1
|
Yang C, Wu M, Luo Q, Xu G, Huang L, Tian H, Sun M, Liang F. Acupuncture for migraine: A systematic review and meta-regression of randomized controlled trials. Complement Ther Med 2024; 86:103076. [PMID: 39243985 DOI: 10.1016/j.ctim.2024.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES This meta-analysis aimed to explore the relationship between the dose of acupuncture sessions, acupuncture frequency, and acupuncture duration and its effects on migraine. METHODS Eight databases were searched for randomized controlled trials (RCTs) evaluating the efficacy of penetrating manual acupuncture for migraine published in English and Chinese from inception to June 20, 2024. The robust-error meta-regression (REMR) approach and non-linear meta-regression with restricted cubic spline (RCS) were used to investigate the dose-response association between acupuncture sessions, acupuncture frequency, and acupuncture duration and the frequency of migraine attacks. The potential nonlinear relationships was tested by restricting the regression coefficient to zero and a P value<0.1. The statistical analysis was conducted using Stata 17.0. The risk of bias was independently assessed by two reviewers using the Cochrane tool. The reporting quality for acupuncture procedures was evaluated by STRICTA criteria. RESULTS Thirty-two RCTs involving 1562 participants were included, and the results showed a J-shaped dose-response association between acupuncture sessions, acupuncture frequency, and acupuncture duration and migraine attack frequency. After 16 acupuncture sessions, the change in the frequency of migraine attacks was 3.95 (95 %CI: 3.13 to 4.77). Three sessions of acupuncture a week resulted in a significant decrease in the frequency of migraine attacks, reaching 4.04 (95 % CI: 2.49 to 5.58). After two months of acupuncture, the frequency of migraine attacks decreased significantly, showing a difference of 4.05 (95 % CI: 3.61 to 4.49). Subsequently, the improvement trend gradually flattened, yielding diminishing benefits to patients. The risk of bias showed that seven studies were rated as "low risk", two were rated as "high risk", and the others were rated as "unclear risk". The reporting quality of RCTs of acupuncture for migraine remain suboptimal. CONCLUSIONS A non-linear dose-response relationship was found between acupuncture sessions, acupuncture frequency, and acupuncture duration and migraine attack frequency. The results of our study recommend 16 sessions of acupuncture with a frequency of 3 sessions/week and a treatment duration of 1.5 to 2 months. REGISTRATION NUMBER This meta-analysis has been registered on PROSPERO (CRD42023400493).
Collapse
Affiliation(s)
- Chunyan Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Min Wu
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine Affiliated to Chengdu University of Traditional Chinese Medicine, Mianyang, Sichuan 621000, China
| | - Qin Luo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Guixing Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Liuyang Huang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Hao Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
2
|
Yang J, Pan H, Wang M, Li A, Zhang G, Fan X, Li Z. Protective effects of Ganoderma lucidum spores on estradiol benzoate-induced TEC apoptosis and compromised double-positive thymocyte development. Front Pharmacol 2024; 15:1419881. [PMID: 39221140 PMCID: PMC11361955 DOI: 10.3389/fphar.2024.1419881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Backgroud: Thymic atrophy marks the onset of immune aging, precipitating developmental anomalies in T cells. Numerous clinical and preclinical investigations have underscored the regulatory role of Ganoderma lucidum spores (GLS) in T cell development. However, the precise mechanisms underlying this regulation remain elusive. Methods: In this study, a mice model of estradiol benzoate (EB)-induced thymic atrophy was constructed, and the improvement effect of GLS on thymic atrophy was evaluated. Then, we employs multi-omics techniques to elucidate how GLS modulates T cell development amidst EB-induced thymic atrophy in mice. Results: GLS effectively mitigates EB-induced thymic damage by attenuating apoptotic thymic epithelial cells (TECs) and enhancing the output of CD4+ T cells into peripheral blood. During thymic T cell development, sporoderm-removed GLS (RGLS) promotes T cell receptor (TCR) α rearrangement by augmenting V-J fragment rearrangement frequency and efficiency. Notably, biased Vα14-Jα18 rearrangement fosters double-positive (DP) to invariant natural killer T (iNKT) cell differentiation, partially contingent on RGLS-mediated restriction of peptide-major histocompatibility complex I (pMHCⅠ)-CD8 interaction and augmented CD1d expression in DP thymocytes, thereby promoting DP to CD4+ iNKT cell development. Furthermore, RGLS amplifies interaction between a DP subpopulation, termed DPsel-7, and plasmacytoid dendritic cells (pDCs), likely facilitating the subsequent development of double-negative iNKT1 cells. Lastly, RGLS suppresses EB-induced upregulation of Abpob and Apoa4, curbing the clearance of CD4+Abpob+ and CD4+Apoa4+ T cells by mTECs, resulting in enhanced CD4+ T cell output. Discussion: These findings indicate that the RGLS effectively mitigates EB-induced TEC apoptosis and compromised double-positive thymocyte development. These insights into RGLS's immunoregulatory role pave the way for its potential as a T-cell regeneration inducer.
Collapse
Affiliation(s)
- Jihong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
- ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| | - Haitao Pan
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
| | - Mengyao Wang
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
| | - Anyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoliang Zhang
- ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, China
| | - Zhenhao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- BoYu Intelligent Health Innovation Laboratory, Hangzhou, Zhejiang, China
- ShouXianGu Botanical Drug Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Thuy NHL, Tu VL, Thu LNA, Giang TT, Huyen DTK, Loc DH, Tam DNH, Phat NT, Huynh HH, Truyen TTTT, Nguyen QH, Do U, Nguyen D, Dat TV, Minh LHN. Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus 2023; 15:e44574. [PMID: 37790044 PMCID: PMC10545004 DOI: 10.7759/cureus.44574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.
Collapse
Affiliation(s)
- Nguyen Huu Lac Thuy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Nguyen Anh Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Tran Thanh Giang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA
| | - Dao Tang Khanh Huyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duong Hoang Loc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Hong-Han Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN
| | | | - Quang-Hien Nguyen
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Uyen Do
- Science Department, Lone Star College, Houston, USA
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
4
|
Chan YM, Lu BW, Zhang WH, Chan KC, Fang J, Luo HY, Du J, Zhao ZZ, Chen HB, Dong C, Xu J. Impact of Sulfur Fumigation on the Chemistry of Dioscoreae Rhizoma (Chinese Yam). ACS OMEGA 2023; 8:21293-21304. [PMID: 37332814 PMCID: PMC10269262 DOI: 10.1021/acsomega.3c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Dioscoreae Rhizoma (Chinese yam; derived from the rhizome of Dioscorea opposita Thunb.) (DR), commonly consumed as a food or supplement, is often sulfur-fumigated during post-harvest handling, but it remains largely unknown if and how sulfur fumigation impacts the chemistry of DR. In this study, we report the impact of sulfur fumigation on the chemical profile of DR and then the molecular and cellular mechanisms potentially involved in the chemical variations induced by sulfur fumigation. The results show that sulfur fumigation significantly and specifically changed the small metabolites (molecular weight lower than 1000 Da) and polysaccharides of DR at both qualitative and quantitative levels. Multifaceted molecular and cellular mechanisms involving chemical transformations (e.g., acidic hydrolysis, sulfonation, and esterification) and histological damage were found to be responsible for the chemical variations in sulfur-fumigated DR (S-DR). The research outcomes provide a chemical basis for further comprehensive and in-depth safety and functional evaluations of sulfur-fumigated DR.
Collapse
Affiliation(s)
- Yui-Man Chan
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Bo-Wen Lu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnosis, School of Pharmacy, Tianjin
Medical University, Tianjin 300070, China
- Department
of Pharmacognosy, College of Pharmacy, Jiamusi
University, Jiamusi 154007, China
| | - Wei-Hao Zhang
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Kam-Chun Chan
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jing Fang
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Han-Yan Luo
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Juan Du
- Department
of Pharmacognosy, College of Pharmacy, Jiamusi
University, Jiamusi 154007, China
| | - Zhong-Zhen Zhao
- Institute
of Ben Cao Gang Mu, Beijing University of
Chinese Medicine, Beijing 100029, China
| | - Hu-Biao Chen
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Caixia Dong
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnosis, School of Pharmacy, Tianjin
Medical University, Tianjin 300070, China
| | - Jun Xu
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department
of Metabolomics, Jiangsu Province Academy
of Traditional Chinese Medicine and Jiangsu Branch of China Academy
of Chinese Medical Sciences, Nanjing 210028, China
| |
Collapse
|
5
|
Wang Q, Liu W, Peng B, Gong X, Shi J, Zhang K, Li B, Tu P, Li J, Jiang J, Zhao Y, Song Y. Two-dimensional code enables visibly mapping herbal medicine chemome: an application in Ganoderma lucidum. Chin Med 2023; 18:6. [PMID: 36635742 PMCID: PMC9837956 DOI: 10.1186/s13020-022-00702-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chemical profile provides the pronounced evidence for herbal medicine (HM) authentication; however, the chemome is extremely sophisticated. Fortunately, two-dimensional (2D) code, as a quick response means, is conceptually able to store abundant information, exactly fulfilling the chemical information storage demands of HMs. METHODS We here attempted to denote both MS[Formula: see text] and MS[Formula: see text] dataset of HM with a single 2D-code chart. Measurement of Ganoderma lucidum that is one of the most famous HMs with LC-MS/MS was employed to illustrate the "coding-decoding" workflow for the conversion amongst MS/MS dataset, 2D-code, and chemical profile, and to evaluate the applicability as well. After data acquisition, and m/z value of each deprotonated molecular signal was divided into integer and decimal portions, corresponding to x and y coordinates of 2D-plot, respectively. On the other side, m/z values of all its fragment ions were exactly assigned to serial x values sharing an identical y value being equal to the precursor ion. 2D-code was thereafter produced by plotting these defined dots at a 2D-chart. Regarding a given 2D-code map, the entire chart (x coordinate: 0-600; y coordinate: 0-600) was fragmented into two regions by the line of y=x. MS[Formula: see text] spectral signals always located below the line, whereas all fragment ions lay at the left zone. After extracting information from the edges of each square frame, m/z values of both precursor ion and fragment ions could be harvested and putatively deciphered to a compound through applying some empirical mass fragmentation rules. RESULTS The entire code of Ganoderma lucidum fruit bodies therefore corresponded exactly to a compound set. The elution program, even the employment of direct infusion, couldn't significantly impact the code, and dramatical differences occurred between different species and amongst different parts of Ganoderma lucidum as well. Not only ganoderic acid cluster but also certain primary metabolites served as the diagnostic compounds towards species differentiation. CONCLUSION 2D-code might be a meaningful, practical visual way for rapid HM recognition because it is convenient to achieve the conversion amongst MS/MS dataset, 2D-barcode plot, and the chemome.
Collapse
Affiliation(s)
- Qian Wang
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Peng
- Amway (China) Botanical Research Center, Wuxi, China
| | - Xingcheng Gong
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Zhang
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Pengfei Tu
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Jiang
- grid.495496.3Shandong Institute for Food and Drug Control, Ji’nan, China
| | - Yunfang Zhao
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Song
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Chen J, He X, Song Y, Tu Y, Chen W, Yang G. Sporoderm-broken spores of Ganoderma lucidum alleviates liver injury induced by DBP and BaP co-exposure in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113750. [PMID: 35696964 DOI: 10.1016/j.ecoenv.2022.113750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Dibutyl phthalate (DBP) and Benzo(a)pyrene (BaP) are ubiquitous contaminants in environment and foodstuffs, which increase the chance of their combined exposure to humans in daily life. However, the combined effects of DBP and BaP on liver and the underlying mechanisms are still unclear. In this study, we explored the combined effects of DBP and BaP on liver and the potential mechanisms in a rat model. We found that DBP and BaP co-exposure activated the MyD88/NF-κB pathway through increasing TLR4 acetylation (TLR4ac) level, leading to the imbalance of pro-inflammatory factors (CXCL-13, IL-6 and TNF-α) and anti-inflammatory factors (IL-10), ultimately resulting in liver tissue damage and functional changes. Sporoderm-broken spores of Ganoderma lucidum (SSGL) had strong alleviating effects on liver injury induced by DBP and BaP co-exposure. Our study found that SSGL suppressed TLR4ac-regulated MyD88/NF-κB signaling to reduce the release of pro-inflammatory factors, and promote the secretion of IL-10, thus alleviating liver injury caused by DBP and BaP co-exposure. In conclusion, SSGL contributed to liver protection against DBP and BaP-induced liver injury in rats via suppressing the TLR4ac-regulated MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- Jing Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiu He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yawen Song
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Tu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wenyan Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|