S) inhibited autophagic cell death significantly by reducing oxidative stress in SCIR injury via the AKT-the mammalian target of rapamycin (mTOR) pathway. These findings reveal that oxidative stress induces autophagic cell death and that H2S plays a neuroprotective role by reducing oxidative stress in SCIR.
Collapse
|
8
|
Liu SG, Wang YM, Zhang YJ, He XJ, Ma T, Song W, Zhang YM. ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway. Neurochem Int 2017; 108:230-237. [PMID: 28411102 DOI: 10.1016/j.neuint.2017.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
Spinal cord ischemia (SCI) induces a range of cellular and molecular cascades, including activation of glutamate receptors and downstream signaling. Post-synaptic density protein 95 (PSD-95) links neuronal nitric oxide synthase (nNOS) with the N-methyl-d-aspartic acid (NMDA) receptors to form a ternary complex in the CNS. This molecular complex-mediated cytotoxicity has been implicated in brain ischemia, but its role in SCI has not been determined. The goal of the study was to investigate the potential protective effects of ZL006, a small-molecule inhibitor of the PSD-95/nNOS interaction, in an in vitro SCI model induced by oxygen and glucose deprivation (OGD) in cultured spinal cord neurons. We found that ZL006 reduced OGD-induced lactate dehydrogenase (LDH) release, neuronal apoptosis and loss of cell viability. This protection was accompanied by the preservation of mitochondrial function, as evidenced by reduced mitochondrial oxidative stress, attenuated mitochondrial membrane potential (MMP) loss, and enhanced ATP generation. In addition, ZL006 stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that ZL006 increased the activation of AMPK-PGC-1α-Sirt3 pathway, and the beneficial effects of ZL006 was partially abolished by AMPK inhibitor and PGC-1α knockdown. Therefore, our present data showed that, by the AMPK-PGC-1α-Sirt3 pathway, ZL006 protects spinal cord neurons against ischemia through reducing mitochondrial oxidative stress to prevent apoptosis.
Collapse
Affiliation(s)
- Shu-Guang Liu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Yun-Mei Wang
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710061, China
| | - Yan-Jun Zhang
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710061, China
| | - Xi-Jing He
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710004, China
| | - Tao Ma
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Wei Song
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Yu-Min Zhang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China.
| |
Collapse
|
9
|
Impact of arterial cross-clamping during vascular surgery on arterial stiffness measured by the augmentation index and fractal dimension of arterial pressure. HEALTH AND TECHNOLOGY 2016. [DOI: 10.1007/s12553-016-0141-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|