1
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Meng X, Liu X, Tan J, Sheng Q, Zhang D, Li B, Zhang J, Zhang F, Chen H, Cui T, Li M, Zhang S. From Xiaoke to diabetes mellitus: a review of the research progress in traditional Chinese medicine for diabetes mellitus treatment. Chin Med 2023; 18:75. [PMID: 37349778 DOI: 10.1186/s13020-023-00783-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia resulting from insulin secretion defects or insulin resistance. The global incidence of DM has been gradually increasing due to improvements in living standards and changes in dietary habits, making it a major non-communicable disease that poses a significant threat to human health and life. The pathogenesis of DM remains incompletely understood till now, and current pharmacotherapeutic interventions are largely inadequate, resulting in relapses and severe adverse reactions. Although DM is not explicitly mentioned in traditional Chinese medicine (TCM) theory and clinical practice, it is often classified as "Xiaoke" due to similarities in etiology, pathogenesis, and symptoms. With its overall regulation, multiple targets, and personalized medication approach, TCM treatment can effectively alleviate the clinical manifestations of DM and prevent or treat its complications. Furthermore, TCM exhibits desirable therapeutic effects with minimal side effects and a favorable safety profile. This paper provides a comprehensive comparison and contrast of Xiaoke and DM by examining the involvement of TCM in their etiology, pathogenesis, treatment guidelines, and other relevant aspects based on classical literature and research reports. The current TCM experimental research on the treatment of DM by lowering blood glucose levels also be generalized. This innovative focus not only illuminates the role of TCM in DM treatment, but also underscores the potential of TCM in DM management.
Collapse
Affiliation(s)
- Xianglong Meng
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Tradition Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Xiaoqin Liu
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Tradition Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Jiaying Tan
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Qi Sheng
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Dingbang Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Bin Li
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Jia Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Fayun Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Hongzhou Chen
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Tao Cui
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Minghao Li
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Shuosheng Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
- Shanxi Key Laboratory of Tradition Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
3
|
Teuma L, Eshwaran R, Tawokam Fongang U, Wieland J, Shao F, Lagana ML, Wang Y, Agaci A, Hammes HP, Feng Y. Glucosamine inhibits extracellular matrix accumulation in experimental diabetic nephropathy. Front Nutr 2022; 9:1048305. [PMID: 36532524 PMCID: PMC9751334 DOI: 10.3389/fnut.2022.1048305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Glucosamine, the intermediate metabolite of the hexosamine biosynthesis pathway (HBP), is widely used as a supplementary drug in patients with osteoarthritis. However, its consequences in such patients concomitantly suffering from diabetic nephropathy is unknown. METHODS The aim of the study was to investigate the effect of exogenous administration of glucosamine in the diabetic kidney. A mouse model of streptozotocin-induced diabetic nephropathy in vivo and cultured endothelial cells in vitro were used in the study. The mice were treated with glucosamine for 6 months. Renal function was evaluated by metabolic cage, and histology of the kidney was estimated by periodic acid-schiff (PAS) staining. The expression of related genes was assessed by real-time PCR, immunofluorescence staining, immunoblotting and ELISA. RESULTS There was no significant difference in urinary albumin secretion, relative kidney weight, or creatinine clearance between the groups treated with glucosamine and controls. Assessment of the kidney demonstrated reduction in mesangial expansion and fibronectin expression in the diabetic glomeruli treated with glucosamine. Glucosamine treatment significantly decreased α-smooth muscle actin (α-SMA) protein expression in both diabetic and control kidneys, whereas the expression of other fibrosis-related genes and inflammatory factors was unaltered. Moreover, α-SMA colocalized with the endothelial marker CD31 in the diabetic and control kidneys, and glucosamine reduced α-SMA+ ECs in the diabetic glomeruli. In addition, glucosamine suppressed α-SMA expression in endothelial cells treated with or without high glucose. DISCUSSION In summary, this is the first report to show that glucosamine reduces mesangial expansion and inhibits endothelial-mesenchymal transition in diabetic nephropathy. The underlying mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Loic Teuma
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Ulrich Tawokam Fongang
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Johanna Wieland
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Feng Shao
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Maria Luisa Lagana
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Yixin Wang
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Ane Agaci
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology Mannheim, Medical Faculty Mannheim, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Lei C, Chen Z, Fan L, Xue Z, Chen J, Wang X, Huang Z, Men Y, Yu M, Liu Y, Chen J. Integrating Metabolomics and Network Analysis for Exploring the Mechanism Underlying the Antidepressant Activity of Paeoniflorin in Rats With CUMS-Induced Depression. Front Pharmacol 2022; 13:904190. [PMID: 35770096 PMCID: PMC9234202 DOI: 10.3389/fphar.2022.904190] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Paeoniflorin (PF) represents the major bioactive constituent of the traditional Chinese medicine plant Paeonia suffruticosa (Ranunculaceae), which has a long history as a folk medicine in Asian. Paeoniflorin, a bitter pinene monoterpene glycoside, has antidepressant effects, but its potential therapeutic mechanism has not been thoroughly explored. Methods: Experimental depression in rats was established by the chronic unpredictable mild stress (CUMS) combined with orphan method, and the efficacy of paeoniflorin on depression was evaluated by the sucrose preference test and open field test. The antidepressant mechanism of paeoniflorin was investigated by metabolomic and network pharmacology. The relevant pathways of biomarkers highlighted in metabolomics were explored, and the possible targets of paeoniflorin in the treatment of depression were further revealed through network analysis. The binding activity of paeoniflorin to key targets was verified by molecular docking. Results: Metabolomics showed that rats with CUMS-induced depression had urine metabolic disorders, which were reversed by paeoniflorin through the regulation of metabolic pathways. Metabolites that play a key role in the function of paeoniflorin include citric acid, thiamine monophosphate, gluconolactone, 5-hydroxyindoleacetic acid and stachyose. Key predicted targets are SLC6A4, TNF, IL6 and SLC6A3. An important metabolic pathway is the Citrate cycle (TCA cycle). Conclusion: Network integrative analysis in this study showed that paeoniflorin could improve depressive-like symptoms in model rats with CUMS-induced depression and overall correct the disordered metabolic profile through multiple metabolic pathways.
Collapse
Affiliation(s)
- Chaofang Lei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xihong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinian Men
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhi Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yueyun Liu, ; Jiaxu Chen,
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yueyun Liu, ; Jiaxu Chen,
| |
Collapse
|
6
|
Meng X, Yan J, Ma J, Kang AN, Kang SY, Zhang Q, Lyu C, Park YK, Jung HW, Zhang S. Effects of Jowiseungki-tang on high fat diet-induced obesity in mice and functional analysis on network pharmacology and metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114700. [PMID: 34600076 DOI: 10.1016/j.jep.2021.114700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese and Korean medicine, Jowiseungki-tang (JST) is a prescription for diabetes mellitus (DM) treatment. However, little scientific evidence is known of its effect in diabetic condition. AIMS We assessed the effects of JST on high-fat diet (HFD)-induced obesity with inflammatory condition in mice and to analyze the therapeutic function of JST on network pharmacology as well as targeted metabolomics. MATERIALS AND METHODS JST administration at 100 mg/kg and 500 mg/kg for a period of 4 weeks in HFD-induced obese mice, body weight gain, energy utility, calorie intake, and levels of glucose, insulin, total cholesterol, triglyceride, LDL-cholesterol as well as interleukin-6 were measured. Measurements of HDL-cholesterol (HDL-C) were performed and compared to those of the control group. Moreover, the therapeutic function of JST on obesity was analyzed furtherly based on network pharmacology and targeted metabolomics methods. RESULTS Administration of JST at 100 mg/kg and 500 mg/kg for a period of 4 weeks in HFD-induced obesity mice significantly decreased the body weight gain, energy utility, calorie intake, and levels of insulin, total cholesterol, LDL-cholesterol, triglyceride, and interleukin-6. However, HDL-cholesterol (HDL-C) levels showed marked elevation relative to control groups. JST administration strongly inhibited expressions of inducible nitric oxide synthase, inflammatory proteins, and cyclooxygenase-2 in the pancreas, stomach, and liver tissues, and reduced hepatic steatosis and pancreatic hyperplasia. In network pharmacological analysis, the putative functional targets of JST are underlie on modulation of cofactor-, coenzyme-, and fatty acid-bonding, insulin resistance, and inflammatory response, fine-tuned the phosphatase binding and signal pathway activation, such as mitogen activated protein kinases, phosphatidylinositol 3-kinases/protein kinase B, protein kinase C, and receptor of glycation end products as well-advanced glycation end products. According to the metabolomics analysis, the contents and energy metabolites, and medium and long chain fatty acids was significantly changed in mice pancreases. CONCLUSIONS JST is a valuable prescription for treatment of patients with DM in traditional clinics through inhibition of obesity, inflammatory condition and metabolism.
Collapse
Affiliation(s)
- Xianglong Meng
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jingning Yan
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Junnan Ma
- Department of Formulaology, Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - An Na Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Seok Yong Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea
| | - Qi Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Chenzi Lyu
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| | - Shuosheng Zhang
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
7
|
Jiang T, Bao Y, Su H, Zheng R, Cao L. Mechanisms of Chinese Herbal Medicines for Diabetic Nephropathy Fibrosis Treatment. INTEGRATIVE MEDICINE IN NEPHROLOGY AND ANDROLOGY 2022; 9. [PMCID: PMC9549772 DOI: 10.4103/2773-0387.353727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus that is one of the main causes of end-stage renal disease, causing considerable health problems as well as significant financial burden worldwide. The pathological features of DN include loss of normal nephrons, massive fibroblast and myofibroblast hyperplasia, accumulation of extracellular matrix proteins, thickening of the basement membrane, and tubulointerstitial fibrosis. Renal fibrosis is a final and critical pathological change in DN. Although progress has been made in understanding the pathogenesis of DN fibrosis, current conventional treatment strategies may not be completely effective in preventing the disease’s progression. Traditionally, Chinese herbal medicines (CHMs) composed of natural ingredients have been used for symptomatic relief of DN. Increasing numbers of studies have confirmed that CHMs can exert a renoprotective effect in DN, and antifibrosis has been identified as a key mechanism. In this review, we summarize the antifibrotic efficacy of CHM preparations, single herbal medicines, and their bioactive compounds based on their effects on diminishing the inflammatory response and oxidative stress, regulating transforming growth factor, preventing epithelial-mesenchymal transition, and modulating microRNAs. We intend to provide patients of DN with therapeutic interventions that are complementary to existing options.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Yuhang Bao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Hong Su
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Rendong Zheng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| |
Collapse
|
8
|
Zhen Z, Xia L, You H, Jingwei Z, Shasha Y, Xinyi W, Wenjing L, Xin Z, Chaomei F. An Integrated Gut Microbiota and Network Pharmacology Study on Fuzi-Lizhong Pill for Treating Diarrhea-Predominant Irritable Bowel Syndrome. Front Pharmacol 2021; 12:746923. [PMID: 34916934 PMCID: PMC8670173 DOI: 10.3389/fphar.2021.746923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) is one of the most common chronic functional gastrointestinal diseases with limited treatments. Gut microbiota play an important role in chronic gastrointestinal diseases. In traditional Chinese medicine (TCM), Spleen-Yang deficiency (SYD) is one of the root causes of IBS-D. Fuzi-Lizhong pill (FLZP) is well known for its powerful capacity for treating SYD and has a good clinical effect on IBS-D. However, the mechanism of FLZP on the gut microbiota of IBS-D has not been fully clarified. Our present study aimed to reveal the mechanism of FLZP regulating gut microbiota of IBS-D. The body mass, CCK, MTL, and Bristol fecal character score were used to verify the establishment of the IBS-D model. IL-6, TNF, IL-1β, and IFN-γ were crucial targets screened by network pharmacology and preliminarily verified by ELISA. Eighteen gut microbiota were important for the treatment of IBS-D with FLZP. Bacteroidetes, Blautia, Turicibacter, and Ruminococcus_torques_group were the crucial gut microbiota that FLZP inhibits persistent systemic inflammation in the IBS-D model. Lactobacillus is the crucial gut microbiota that FLZP renovates intestinal immune barrier in the IBS-D model. In summary, FLZP can affect bacterial diversity and community structures in the host and regulate inflammation and immune system to treat IBS-D.
Collapse
Affiliation(s)
- Zhang Zhen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co., Ltd., Pengzhou, China
| | - Lin Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang You
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Jingwei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Shasha
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xinyi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lai Wenjing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Xin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Chaomei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Tanase DM, Gosav EM, Neculae E, Costea CF, Ciocoiu M, Hurjui LL, Tarniceriu CC, Maranduca MA, Lacatusu CM, Floria M, Serban IL. Genetic Basis of Tiller Dynamics of Rice Revealed by Genome-Wide Association Studies. Nutrients 2020; 12:nu12123719. [PMID: 33276482 PMCID: PMC7760723 DOI: 10.3390/nu12123719] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
A tiller number is the key determinant of rice plant architecture and panicle number and consequently controls grain yield. Thus, it is necessary to optimize the tiller number to achieve the maximum yield in rice. However, comprehensive analyses of the genetic basis of the tiller number, considering the development stage, tiller type, and related traits, are lacking. In this study, we sequence 219 Korean rice accessions and construct a high-quality single nucleotide polymorphism (SNP) dataset. We also evaluate the tiller number at different development stages and heading traits involved in phase transitions. By genome-wide association studies (GWASs), we detected 20 significant association signals for all traits. Five signals were detected in genomic regions near known candidate genes. Most of the candidate genes were involved in the phase transition from vegetative to reproductive growth. In particular, HD1 was simultaneously associated with the productive tiller ratio and heading date, indicating that the photoperiodic heading gene directly controls the productive tiller ratio. Multiple linear regression models of lead SNPs showed coefficients of determination (R2) of 0.49, 0.22, and 0.41 for the tiller number at the maximum tillering stage, productive tiller number, and productive tiller ratio, respectively. Furthermore, the model was validated using independent japonica rice collections, implying that the lead SNPs included in the linear regression model were generally applicable to the tiller number prediction. We revealed the genetic basis of the tiller number in rice plants during growth, By GWASs, and formulated a prediction model by linear regression. Our results improve our understanding of tillering in rice plants and provide a basis for breeding high-yield rice varieties with the optimum the tiller number.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700115 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700115 Iasi, Romania
- Correspondence:
| | - Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital, 700483 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
| |
Collapse
|
10
|
He T, Liu J, Wang X, Duan C, Li X, Zhang J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem Toxicol 2020; 146:111845. [DOI: 10.1016/j.fct.2020.111845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
|