1
|
Ramli AH, Jayathilaka EHTT, Dias MKHM, Abdul Malek E, Jain N, An J, Churchill DG, Rukayadi Y, Swain P, Kim CH, de Zoysa M, Mohd Faudzi SM. Antifungal activity of synthetic xanthenone against fluconazole-resistant Candida auris and its mechanism of action. Microb Pathog 2024; 194:106797. [PMID: 39029597 DOI: 10.1016/j.micpath.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Candida auris, an emerging multidrug-resistant fungal pathogen discovered in Japan in 2009, poses a significant global health threat, with infections reported in about 25 countries. The escalation of drug-resistant strains underscores the urgent need for new treatment options. This study aimed to investigate the antifungal potential of 2,3,4,4a-tetrahydro-1H-xanthen-1-one (XA1) against C. auris, as well as its mechanism of action and toxic profile. The antifungal activity of XA1 was first evaluated by determining the minimum inhibitory concentration (MIC), time-kill kinetics and biofilm inhibition. In addition, structural changes, membrane permeability, reactive oxygen species (ROS) production, and in vitro and in vivo toxicity of C. auris after exposure to XA1 were investigated. The results indicated that XA1 exhibited an MIC of 50 μg/mL against C. auris, with time-kill kinetics highlighting its efficacy. Field emission scanning electron microscopy (FE-SEM) showed structural damage in XA1-treated cells, supported by increased membrane permeability leading to cell death. Furthermore, XA1 induced ROS production and significantly inhibited biofilm formation. Importantly, XA1 exhibited low cytotoxicity in human epidermal keratinocytes (HaCaT), with a cell viability of over 90 % at 6.25 μg/mL. In addition, an LD50 of 17.68 μg/mL was determined in zebrafish embryos 24 h post fertilization (hpf), with developmental delay observed at prolonged exposure at 6.25 μg/mL (48-96 hpf). These findings position XA1 as a promising candidate for further research and development of an effective antifungal agent.
Collapse
Affiliation(s)
- Amirah Hani Ramli
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Neha Jain
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jongkeol An
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yaya Rukayadi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mahanama de Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Leung AKC, Barankin B, Lam JM, Leong KF, Hon KL. Tinea pedis: an updated review. Drugs Context 2023; 12:2023-5-1. [PMID: 37415917 PMCID: PMC10321471 DOI: 10.7573/dic.2023-5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Background Tinea pedis is one of the most common superficial fungal infections of the skin, with various clinical manifestations. This review aims to familiarize physicians with the clinical features, diagnosis and management of tinea pedis. Methods A search was conducted in April 2023 in PubMed Clinical Queries using the key terms 'tinea pedis' OR 'athlete's foot'. The search strategy included all clinical trials, observational studies and reviews published in English within the past 10 years. Results Tinea pedis is most often caused by Trichophyton rubrum and Trichophyton interdigitale. It is estimated that approximately 3% of the world population have tinea pedis. The prevalence is higher in adolescents and adults than in children. The peak age incidence is between 16 and 45 years of age. Tinea pedis is more common amongst males than females. Transmission amongst family members is the most common route, and transmission can also occur through indirect contact with contaminated belongings of the affected patient. Three main clinical forms of tinea pedis are recognized: interdigital, hyperkeratotic (moccasin-type) and vesiculobullous (inflammatory). The accuracy of clinical diagnosis of tinea pedis is low. A KOH wet-mount examination of skin scrapings of the active border of the lesion is recommended as a point-of-care testing. The diagnosis can be confirmed, if necessary, by fungal culture or culture-independent molecular tools of skin scrapings. Superficial or localized tinea pedis usually responds to topical antifungal therapy. Oral antifungal therapy should be reserved for severe disease, failed topical antifungal therapy, concomitant presence of onychomycosis or in immunocompromised patients. Conclusion Topical antifungal therapy (once to twice daily for 1-6 weeks) is the mainstay of treatment for superficial or localized tinea pedis. Examples of topical antifungal agents include allylamines (e.g. terbinafine), azoles (e.g. ketoconazole), benzylamine, ciclopirox, tolnaftate and amorolfine. Oral antifungal agents used for the treatment of tinea pedis include terbinafine, itraconazole and fluconazole. Combined therapy with topical and oral antifungals may increase the cure rate. The prognosis is good with appropriate antifungal treatment. Untreated, the lesions may persist and progress.
Collapse
Affiliation(s)
- Alexander KC Leung
- Department of Pediatrics, The University of Calgary and The Alberta Children’s Hospital, Calgary, Alberta, Canada
| | | | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, Chinese University of Hong Kong Medical Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
3
|
Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics (Basel) 2022; 12:antibiotics12010048. [PMID: 36671249 PMCID: PMC9855100 DOI: 10.3390/antibiotics12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Fungal infections have become a growing public health challenge due to the clinical transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices for clinical physicians to deal with such situation, not to mention the long-standing problems of emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore, new antifungal drugs are urgently needed. Screening drugs from natural products and using synthetic biology strategies are very promising for antifungal drug development. Chinese medicine is a vast library of natural products of biologically active molecules. According to traditional Chinese medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and immunomodulatory functions. This suggests that if antifungal drugs are used in combination with immunomodulatory drugs, better results may be achieved. Studies have shown that the active components of TCM have strong antifungal or immunomodulatory effects and have broad application prospects. In this paper, the latest research progress of antifungal and immunomodulatory components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel antifungal compounds and to open up new horizons for antifungal treatment strategies.
Collapse
Affiliation(s)
- Hua Zhong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
4
|
Ajjoun M, Kharchoufa L, Alami Merrouni I, Elachouri M. Moroccan medicinal plants traditionally used for the treatment of skin diseases: From ethnobotany to clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115532. [PMID: 35843409 DOI: 10.1016/j.jep.2022.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin diseases are among the most common human health affections. A healthy skin promotes a healthy body that can be achieved through modern, allopathic and natural medicines. Therefore, medicinal plants can be a reliable therapy in treating skin diseases in humans through a diverse range of bioactive molecules they contain. AIM OF THE STUDY This review aims to provide for the first-time scientific evidence related to the dermatological properties of Morocco's medicinal plants and it aims to provide a baseline for the discovery of new drugs having activities against skin issues. METHODS This review involved an investigation with different search engines for Moroccan ethnobotanical surveys published between 1991 and 2021. The plants used to treat skin diseases have been determined. Information regarding pharmacological effects, phytochemical, and clinical trials related to the plants listed in this review was collected from different scientific databases like PubMed, Science Direct, Google Scholar, Web of Science and Scopus. The data were analyzed and summarized in the review. RESULTS A total of 401 plants belonging to 86 families mainly represented by Asteraceae, Lamiaceae, Fabaceae, and Apiaceae which have been documented to be in common use by Moroccans for managing skin diseases. Among those plants recorded, the most commonly used are Allium cepa L, Chamaeleon gummifer (L.) Cass and Salvia rosmarinus Schleid. Mill. Leaves were the most commonly used plant part, while powder and decoction were the most common method of traditional drug preparation. 107 of the 401 plants (27%) have undergone pharmacological validation. A total of 44 compounds isolated from 27 plants were investigated to treat different types of skin diseases, and 25 plants have been clinically studied for their activities against skin diseases. CONCLUSION The beneficial effects of using Moroccan medicinal plants to treat skin diseases, according to traditional practices, have been proven in numerous scientific studies. Therefore, other studies should focus on isolating and identifying specific bioactive compounds from plant extracts, revealing more valuable therapeutic properties. Furthermore, additional reliable clinical trials are needed to confirm their beneficial effect on patients with skin diseases.
Collapse
Affiliation(s)
- Mohammed Ajjoun
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Ilyass Alami Merrouni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
5
|
Felgueiras HP. An Insight into Biomolecules for the Treatment of Skin Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13071012. [PMID: 34371704 PMCID: PMC8309093 DOI: 10.3390/pharmaceutics13071012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022] Open
Abstract
In assigning priorities, skin infectious diseases are frequently classified as minor when compared to infectious diseases of high mortality rates, such as tuberculosis or HIV. However, skin infections are amongst the most common and prevalent diseases worldwide. Elderly individuals present an increased susceptibility to skin infections, which may develop atypical signs and symptoms or even complicate pre-existing chronic disorders. When the skin fails to correct or inhibit the action of certain pathogenic microorganisms, biomolecules endowed with antimicrobial features are frequently administered topically or systemically to assist or treat such conditions. (1) Antibiotics, (2) antimicrobial peptides, or (3) natural extracts display important features that can actively inhibit the propagation of these pathogens and prevent the evolution of infectious diseases. This review highlights the properties and mechanisms of action of these biomolecules, emphasizing their effects on the most prevalent and difficult to treat skin infections caused by pathogenic bacteria, fungi, and viruses. The versatility of biomolecules’ actions, their symbiotic effects with skin cells and other inherent antimicrobial components, and their target-directed signatures are also explored here.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
6
|
Jafari F, Ramezani M, Nomani H, Amiri MS, Moghadam AT, Sahebkar A, Emami SA, Mohammadpour AH. Therapeutic Effect, Chemical Composition, Ethnobotanical Profile of Eucalyptus globulus: A Review. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807213043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The composition of essential oil (EO) of E. globulus is so different all over the world. The
main component of essential oil is 1,8-cineole (Compound 64), macrocarpal C (Compound 22), terpenes
(Compound 23-92), oleanolic acid (Compound 21), and tannins (Compound 93-99). We
searched in vitro and in vivo articles and reviewed botanical aspects, therapeutic activity, chemical
composition and mechanism of action of E. globulus. Essential oils and extracts of leaves, stump,
wood, root and fruits of E. globulus represented many various medicinal effects including antibacterial,
antifungal, antidiabetic, anticancer, anthelmintic, antiviral, antioxidant, anti-inflammatory, protection
against UV-B, wound healing effect and stimulating the immune response. Also, the leaf extract of eucalyptus
is used as a food additive in the industry. Eucalyptus has so many different therapeutic effects
and some of these effects were confirmed by pharmacological and clinical studies. More clinical studies
are recommended to confirm the useful pharmacological activity of E. globulus.
Collapse
Affiliation(s)
- Fatemeh Jafari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | | | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad,Iran
| |
Collapse
|
7
|
Wang C, Ye X, Ng TB, Zhang W. Study on the Biocontrol Potential of Antifungal Peptides Produced by Bacillus velezensis against Fusarium solani That Infects the Passion Fruit Passiflora edulis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2051-2061. [PMID: 33570936 DOI: 10.1021/acs.jafc.0c06106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bacterium identified as Bacillus velezensis with a growth inhibitory effect against Fusarium solani, a pathogen that caused basal stem rot in the passion fruit Passiflora edulis, was isolated in this study. From the fermentation broth of B. velezensis, a type of antifungal peptide (named BVAP) with a molecular weight of ca. 1.5 kDa was purified and found to be fengycin. BVAP suppressed mycelial growth in F. solani with an IC50 of 5.58 μg/mL, which was superior to those of the chemical fungicides thiram (41.24 μg/mL) and hymexazol (343.31 μg/mL). The antifungal activity remained stable after exposure to 50-100 °C or following incubation with solutions at pH 1-3. Further research revealed that BVAP increased the permeability of the F. solani mycelial membrane, brought about swelling at the tips of hyphae, and elicited abnormal accumulation of nucleic acids and chitin at the sites of swelling. These findings indicate that BVAP possessed a remarkable biocontrol potential toward F. solani.
Collapse
Affiliation(s)
- Caicheng Wang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiujuan Ye
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Wenjing Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
8
|
Biofilm Eradication Activity of Herb and Spice Extracts Alone and in Combination Against Oral and Food-Borne Pathogenic Bacteria. Curr Microbiol 2020; 77:2486-2495. [PMID: 32394095 DOI: 10.1007/s00284-020-02017-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to select herbs and spices with potent biofilm eradication activities. Further, the combined effects of herb and spice extracts against pathogenic biofilms were evaluated. The biofilm eradication activities of ethanol extracts of 104 herbs and spices were measured by combining a colorimetric microbial viability assay with a biofilm formation technique. Ethanol extract of clove had potent biofilm eradication activities against Escherichia coli, Porphyromonas gingivalis, and Streptococcus mutans. Ethanol extracts of eucalyptus and rosemary had potent biofilm eradication activities against P. gingivalis, Staphylococcus aureus and S. mutans. The combination of extracts of clove with eucalyptus or rosemary showed synergistic or additive effects, or both, on biofilm eradication activities. The main biofilm inhibitors in the ethanol extracts of clove, eucalyptus and rosemary were eugenol, macrocarpals and carnosic acid, respectively. The combinations of extracts of clove with eucalyptus or rosemary had potent biofilm eradication activities against oral and food-borne pathogenic bacteria. The findings of the present study reveal that specific combinations of herb and spice extracts may prevent and control biofilm-related oral diseases, food spoilage, and food poisoning.
Collapse
|
9
|
Xu J, Liu R, Sun F, An L, Shang Z, Kong L, Yang M. Eucalyptal D Enhances the Antifungal Effect of Fluconazole on Fluconazole-Resistant Candida albicans by Competitively Inhibiting Efflux Pump. Front Cell Infect Microbiol 2019; 9:211. [PMID: 31281800 PMCID: PMC6595430 DOI: 10.3389/fcimb.2019.00211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The frequent emergence of azole-resistant strains has increasingly led azoles to fail in treating candidiasis. Combination with other drugs is a good option to effectively reduce or retard its incidence of resistance. Natural products are a promising synergist source to assist azoles in treating resistant candidiasis. Eucalyptal D (ED), a formyl-phloroglucinol meroterpenoid, is one of the natural synergists, which could significantly enhance the anticandidal activity of fluconazole (FLC) in treating FLC resistant C. albicans. The checkerboard microdilution assay showed their synergistic effect. The agar disk diffusion test illustrated the key role of ED in synergy. The rhodamine 6G (R6G) efflux assay reflected ED could reduce drug efflux, but quantitative reverse transcription PCR analysis revealed the upregulation of CDR1 and CDR2 genes in ED treating group. Efflux pump-deficient strains were hyper-susceptible to ED, thus ED was speculated to be the substrate of efflux pump Cdr1p and Cdr2p to competitively inhibit the excretion of FLC or R6G, which mainly contributed to its synergistic effect.
Collapse
Affiliation(s)
- Jiali Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Ruihuan Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Fujuan Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lin An
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zhichun Shang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Wang C, Yuan S, Zhang W, Ng T, Ye X. Buckwheat Antifungal Protein with Biocontrol Potential To Inhibit Fungal ( Botrytis cinerea) Infection of Cherry Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6748-6756. [PMID: 31136167 DOI: 10.1021/acs.jafc.9b01144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 11 kDa antifungal protein FEAP was purified from buckwheat ( Fagopyrum esculentum) seed extract with a procedure involving (NH4)2SO4 precipitation and chromatography on SP-Sepharose, Affi-gel blue gel, Mono S, and Superdex peptide. Its N-terminal sequence was AQXGAQGGGAT, resembling those of buckwheat peptides Fα-AMP1 and Fα-AMP2. FEAP exhibited thermostability (20-100 °C) and acid resistance (pH 1-5). Its antifungal activity was retained in the presence of 10-150 mmol/L of K+, Mn2+, or Fe3+ ions, 10-50 mmol/L of Ca2+ or Mg2+ ions, and 50% methanol, 50% ethanol, 50% isopropanol, or 50% chloroform. Its half-maximal inhibitory concentrations toward spore germination and mycelial growth in Botrytis cinerea were 79.9 and 236.7 μg/mL, respectively. Its antifungal activity was superior to the fungicide cymoxanil mancozeb (248.1 μg/mL). FEAP prevented B. cinerea from infecting excised leaves, intact leaves, and isolated fruits of cherry tomato. Its mechanism involved induction of an increase in cell membrane permeability and a decrease in mitochondrial membrane potential.
Collapse
Affiliation(s)
| | | | | | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong 999077 , China
| | | |
Collapse
|
11
|
Wang C, Zhang Y, Zhang W, Yuan S, Ng T, Ye X. Purification of an Antifungal Peptide from Seeds of Brassica oleracea var. gongylodes and Investigation of Its Antifungal Activity and Mechanism of Action. Molecules 2019; 24:molecules24071337. [PMID: 30987412 PMCID: PMC6480268 DOI: 10.3390/molecules24071337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, a 8.5-kDa antifungal peptide designated as BGAP was purified from the crude extract of the seeds of Brassica oleracea var. gongylodes by employing a protocol that comprised cation exchange chromatography on SP-Sepharose, cation exchange chromatography on Mono S and gel filtration chromatography on Superdex peptide. BGAP showed the highest amino acid sequence similarity to defensin peptides by mass spectrometric analysis. BGAP showed a broad spectrum of antifungal activity with a half maximal inhibitory concentration at 17.33 μg/mL, 12.37 μg/mL, 16.81 μg/mL, and 5.60 μg/mL toward Colletotrichum higginsianum, Exserohilum turcicum, Magnaporthe oryzae and Mycosphaerella arachidicola, respectively. The antifungal activity of BGAP remained stable (i) after heat treatment at 40–100 °C for 15 min; (ii) after exposure to solutions of pH 1–3 and 11–13 for 15 min; (iii) after incubation with solutions containing K+, Ca2+, Mg2+, Mn2+ or Fe3+ ions at the concentrations of 20–150 mmol/L for 2 h; and (iv) following treatment with 10% methyl alcohol, 10% ethanol, 10% isopropanol or 10% chloroform for 2 h. Fluorescence staining experiments showed that BGAP brought about an increase in cell membrane permeability, a rise in reactive oxygen species production, a decrease in mitochondrial membrane potential, and an accumulation of chitin at the hyphal tips of Mycosphaerella arachidicola.
Collapse
Affiliation(s)
- Caicheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weiwei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Susu Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Xiujuan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Li M, Ye Y, He L, Hui M, Ng TB, Wong JH, Tsui GC. Domino Cyclization/Trifluoromethylation of 2‐Alknylphenols for the Synthesis of 3‐(Trifluoromethyl)benzofurans and Evaluation of their Antibacterial and Antifungal Activities. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mengwan Li
- Department of ChemistryThe Chinese University of Hong Kong
| | - Yibin Ye
- Department of ChemistryThe Chinese University of Hong Kong
| | - Lisi He
- Department of ChemistryThe Chinese University of Hong Kong
| | - Mamie Hui
- Department of MicrobiologyThe Chinese University of Hong Kong
| | - Tzi Bun Ng
- School of Biomedical SciencesThe Chinese University of Hong Kong
| | - Jack Ho Wong
- School of Biomedical SciencesThe Chinese University of Hong Kong
- Shenzhen Research InstituteThe Chinese University of Hong Kong
| | | |
Collapse
|
13
|
In Vitro Antibiofilm Activity of Eucarobustol E against Candida albicans. Antimicrob Agents Chemother 2017; 61:AAC.02707-16. [PMID: 28584159 DOI: 10.1128/aac.02707-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/20/2017] [Indexed: 12/23/2022] Open
Abstract
Formyl-phloroglucinol meroterpenoids (FPMs) are important types of natural products with various bioactivities. Our antifungal susceptibility assay showed that one of the Eucalyptus robusta-derived FPMs, eucarobustol E (EE), exerted a strong inhibitory effect against Candida albicans biofilms at a concentration of 16 μg/ml. EE was found to block the yeast-to-hypha transition and reduce the cellular surface hydrophobicity of the biofilm cells. RNA sequencing and real-time reverse transcription-PCR analysis showed that exposure to 16 μg/ml of EE resulted in marked reductions in the levels of expressions of genes involved in hyphal growth (EFG1, CPH1, TEC1, EED1, UME6, and HGC1) and cell surface protein genes (ALS3, HWP1, and SAP5). Interestingly, in response to EE, genes involved in ergosterol biosynthesis were downregulated, while the farnesol-encoding gene (DPP3) was upregulated, and these findings were in agreement with those from the quantification of ergosterol and farnesol. Combined with the obvious elevation of negative regulator genes (TUP1, NRG1), we speculated that EE's inhibition of carbon flow to ergosterol triggered the mechanisms of the negative regulation of hyphal growth and eventually led to biofilm inhibition.
Collapse
|
14
|
Sahoo AK, Mahajan R. Management of tinea corporis, tinea cruris, and tinea pedis: A comprehensive review. Indian Dermatol Online J 2016; 7:77-86. [PMID: 27057486 PMCID: PMC4804599 DOI: 10.4103/2229-5178.178099] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The prevalence of superficial mycotic infection worldwide is 20–25% of which dermatophytes are the most common agents. Recent developments in understanding the pathophysiology of dermatophytosis have confirmed the central role of cell-mediated immunity in countering these infections. Hence, a lack of delayed hypersensitivity reaction in presence of a positive immediate hypersensitivity (IH) response to trichophytin antigen points toward the chronicity of disease. Diagnosis, though essentially clinical should be confirmed by laboratory-based investigations. Several new techniques such as polymerase chain reaction (PCR) and mass spectroscopy can help to identify the different dermatophyte strains. Management involves the use of topical antifungals in limited disease, and oral therapy is usually reserved for more extensive cases. The last few years have seen a significant rise in the incidence of chronic dermatophyte infections of skin which have proven difficult to treat. However, due to the lack of updated national or international guidelines on the management of tinea corporis, cruris, and pedis, treatment with systemic antifungals is often empirical. The present review aims to revisit this important topic and will detail the recent advances in the pathophysiology and management of tinea corporis, tinea cruris, and tinea pedia while highlighting the lack of clarity of certain management issues.
Collapse
Affiliation(s)
- Alok Kumar Sahoo
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| | - Rahul Mahajan
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|