1
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
2
|
Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021; 137:111404. [PMID: 33761617 DOI: 10.1016/j.biopha.2021.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yayun Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Jingming Y, Tingting H, Xianbao S, Hu J. Species Difference of Asarinin Metabolism in vitro and its Effect on the Activity of Cytochrome P450 Enzymes. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_200_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Li Y, Qin J, Wu H, Xu Y, Zhang L, Su K, Cui Y, Wang H. In vitro inhibitory effect of lysionotin on the activity of cytochrome P450 enzymes. PHARMACEUTICAL BIOLOGY 2020; 58:695-700. [PMID: 32673137 PMCID: PMC7470033 DOI: 10.1080/13880209.2020.1787468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Lysionotin, a major extraction of Lysionotus pauciflorus Maxim (Gesneriaceae), has a variety of pharmacological properties commonly used in the treatment of lung disease. A study of lysionotin on the activity of human liver cytochrome P450 (CYP) enzymes can provide guidance on the clinical application of lysionotin. OBJECTIVE This study investigated the interaction between lysionotin and CYPs. MATERIAL AND METHOD The effects of 100 μM lysionotin on eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs) with specific inhibitor as positive control and untreated HLMs as control. Meanwhile, the enzyme kinetic parameters were calculated. A time-dependent study was performed with a time interval of 5 min in 30 min. RESULTS Lysionotin was found to inhibit the activity of CYP3A4, 2C19, and 2C8, with IC50 values of 13.85, 24.95, and 30.05 μM, respectively. The inhibition of CYP3A4 was performed in a non-competitive manner with the Ki value of 6.83 μM, while the inhibition of CYP2C19 and 2C8 was performed in a competitive manner with Ki values of 12.41 and 14.51 μM. Moreover, it was found that the inhibition of CYP3A4 was time-dependent with K I/K inact value of 6.618/0.048 min/μM. Discussion and conclusions: The in vitro inhibitory effect of lysionotin on the activity of CYP3A4, 2C19, and 2C8 indicated potential drug interactions between lysionotin and drugs metabolised by CYP3A4, 2C19, and 2C8. Further in vivo experiments are needed to assess the potential interactions.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Neurology, Zibo No. 4 People’s Hospital, Zibo, China
| | - Jing Qin
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, China
| | - Hong Wu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, China
| | - Yongmei Xu
- Department of Cardiology, Shanxian Central Hospital, Heze, China
| | - Li Zhang
- Department of Pharmacy, Shanxian Central Hospital, Heze, China
| | - Keren Su
- Department of Pharmacy, Shanxian Central Hospital, Heze, China
| | - Ying Cui
- Department of Hematology and Nephrology, Shanxian Central Hospital, Heze, China
- CONTACT Ying Cui Department of Hematology and Nephrology, Shanxian Central Hospital, No. 1, Wenhua Road, Heze274300, Shandong, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Haiping Wang Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao266000, Shandong, China
| |
Collapse
|
5
|
The Synergistic Antitumor Effect of Tanshinone IIA Plus Adriamycin on Human Hepatocellular Carcinoma Xenograft in BALB/C Nude Mice and Their Influences on Cytochrome P450 CYP3A4 In Vivo. Adv Med 2020; 2020:6231751. [PMID: 34189145 PMCID: PMC8192217 DOI: 10.1155/2020/6231751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Hepatocellular carcinoma is one of the most common diseases that seriously threaten human life and health. In this study, we evaluated the inhibitory effect of tanshinone IIA (Tan IIA) combined with adriamycin (ADM) on human hepatocellular carcinoma and developed a platform to assess the function if Chinese herbal ingredients combined with chemotherapy drugs have synergistic antitumor effects in vivo. METHODS Established animal model of human hepatocarcinoma HepG2 cell in nude mice. Mice were divided into model control group, Tan IIA group, ADM group, and Tan IIA + ADM group. The changes from general condition, weight, tumor volume, and inhibition rate were observed. The data were gathered from serum AST level and histopathological changes. The content and activity of cytochrome P450 were determined by spectrophotometric analysis. CYP3A4 protein expression was analyzed by western blotting. The binding model crystal structure of Tan IIA and ADM with pregnane X receptor (PXR) was evaluated by Discovery Studio 2.1. RESULTS A combination of Tan IIA with ADM could improve life quality by relieving ADM toxicity, decreasing tumor volume, declining serum AST level, and improving liner pathological section in tumor-bearing mice. The inhibitory rates of Tan IIA, ADM, and cotreatment were 32.77%, 60.96%, and 73.18%, respectively. The Tan IIA group significantly enhanced the content of cytochrome b5, P450, and erythromycin-N-demethylase activity. CYP3A4 protein expression was enhanced obviously by the Tan IIA + ADM group. Virtual molecular docking showed that both Tan IIA and ADM could be stably docked with the same binding site of PXR but different interactions. CONCLUSIONS Tan IIA in combination with ADM could improve the life quality in tumor-bearing mice and enhance the antitumor effect. The Tan IIA group increased the concentration of cytochrome P450 enzymes and activity. Combined Tan IIA with ADM could upregulate the CYP3A4 protein expression and make relevant interaction with protein PXR by virtual docking.
Collapse
|
6
|
QIN WW, WANG L, JIAO Z, WANG B, WANG CY, QIAN LX, QI WL, ZHONG MK. Lower clearance of sodium tanshinone IIA sulfonate in coronary heart disease patients and the effect of total bilirubin: a population pharmacokinetics analysis. Chin J Nat Med 2019; 17:218-226. [DOI: 10.1016/s1875-5364(19)30024-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 02/02/2023]
|
7
|
Zhu S, Wei W, Liu Z, Yang Y, Jia H. Tanshinone‑IIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF‑κB signaling pathway. Mol Med Rep 2018; 17:6969-6976. [PMID: 29568934 PMCID: PMC5928650 DOI: 10.3892/mmr.2018.8741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/16/2017] [Indexed: 02/04/2023] Open
Abstract
Osteoclasts are responsible for bone resorption caused by bone microstructural damage and bone-related disorders. Evidence shows that tanshinone IIA (Tan‑IIA), a traditional Chinese medicine, is used clinically as a drug for the treatment of cardiovascular and cerebrovascular diseases. However, the efficacy and mechanism underlying the effect of Tan‑IIA on the viability of osteoclasts remain to be fully elucidated. The present study investigated the therapeutic effects of Tan‑IIA on osteoblast differentiation and oxidative stress in vitro and in vivo. Cell viability was analyzed and oxidative stress was examined in the osteoblasts. Wnt1sw/sw mice were used to investigate the therapeutic effects of Tan‑IIA on spontaneous tibia fractures and severe osteopenia. The bone strength, collagen and mineral were examined in the tibia. Osteoblast activity was also analyzed in the experimental mice. The Tan‑IIA‑induced differentiation of osteoclasts and the mechanism of action were investigated in osteocytes. The data showed that Tan‑IIA treatment improved cell viability. The data also demonstrated that Tan‑IIA decreased the levels of H2O2, accumulation of reactive oxygen species and apoptosis of osteoblasts. Tan‑IIA inhibited the deleterious outcomes triggered by oxidative stress. In addition, Tan‑IIA inhibited the activation of nuclear factor (NF)‑κB and its target genes, tumor necrosis factor (TNF)‑α, inducible nitric oxide synthase and cyclooxygenase 2, and increased the levels of TNF receptor‑associated factor 1 and inhibitor of apoptosis protein‑1/2 in the osteocytes. Furthermore, it was shown that Tan‑IIA reduced the propensity to fractures and severe osteopenia in mice with osteoporosis. Tan‑IIA also exhibited improved bone strength, mineral and collagen in the bone matrix of the experimental mice. It was found that the Tan‑IIA‑mediated benefits on osteoblast activity and function were through the NF‑κB signaling pathway. Taken together, the data obtained in the present study suggested that Tan‑IIA had protective effects against oxidative stress in osteoblastic differentiation in mice with osteoporosis by regulating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Shaowen Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wanfu Wei
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Zhiwei Liu
- Basic Medicine Institution, Public Health Center, Peking University, Beijing 100871, P.R. China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Haobo Jia
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|