1
|
Benny AT, Thamim M, Srivastava P, Suresh S, Thirumoorthy K, Rangasamy L, S K, Easwaran N, Radhakrishnan EK. Synthesis and study of antibiofilm and antivirulence properties of flavonol analogues generated by palladium catalyzed ligand free Suzuki-Miyaura coupling against Pseudomonas aeruginosa PAO1. RSC Adv 2024; 14:12278-12293. [PMID: 38633488 PMCID: PMC11019961 DOI: 10.1039/d3ra08617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The Suzuki-Miyaura coupling is one of the ubiquitous method for the carbon-carbon bond-forming reactions in organic chemistry. Its popularity is due to its ability to undergo extensive coupling reactions to generate a broad range of biaryl motifs in a straightforward manner displaying a high level of functional group tolerance. A convenient and efficient synthetic route to arylate different substituted flavonols through the Suzuki-Miyaura cross-coupling reaction has been explained in this study. The arylated products were acquired by the coupling of a variety of aryl boronic acids with flavonols under Pd(OAc)2 catalyzed reaction conditions in a ligand-free reaction strategy. Subsequently, the antibiofilm and antivirulence properties of the arylated flavonols against Pseudomonas aeruginosa PAO1 were studied thoroughly. The best ligands for quorum sensing proteins LasR, RhlR, and PqsR were identified using molecular docking study. These best fitting ligands were then studied for their impact on gene expression level of P. aeruginosa by RT-PCR towards quorum sensing genes lasB, rhlA, and pqsE. The downregulation in the gene expression with the effect of synthesized flavonols endorse the antibiofilm efficiency of the compounds.
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Masthan Thamim
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | | - Sindoora Suresh
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology Vellore-632014 India
| | - Karthikeyan S
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - Nalini Easwaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology VIT Vellore-632014 India
| | | |
Collapse
|
2
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
3
|
Adnan M, Siddiqui AJ, Noumi E, Ashraf SA, Awadelkareem AM, Hadi S, Snoussi M, Badraoui R, Bardakci F, Sachidanandan M, Patel M. Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence. BIOMOLECULES & BIOMEDICINE 2023; 23:1051-1068. [PMID: 37421468 PMCID: PMC10655870 DOI: 10.17305/bb.2023.9324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography-mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| |
Collapse
|
4
|
Kim WH, Choi WJ, Kim JE, Choi J, Hong YD, Nam J, Park WS, Shim SM. Kinetic conversion of BIOGF1K enriched in compound K from in vitro 3-D human tissue model. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100165. [PMID: 37869704 PMCID: PMC10589745 DOI: 10.1016/j.crphar.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The purposes of current study were to investigate the effect of ginsenosides from BIOGF1K enriched in compound K (CK) and compound Y (CY) on the skin barrier function, the deposition in in vitro 3-D human tissue model (EpiDermFT™ Full Thickness 400), and to identify and quantify kinetic bioconversion of the ginsenosides in artificial skin by utilizing the Fourier transform infrared spectroscopy (FT-IR) and liquid chromatography mass spectrometry (LC-MS), respectively. Epidermal barrier integrity evaluated using transepithelial electrical resistance (TEER) was significantly higher in the BIOGF1K treatment than the CY or CK individual treatment throughout incubation (p < 0.05). Skin deposition (%) of CY and CK from BIOGF1K treatment was approximately 4 and 2 times higher than the CY and CK single component treatment, respectively. Total amount of CK found in human skin by deposition and bioconversion was approximately 1087.3, 528.82, and 867.76 μM after topical treatment of BIOGF1K, CK, and CY. Results from the current study reveal that topical treatment of BIOGF1K more effectively induced CK deposition as well as bioconversion of CY to CK than that of a single treatment of CY or CK, suggesting that BIOGF1K could be a useful cosmetic preparation for enhancing skin function.
Collapse
Affiliation(s)
- Woo-Hyun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul, 05006, South Korea
| | - Won-Jo Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Eun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul, 05006, South Korea
| | - Joonho Choi
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, 17074, Gyeonggi-do, South Korea
| | - Yong-Deok Hong
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, 17074, Gyeonggi-do, South Korea
| | - Jin Nam
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, 17074, Gyeonggi-do, South Korea
| | - Won-Seok Park
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, 17074, Gyeonggi-do, South Korea
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul, 05006, South Korea
| |
Collapse
|
5
|
Fukushima K, Higashiyama H, Kazuta Y, Hashimoto K, Watanabe N, Furuya Y, Ito Y, Wu T, Kosasa T, Talos DM, Song Y, Roberts NS, Jensen FE, Hanada T, Ido K. Discovery of E2730, a novel selective uncompetitive GAT1 inhibitor, as a candidate for anti-seizure medication. Epilepsia Open 2023; 8:834-845. [PMID: 37052238 PMCID: PMC10472371 DOI: 10.1002/epi4.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/08/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE As of 2022, 36 anti-seizure medications (ASMs) have been licensed for the treatment of epilepsy, however, adverse effects (AEs) are commonly reported. Therefore, ASMs with a wide margin between therapeutic effects and AEs are preferred over ASMs that are associated with a narrow margin between efficacy and risk of AEs. E2730 was discovered using in vivo phenotypic screening and characterized as an uncompetitive, yet selective, inhibitor of γ-aminobutyric acid (GABA) transporter 1 (GAT1). Here, we describe the preclinical characteristics of E2730. METHODS Anti-seizure effects of E2730 were evaluated in several animal models of epilepsy: corneal kindling, 6 Hz-44 mA psychomotor seizure, amygdala kindling, Fragile X syndrome, and Dravet syndrome models. Effects of E2730 on motor coordination were assessed in accelerating rotarod tests. The mechanism of action of E2730 was explored by [3 H]E2730 binding assay. The GAT1-selectivity over other GABA transporters was examined by GABA uptake assay of GAT1, GAT2, GAT3, or betaine/GABA transporter 1 (BGT-1) stably expressing HEK293 cells. To further investigate the mechanism for E2730-mediated inhibition of GAT1, in vivo microdialysis and in vitro GABA uptake assays were conducted under conditions of different GABA concentrations. RESULTS E2730 showed anti-seizure effects in the assessed animal models with an approximately >20-fold margin between efficacy and motor incoordination. [3 H]E2730 binding on brain synaptosomal membrane was abolished in GAT1-deficient mice, and E2730 selectively inhibited GAT1-mediated GABA uptake over other GABA transporters. In addition, results of GABA uptake assays showed that E2730-mediated inhibition of GAT1 positively correlated to the level of ambient GABA in vitro. E2730 also increased extracellular GABA concentration in hyperactivated conditions but not under basal levels in vivo. SIGNIFICANCE E2730 is a novel, selective, uncompetitive GAT1 inhibitor, which acts selectively under the condition of increasing synaptic activity, contributing to a wide margin between therapeutic effect and motor incoordination.
Collapse
Affiliation(s)
| | | | - Yuji Kazuta
- Deep Human Biology LearningEisai Co., Ltd.TsukubaIbarakiJapan
| | | | - Naoto Watanabe
- Deep Human Biology LearningEisai Co., Ltd.TsukubaIbarakiJapan
| | - Yoshiaki Furuya
- Deep Human Biology LearningEisai Co., Ltd.TsukubaIbarakiJapan
| | - Yoshimasa Ito
- Neurology Business GroupEisai Co., Ltd.TsukubaIbarakiJapan
| | - Ting Wu
- Alzheimer's Disease and Brain HealthEisai Co., Ltd.TsukubaIbarakiJapan
| | - Takashi Kosasa
- Neurology Business GroupEisai Co., Ltd.TsukubaIbarakiJapan
| | - Delia M. Talos
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yeri Song
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nicholas S. Roberts
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Frances E. Jensen
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Takahisa Hanada
- Deep Human Biology LearningEisai Co., Ltd.TsukubaIbarakiJapan
| | - Katsutoshi Ido
- Neurology Business GroupEisai Co., Ltd.TsukubaIbarakiJapan
| |
Collapse
|
6
|
Li W, Shao C, Li C, Zhou H, Yu L, Yang J, Wan H, He Y. Metabolomics: A useful tool for ischemic stroke research. J Pharm Anal 2023; 13:968-983. [PMID: 37842657 PMCID: PMC10568109 DOI: 10.1016/j.jpha.2023.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 10/17/2023] Open
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
7
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Tamfu AN, Kocak G, Ceylan O, Citak F, Bütün V, Çiçek H. Synthesis of cross‐linked diazaborine‐based polymeric microparticles with antiquorum sensing, anti‐swarming, antimicrobial, and antibiofilm properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries University of Ngaoundere Ngaoundere Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education Adiyaman University Adiyaman Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Funda Citak
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Vural Bütün
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Hüseyin Çiçek
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
9
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
10
|
Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin Transl Oncol 2022; 24:1219-1230. [PMID: 35038152 DOI: 10.1007/s12094-021-02770-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death, with a heavy socio-economical burden for countries. Despite the great advances that have been made in the treatment of cancer, chemotherapy is still the most common method of treatment. However, many side effects, including hepatotoxicity, renal toxicity, and cardiotoxicity, limit the efficacy of conventional chemotherapy. Over recent years, natural products have attracted attention as therapeutic agents against various diseases, such as cancer. Resveratrol (RES), a natural polyphenol occurring in grapes, nuts, wine, and berries, exhibited potential for preventing and treating various cancer types. RES also ameliorates chemotherapy-induced detrimental effects. Furthermore, RES could modulate apoptosis and autophagy as the main forms of cancer cell deaths by targeting various signaling pathways and up/downregulation of apoptotic and autophagic genes. This review will summarize the anti-cancer effects of RES and focus on the fundamental mechanisms and targets for modulating apoptosis and autophagy by RES.
Collapse
|
11
|
Khan A, Zhang L, Li CH, Khan AU, Shal B, Khan A, Ahmad S, Din FU, Rehman ZU, Wang F, Khan S. Suppression of NF-κB signaling by ECN in an arthritic model of inflammation. BMC Complement Med Ther 2022; 22:158. [PMID: 35698107 PMCID: PMC9195475 DOI: 10.1186/s12906-022-03629-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from the Tussilago farfara Linneaus (Asteraceae), was evaluated against acute Carrageenan and chronic complete Freund's adjuvant (CFA)-induced arthritis in mice. METHODS Acute and chronic arthritis were induced by administering Carrageenan and CFA to the intraplantar surface of the mouse paw. Edema, mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia were assessed in the paw. Similarly, histological and immunohistological parameters were assessed following arthritis induced by CFA. Antioxidants, inflammatory cytokines, and oxidative stress markers were also studied in all the treated groups. RESULTS The ECN treatment significantly attenuated edema in the paw and elevated the nocifensive threshold following induction of this inflammatory model. Furthermore, ECN treatment markedly improved the arthritis index and distress symptoms, while attenuating the CFA-induced edema in the paw. ECN treatment also improved the histological parameters in the paw tissue compared to the control. At the same time, there was a significant reduction in edema and erosion in the ECN-treated group, as measured by radiographic analysis. Using the Comet's assay, we showed that ECN treatment protected the DNA from chronic CFA-induced arthritis. Immunohistochemistry analysis showed a marked decrease in the expression level of p-JNK (phosphorylated C-Jun N-terminal kinase), NF-κB (Nuclear factor-kappa B), COX-2 (Cyclooxygenase-2), and TNF-α (Tumour necrosis factor-alpha) compared to the CFA-treated group. Biophysical analysis involving molecular docking, molecular dynamics simulations, and binding free energies of ECN were performed to explore the underlying mechanism. CONCLUSION ECN exhibited significant anti-inflammatory and anti-arthritic activity against Carrageenan and CFA-induced models.
Collapse
Affiliation(s)
- Amna Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Li Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China
| | - Chang Hu Li
- Division of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, KPK, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quad-i-Azam University, Islamabad, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
12
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
13
|
Cai P, Sheng G, Jiang S, Wang D, Zhao Z, Huang M, Jin J. Comparative Proteomics Analysis Reveals the Reversal Effect of Cryptotanshinone on Gefitinib-Resistant Cells in Epidermal Growth Factor Receptor-Mutant Lung Cancer. Front Pharmacol 2022; 13:837055. [PMID: 35370706 PMCID: PMC8965640 DOI: 10.3389/fphar.2022.837055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Cryptotanshinone (CTS) is a lipophilic constituent of Salvia miltiorrhiza, with a broad-spectrum anticancer activity. We have observed that CTS enhances the efficacy of gefitinib in human lung cancer H1975 cells, yet little is known about its molecular mechanism. To explore how CTS enhances H1975 cell sensitivity to gefitinib, we figured out differential proteins of H1975 cells treated by gefitinib alone or in combination with CTS using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein–protein interaction (PPI) bioinformatic analyses of the differential proteins were performed. CTS enhanced H1975 cell sensitivity to gefitinib in vitro and in vivo, with 115 and 128 differential proteins identified, respectively. GO enrichment, KEGG analysis, and PPI network comprehensively demonstrated that CTS mainly impacted the redox process and fatty acid metabolism in H1975 cells. Moreover, three differential proteins, namely, catalase (CAT), heme oxygenase 1 (HMOX1), and stearoyl-CoA desaturase (SCD) were validated by RT-qPCR and Western blot. In conclusion, we used a proteomic method to study the mechanism of CTS enhancing gefitinib sensitivity in H1975 cells. Our finding reveals the potential protein targets of CTS in overcoming gefitinib resistance, which may be therapeutical targets in lung cancer.
Collapse
Affiliation(s)
- Peiheng Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gaofan Sheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Daifei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jing Jin,
| |
Collapse
|
14
|
Afonso AC, Sousa M, Simões LC, Simões M. Phytochemicals Against Drug-Resistant Bacterial Biofilms and Use of Green Extraction Solvents to Increase Their Bioactivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
16
|
Mukhtar I, Chen R, Cheng Y, Khokhar I, Liang C, Li R, Chen X, Chen J. First Report of Powdery Mildew Caused by Podosphaera xanthii on Sigesbeckia orientalis in China. PLANT DISEASE 2021; 106:2535. [PMID: 34645303 DOI: 10.1094/pdis-07-21-1533-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sigesbeckia orientalis L., (St Paul's wort) is an annually grown natural herb of Asteraceae with a long therapeutic history for a wide range of inflammation-related diseases in China (Zhong et al. 2019). In June 2020, typical symptoms of powdery mildew were observed on 30% of wild S. orientalis plants grown along the roadsides and gardens in Minjiang University, Fuzhou, China. Circular to irregular white powdery fungal colonies were observed on both surfaces of the leaves and young stems, causing necrosis and premature senescence. Fungal hyphae were epigenous, flexuous to straight, branched, and septate. Appressoria on the hyphae were nipple-shaped or nearly absent. Conidiophores were straight, 30 to 210× 8 to 12 μm, and produced 3 to 7 immature conidia in chains with a crenate outline. Foot-cells were cylindrical, 45 to 75 ×10 to 12 μm, followed by 1 to 2 shorter cells. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, 25 to 38 × 18 to 23 μm with distinct fibrosin bodies. Germ tubes were produced from a lateral position on the conidia. Chasmothecia were not observed on the infected leaves. Based on anamorph characteristics, fungus was identified as Podosphaera xanthii (Castagne) U. Braun & N. Shishkoff (Braun and Cook 2012). For molecular identification, total genomic DNA was extracted (Mukhtar et al. 2018) from fungal colonies on infected leaves of five collections separately. For each DNA sample, the part of LSU and ITS regions were amplified using primers LSU1/LSU2 and ITS1/ITS4 (Scholin et al. 1994; White et al. 1990), respectively. A BLAST search revealed 100 % sequences similarity with P. xanthii sequences reported on Ageratum conyzoides (KY274485), Eclipta prostrata (MT260063), Euphorbia hirta (KY388505), Sonchus asper (MN134013), and Verbena bonariensis (AB462804). Representative sequences (ITS: MZ613309; LSU: MZ614707) of an isolate were deposited in GenBank. The phylogenetic analysis also grouped the obtain sequences into P. xanthii clade. Pathogenicity was confirmed by gently pressing the infected leaves onto young leaves of five healthy one-month-old S. orientalis plants, while three non-inoculated plants were used as controls. All plants were maintained in a greenhouse at 25 ± 2°C. After, seven days, white powdery colonies were observed on inoculated plants, whereas controls remained mildew-free. On inoculated leaves, the fungus was morphologically and molecularly identical to the fungus on the original specimens. P. xanthii has been reported as a significant damaging pathogen on a wide range of plants in China (Farr and Rossman 2021). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on S. orientalis in China as well as worldwide. S. orientalis is one of the most important commercial Chinese medicinal herbs and the occurrence of powdery mildew is a threat to its production, quality, and marketability. References: Braun, U., and Cook, R. T. A. 2012. The Taxonomic Manual of the Erysiphales (Powdery Mildews). CBS Biodiversity Series 11: CBS. Utrecht, The Netherlands. Farr, D. F., and Rossman, A. Y. 2021. Fungal Databases. Syst. Mycol. Microbiol. Lab., USDA ARS, 9 October 2021. Mukhtar, I., et al. 2018. Sydowia.70:155. Scholin, C. A., et al. 1994. J. Phycol. 30:999. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Zhong, Z., et al., 2019. Chin. Med. (U. K.) 14, 1-12. 10.1186/s13020-019-0260-y.
Collapse
Affiliation(s)
- Irum Mukhtar
- Minjiang University, 26465, Institute of Oceanography, Minhou district, Fuzhou, China, 350108;
| | - Ruanni Chen
- Minjiang University, 26465, Fuzhou, Fujian, China;
| | - Yunying Cheng
- Minjiang University, 26465, Institute of Oceanography, Fuzhou, Fujian, China;
| | - Ibatsam Khokhar
- Forman Christian College, 66877, Biological Sciences, Lahore, Punjab, Pakistan;
| | - Chen Liang
- Minjiang University, 26465, Institute of Oceanography, Fuzhou, Fujian, China;
| | - Ruiting Li
- Minjiang University, 26465, Institute of Oceanography, Fuzhou, Fujian, China;
| | | | - Jianming Chen
- Minjiang University, 26465, Institute of Oceanography, Fuzhou, Fujian, China;
| |
Collapse
|
17
|
Essawy AE, Abd Elkader HTAE, Khamiss OA, Eweda SM, Abdou HM. Therapeutic effects of astragaloside IV and Astragalus spinosus saponins against bisphenol A-induced neurotoxicity and DNA damage in rats. PeerJ 2021; 9:e11930. [PMID: 34434659 PMCID: PMC8359804 DOI: 10.7717/peerj.11930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Bisphenol A (BPA) is an endocrine disruptor to which humans are often subjected during daily life. This study aimed to investigate the ameliorative effect of astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus (A. spinosus) against DNA damage and neurotoxic effects induced by BPA in prefrontal cortex (PFC), hippocampal and striatal brain regions of developing male rats. Materials and Methods Juvenile PND20 (pre-weaning; age of 20 days) male Sprague Dawley rats were randomly and equally divided into four groups: control, BPA, BPA+ASIV and BPA+A. spinosus saponins groups. Bisphenol A (125 mg/kg/day) was administrated orally to male rats from day 20 (BPA group) and along with ASIV (80 mg/kg/day) (BPA+ASIV group) or A. spinosus saponin (100 mg/kg/day) (BPA+ A. spinosus saponins group) from day 50 to adult age day 117. Results Increased level of nitric oxide (NO) and decreased level of glutamate (Glu), glutamine (Gln), glutaminase (GA) and glutamine synthetase (GS) were observed in the brain regions of BPA treated rats compared with the control. On the other hand, co-administration of ASIV or A. spinosus saponin with BPA considerably improved levels of these neurochemicals. The current study also revealed restoration of the level of brain derived neurotrophic factor (BDNF) and N-methyl-D-aspartate receptors (NR2A and NR2B) gene expression in BPA+ ASIV and BPA+A. spinosus saponins groups. The co-treatment of BPA group with ASIV or A. spinosus saponin significantly reduced the values of comet parameters as well as the intensity of estrogen receptors (ERs) immunoreactive cells and improved the histological alterations induced by BPA in different brain regions. Conclusion It could be concluded that ASIV or A. spinosus saponins has a promising role in modulating the neurotoxicity and DNA damage elicited by BPA.
Collapse
Affiliation(s)
- Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Omaima A Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI-USC), University of Sadat City, Sadat City, Egypt
| | - Saber Mohamed Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, KSA, Saudi Arabia
| | - Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Hero JS, Pisa JH, Raimondo EE, Martínez MA. Proteomic analysis of secretomes from Bacillus sp. AR03: characterization of enzymatic cocktails active on complex carbohydrates for xylooligosaccharides production. Prep Biochem Biotechnol 2021; 51:871-880. [PMID: 33439095 DOI: 10.1080/10826068.2020.1870136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacillus sp. AR03 have been described as an important producer of carbohydrate-active enzymes (CAZymes) when growing in a peptone-based medium supplemented with simple sugars and/or carboxymethyl cellulose (CMC) as carbon sources. This work aimed to identify the extracellular enzymatic cocktails through shotgun proteomics. The proteomic analysis showed that enzymes involved in cellulose and xylan degradation were among the most abundant proteins. These enzymes included an endo-glucanase GH5_2 and a glucuronoxylanase GH30_8, which were found in all conditions. In addition, several proteins were differentially expressed in the three evaluated culture media, indicating microbial metabolic changes due to the different supplied carbon sources, particularly, in the presence of CMC. Finally, the capability of the crude enzymatic cocktails from culture media to degrade birchwood xylan was assessed, which produced mostly xylooligosaccharides containing among 3-5 xylose units. Consequently, this work shows the potential of the extracellular enzymes from Bacillus sp. AR03 for producing emergent prebiotics.
Collapse
Affiliation(s)
- Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina
| | - José H Pisa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina
| | - Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina.,Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
19
|
Zhou ZY, Xiao Y, Zhao WR, Zhang J, Shi WT, Ma ZL, Ye Q, Chen XL, Tang N, Tang JY. Pro-angiogenesis effect and transcriptome profile of Shuxinyin formula in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153083. [PMID: 31600690 DOI: 10.1016/j.phymed.2019.153083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Angiogenesis plays a critical role in ischemia disease like coronary heart disease. Shunxinyin formula has been developed for treating coronary heart disease according to the principle of traditional Chinese medicine while its underlying mechanism is not fully elucidated. PURPOSE Here, we hypothesize Shuxinyin formula could promote angiogenesis and microcirculation, and the underlying mechanism is also investigated. METHODS We established the chemical profile of Shuxinyin (SXY) extract utilizing a UHPLC-Q/Exactive analysis system and evaluated its pro-angiogenesis effect in zebrafish model. The underlying mechanisms were investigated by combination of pharmacological experiments with transcriptome analysis in zebrafish. Zebrafish treated with VEGF was served as the positive control in present study. RESULTS We found SXY significantly enhanced the sub-intestinal vessel plexus (SIVs) growth in zebrafish. Co-treatment and post-treatment SXY attenuated VEGF receptor tyrosine kinase inhibitor II (VRI)-induced deficiency of intersegmental vessels (ISVs) in a concentration dependent manner. Post-treatment VEGF, which is a well-known angiogenesis driver, also partially ameliorated VRI-induced ISVs deficiency. In addition, SXY inhibited the down-regulation of VEGF receptors, including kdr, flt1 and kdrl, induced by VRI in zebrafish. The pro-angiogenesis effect of SXY on VRI-induced ISVs deficiency was suppressed by PI3K and JNK inhibitors, and Akt inhibitor abolished the pro-angiogenesis effect of SXY. The transcriptome profile of SXY preventing from VRI-induced vascular growth deficiency revealed that the underlying mechanisms were also co-related to cell junction, apoptosis and autophagy. CONCLUSION We could conclude that SXY presented pro-angiogenesis effect and the action mechanisms were involved in VEGF/PI3K/Akt/MAPK signaling pathways, cell junction, apoptosis and autophagy.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Zi-Lin Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Nuo Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China.
| |
Collapse
|
20
|
Cai P, Qiu H, Qi F, Zhang X. The toxicity and safety of traditional Chinese medicines: Please treat with rationality. Biosci Trends 2019; 13:367-373. [PMID: 31564696 DOI: 10.5582/bst.2019.01244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong Universityy, Ji'nan, China
| | - Hua Qiu
- Department of gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong Universityy, Ji'nan, China
| | - Xiaoyi Zhang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong Universityy, Ji'nan, China
| |
Collapse
|
21
|
Yao B, Liu J, Xu D, Pan D, Zhang M, Zhao D, Leng X. Dissection of the molecular targets and signaling pathways of Guzhi Zengsheng Zhitongwan based on the analysis of serum proteomics. Chin Med 2019; 14:29. [PMID: 31485261 PMCID: PMC6712859 DOI: 10.1186/s13020-019-0252-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background Guzhi Zengsheng Zhitongwan (GZZSZTW) is an effective formula of traditional Chinese herbal medicine and has been widely applied in the treatment of joint diseases for many years. The aim of this study was to dissect the molecular targets and signaling pathways of Guzhi Zengsheng Zhitongwan based on the analysis of serum proteomics. Methods The Chinese herbs of GZZSZTW were immersed in 5 l distilled water and boiled with reflux extraction method. The extract was filtered, concentrated and freeze-dried. The chemical profile of GZZSZTW extract was determined by high-performance lipid chromatography (HPLC). The 7-week old Sprague-Dawley (SD) rats in GZZSZTW groups were received oral administration at doses of 0.8, 1.05, and 1.3 g/kg per day and the rats in blank group were fed with drinking water. Serum samples were collected from the jugular veins. Primary chondrocyte viability was evaluated by CCK-8 assay. A full spectrum of the molecular targets and signaling pathways of GZZSZTW were investigated by isobaric tags for relative and absolute quantitation (iTRAQ) analysis and a systematic bioinformatics analysis accompanied with parallel reaction monitoring (PRM) and siRNA validation. Results GZZSZTW regulated a series of functional proteins and signaling pathways responsible for cartilage development, growth and repair. Functional classification analysis indicated that these proteins were mainly involved in the process of cell surface dynamics. Pathway analysis mapped these proteins into several signalling pathways involved in chondrogenesis, chondrocyte proliferation and differentiation, and cartilage repair, including hippo signaling pathway, cGMP-PKG signaling pathway, cell cycle and calcium signaling pathway. Protein–protein interaction analysis and siRNA knockdown assay identified an interaction network consisting of TGFB1, RHO GTPases, ILK, FLNA, LYN, DHX15, PKM, RAB15, RAB1B and GIPC1. Conclusions Our results suggest that the effects of GZZSZTW on treating joint diseases might be achieved through the TGFB1/RHO interaction network coupled with other proteins and signaling pathways responsible for cartilage development, growth and repair. Therefore, the present study has greatly expanded our knowledge and provided scientific support for the underlying therapeutic mechanisms of GZZSZTW on treating joint diseases. It also provided possible alternative strategies for the prevention and treatment for joint diseases by using traditional Chinese herbal formulas.
Collapse
Affiliation(s)
- Baojin Yao
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Jia Liu
- 2College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Duoduo Xu
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Daian Pan
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Mei Zhang
- 3Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Daqing Zhao
- 1Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Xiangyang Leng
- 4The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| |
Collapse
|