1
|
Wang H, Dai Y, Tai Y, Zhou Z, Zhou X, Li B, Yu L. Causal associations of physical activity and leisure sedentary behaviors with age at onset of Huntington's disease: A mendelian randomization study. Parkinsonism Relat Disord 2024; 127:107080. [PMID: 39096550 DOI: 10.1016/j.parkreldis.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder for which effective therapies are currently lacking. Studies suggest that increasing physical activity (PA) and reducing leisure sedentary behavior (LSB) mitigate the progression of HD, but their causal relationship with the age at onset (AAO) of HD remains uncertain. To investigate this, we conducted the Two-sample Mendelian Randomization (MR). METHODS Exposure were retrieved from the UK BioBank's (UKB) Genome-Wide Association Study (GWAS). PA included accelerometer-based average PA, vigorous PA, self-reported moderate-to-vigorous PA (MVPA), and light do-it-yourself activity. LSB included television (TV) time, computer time, and driving time. Outcome came from the GWAS of the GEM-HD Consortium. We applied several MR methods such as inverse variance weighted (IVW), MR-Egger regression, weighted median (WM) for sensitivity analysis. RESULTS Increases in light PA (β = 8.53 years, 95 % CI = 10.64 to 44.09, P = 0.001) and accelerometer-based vigorous PA (β = 5.18, 95 % CI = 0.92 to 9.43, P = 0.017) delayed AAO of HD, while longer TV time was associated with earlier AAO of HD (β = -2.88 years, 95 % CI = -4.99 to -0.77, P = 0.007). However, other PA and LSB phenotypes did not significantly affect AAO of HD. CONCLUSION The study revealed a unidirectional causality between PA, LSB and the AAO of HD. Increasing PA and reducing TV time delay HD onset. Therefore, we recommend increasing physical activity and reducing sedentary behavior to delay the occurrence of motor symptoms for premanifest HD individuals.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Yinghong Dai
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yihong Tai
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Zeng Zhou
- Department of Physical Education and Research, Central South University, Changsha, 410083, China
| | - Xin Zhou
- Department of Human Resource, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Bin Li
- The Joint Institute of Smoking and Health & Bioinformatics Centre, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Liang Yu
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
2
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Effects of Exercise on Skeletal Muscle Pathophysiology in Huntington's Disease. J Funct Morphol Kinesiol 2022; 7:jfmk7020040. [PMID: 35645302 PMCID: PMC9149967 DOI: 10.3390/jfmk7020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, and progressive neurodegenerative disease, characterized by involuntary choreatic movements with cognitive and behavioral disturbances. In order to mitigate impairments in motor function, physical exercise was integrated in HD rehabilitative interventions, showing to be a powerful tool to ameliorate the quality of life of HD-affected patients. This review aims to describe the effects of physical exercise on HD-related skeletal muscle disorders in both murine and human models. We performed a literature search using PubMed, Scopus, and Web of Science databases on the role of physical activity in mouse models of HD and human patients. Fifteen publications fulfilled the criteria and were included in the review. Studies performed on mouse models showed a controversial role played by exercise, whereas in HD-affected patients, physical activity appeared to have positive effects on gait, motor function, UHDMRS scale, cognitive function, quality of life, postural stability, total body mass, fatty acid oxidative capacity, and VO2 max. Physical activity seems to be feasible, safe, and effective for HD patients. However, further studies with longer follow-up and larger cohorts of patients will be needed to draw firm conclusions on the positive effects of exercise for HD patients.
Collapse
|
4
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
5
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
6
|
Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 2022; 74:101543. [PMID: 34923167 PMCID: PMC8761166 DOI: 10.1016/j.arr.2021.101543] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Endurance exercise is a widely accessible, low-cost intervention with a variety of benefits to multiple organ systems. Exercise improves multiple indices of physical performance and stimulates pronounced health benefits reducing a range of pathologies including metabolic, cardiovascular, and neurodegenerative disorders. Endurance exercise delays brain aging, preserves memory and cognition, and improves symptoms of neurodegenerative pathologies like Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and various ataxias. Potential mechanisms underlying the beneficial effects of exercise include neuronal survival and plasticity, neurogenesis, epigenetic modifications, angiogenesis, autophagy, and the synthesis and release of neurotrophins and cytokines. In this review, we discuss shared benefits and molecular pathways driving the protective effects of endurance exercise on various neurodegenerative diseases in animal models and in humans.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, USA; Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA
| | - R J Wessells
- Department of Physiology, Wayne State University School of Medicine, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
7
|
Graham ZA, Lavin KM, O'Bryan SM, Thalacker-Mercer AE, Buford TW, Ford KM, Broderick TJ, Bamman MM. Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol 2021; 321:C40-C57. [PMID: 33950699 DOI: 10.1152/ajpcell.00056.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in healthy individuals and it has important roles in health beyond voluntary movement. The overall mass and energy requirements of skeletal muscle require it to be metabolically active and flexible to multiple energy substrates. The tissue has evolved to be largely load dependent and it readily adapts in a number of positive ways to repetitive overload, such as various forms of exercise training. However, unloading from extended bed rest and/or metabolic derangements in response to trauma, acute illness, or severe pathology, commonly results in rapid muscle wasting. Decline in muscle mass contributes to multimorbidity, reduces function, and exerts a substantial, negative impact on the quality of life. The principal mechanisms controlling muscle mass have been well described and these cellular processes are intricately regulated by exercise. Accordingly, exercise has shown great promise and efficacy in preventing or slowing muscle wasting through changes in molecular physiology, organelle function, cell signaling pathways, and epigenetic regulation. In this review, we focus on the role of exercise in altering the molecular landscape of skeletal muscle in a manner that improves or maintains its health and function in the presence of unloading or disease.epigenetics; exercise; muscle wasting; resistance training; skeletal muscle.
Collapse
Affiliation(s)
- Zachary A Graham
- Birmingham VA Medical Center, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia M O'Bryan
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Nathan Shock Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth M Ford
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | | | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, Florida.,Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama.,UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
van Diemen MPJ, Hart EP, Hameeteman PW, Coppen EM, Winder JY, den Heijer J, Moerland M, Kan H, van der Grond J, Webb A, Roos RAC, Groeneveld GJ. Brain Bio-Energetic State Does Not Correlate to Muscle Mitochondrial Function in Huntington's Disease. J Huntingtons Dis 2020; 9:335-344. [PMID: 33325391 DOI: 10.3233/jhd-200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease with cognitive, motor and psychiatric symptoms. A toxic accumulation of misfolded mutant huntingtin protein (Htt) induces mitochondrial dysfunction, leading to a bioenergetic insufficiency in neuronal and muscle cells. Improving mitochondrial function has been proposed as an opportunity to treat HD, but it is not known how mitochondrial function in different tissues relates. OBJECTIVE We explored associations between central and peripheral mitochondrial function in a group of mild to moderate staged HD patients. METHODS We used phosphorous magnetic resonance spectroscopy (31P-MRS) to measure mitochondrial function in vivo in the calf muscle (peripheral) and the bio-energetic state in the visual cortex (central). Mitochondrial function was also assessed ex vivo in circulating peripheral blood mononuclear cells (PBMCs). Clinical function was determined by the Unified Huntington's Disease Rating Scale (UHDRS) total motor score. Pearson correlation coefficients were computed to assess the correlation between the different variables. RESULTS We included 23 manifest HD patients for analysis. There was no significant correlation between central bio-energetics and peripheral mitochondrial function. Central mitochondrial function at rest correlated significantly to the UHDRS total motor score (R = -0.45 and -0.48), which increased in a subgroup with the largest number of CAG repeats. DISCUSSION We did not observe a correlation between peripheral and central mitochondrial function. Central, but not peripheral, mitochondrial function correlated to clinical function. Muscle mitochondrial function is a promising biomarker to evaluate disease-modifying compounds that improve mitochondrial function, but Huntington researchers should use central mitochondrial function to demonstrate proof-of-pharmacology of disease-modifying compounds.
Collapse
Affiliation(s)
| | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Emma M Coppen
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica Y Winder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Hermien Kan
- Gorter Centre for High-field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Radiology Research Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Gorter Centre for High-field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
10
|
Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, Wang R. Exercise as a prescription for patients with various diseases. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:422-441. [PMID: 31534817 PMCID: PMC6742679 DOI: 10.1016/j.jshs.2019.04.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 03/01/2019] [Indexed: 05/18/2023]
Abstract
A growing understanding of the benefits of exercise over the past few decades has prompted researchers to take an interest in the possibilities of exercise therapy. Because each sport has its own set of characteristics and physiological complications that tend to occur during exercise training, the effects and underlying mechanisms of exercise remain unclear. Thus, the first step in probing the effects of exercise on different diseases is the selection of an optimal exercise protocol. This review summarizes the latest exercise prescription treatments for 26 different diseases: musculoskeletal system diseases (low back pain, tendon injury, osteoporosis, osteoarthritis, and hip fracture), metabolic system diseases (obesity, type 2 diabetes, type 1 diabetes, and nonalcoholic fatty liver disease), cardio-cerebral vascular system diseases (coronary artery disease, stroke, and chronic heart failure), nervous system diseases (Parkinson's disease, Huntington's disease, Alzheimer's disease, depression, and anxiety disorders), respiratory system diseases (chronic obstructive pulmonary disease, interstitial lung disease, and after lung transplantation), urinary system diseases (chronic kidney disease and after kidney transplantation), and cancers (breast cancer, colon cancer, prostate cancer, and lung cancer). Each exercise prescription is displayed in a corresponding table. The recommended type, intensity, and frequency of exercise prescriptions are summarized, and the effects of exercise therapy on the prevention and rehabilitation of different diseases are discussed.
Collapse
Affiliation(s)
- Xin Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiangyang Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haixin Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Sport, Huainan Normal University, Huainan 232038, China
| | - Rui Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Na Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| |
Collapse
|
11
|
Yu M, Bega D. A Review of the Clinical Evidence for Complementary and Alternative Medicine in Huntington's Disease. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-678. [PMID: 31523487 PMCID: PMC6714489 DOI: 10.7916/tohm.v0.678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Background There is a lack of published guidelines related to the use of complementary and alternative medicine (CAM) for Huntington’s disease (HD). We conducted a review of the literature to summarize the available evidence for various mind–body practices and nutraceuticals. Methods PubMed and Cochrane Library electronic databases were searched independently from inception to February 2019 by two independent raters. Studies were classified for the level of evidence (Class I, II, III, or IV) according to the American Academy of Neurology (AAN) classification scale. Results Randomized controlled trials in HD were reviewed for mind–body interventions (dance therapy, music therapy, and exercise), alternative systems (traditional Chinese medicine [TCM]), and nutraceuticals/diet (aminooxyacetic acid [AOAA], coenzyme q10, creatine, cannabinoids, alpha-tocopherol, eicosapentaenoic acid, idebenone, levocarnitine, and triheptanoin). Few studies met AAN Class I or II level of evidence for benefits, and these are highlighted. Discussion There is a relative paucity of clinical trials examining CAM modalities in HD when compared to other neurodegenerative disorders. Currently, there is no evidence supporting disease modification or symptom improvement with any specific dietary or nutraceutical supplement for HD. Supervised exercise and contemporary dance are safe for people with HD, but more robust studies are warranted to guide specific recommendations for these and other mind–body interventions.
Collapse
Affiliation(s)
- Margaret Yu
- Department of Neurology Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Danny Bega
- Department of Neurology Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Bachoud-Lévi AC, Ferreira J, Massart R, Youssov K, Rosser A, Busse M, Craufurd D, Reilmann R, De Michele G, Rae D, Squitieri F, Seppi K, Perrine C, Scherer-Gagou C, Audrey O, Verny C, Burgunder JM. International Guidelines for the Treatment of Huntington's Disease. Front Neurol 2019; 10:710. [PMID: 31333565 PMCID: PMC6618900 DOI: 10.3389/fneur.2019.00710] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
The European Huntington's Disease Network (EHDN) commissioned an international task force to provide global evidence-based recommendations for everyday clinical practice for treatment of Huntington's disease (HD). The objectives of such guidelines are to standardize pharmacological, surgical and non-pharmacological treatment regimen and improve care and quality of life of patients. A formalized consensus method, adapted from the French Health Authority recommendations was used. First, national committees (French and English Experts) reviewed all studies published between 1965 and 2015 included dealing with HD symptoms classified in motor, cognitive, psychiatric, and somatic categories. Quality grades were attributed to these studies based on levels of scientific evidence. Provisional recommendations were formulated based on the strength and the accumulation of scientific evidence available. When evidence was not available, recommendations were framed based on professional agreement. A European Steering committee supervised the writing of the final recommendations through a consensus process involving two rounds of online questionnaire completion with international multidisciplinary HD health professionals. Patients' associations were invited to review the guidelines including the HD symptoms. Two hundred and nineteen statements were retained in the final guidelines. We suggest to use this adapted method associating evidence base-medicine and expert consensus to other rare diseases.
Collapse
Affiliation(s)
- Anne-Catherine Bachoud-Lévi
- National Centre of Reference for Huntington's Disease, Henri Mondor Hospital, AP-HP, Creteil & NeurATRIS, Créteil, France
| | - Joaquim Ferreira
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Renaud Massart
- National Centre of Reference for Huntington's Disease, Henri Mondor Hospital, AP-HP, Creteil & NeurATRIS, Créteil, France
| | - Katia Youssov
- National Centre of Reference for Huntington's Disease, Henri Mondor Hospital, AP-HP, Creteil & NeurATRIS, Créteil, France
| | - Anne Rosser
- IPMCN, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - David Craufurd
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Centre for Genomic Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Ralf Reilmann
- Department of Radiology, George-Huntington-Institute, Universitaetsklinikum Muenster, Münster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | - Daniela Rae
- Department of Clinical Genetics, NHS Grampian, Aberdeen, United Kingdom
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Charles Perrine
- Genetic Department, National Center of reference for Huntington's Disease, Salpêtrière Hospital, Paris, France
| | | | - Olivier Audrey
- Neurology Department, Angers University Hospital, Angers, France
| | - Christophe Verny
- Neurology Department and UMR CNRS 6214 INSERM U1083, National Centre of Reference for Neurodegenerative Diseases, Angers University Hospital, Angers, France
| | - Jean-Marc Burgunder
- NeuroZentrumSiloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Urrutia NL. Adult-onset Huntington disease: An update. Nursing 2019; 49:36-43. [PMID: 31219985 DOI: 10.1097/01.nurse.0000559914.46449.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Appropriate nursing-care strategies depend on the early recognition of Huntington disease (HD) to prioritize a plan of care. This article offers perspective on the clinical presentation, prognosis, diagnosis, and management of adult-onset HD.
Collapse
Affiliation(s)
- Nancy L Urrutia
- Nancy L. Urrutia is a nurse educator in the Cleveland, Ohio metropolitan area
| |
Collapse
|
14
|
Mueller SM, Mihaylova V, Frese S, Petersen JA, Ligon-Auer M, Aguayo D, Flück M, Jung HH, Toigo M. Satellite cell content in Huntington's disease patients in response to endurance training. Orphanet J Rare Dis 2019; 14:135. [PMID: 31186054 PMCID: PMC6560826 DOI: 10.1186/s13023-019-1115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/02/2022] Open
Abstract
Background Skeletal muscle wasting is a hallmark of Huntington’s disease (HD). However, data on myocellular characteristics and myofiber remodeling in HD patients are scarce. We aimed at gaining insights into myocellular characteristics of HD patients as compared to healthy controls at rest and after a period of increased skeletal muscle turnover. Methods Myosin heavy chain (MyHC)-specific cross-sectional area, satellite cell content, myonuclear number, myonuclear domain, and muscle fiber type distribution were determined from vastus lateralis muscle biopsies at rest and after 26 weeks of endurance training in HD patients and healthy controls. Results At the beginning of the study, there were no differences in myocellular characteristics between HD patients and healthy controls. Satellite cell content per MyHC-1 fiber (P = 0.014) and per MyHC-1 myonucleus (P = 0.006) increased significantly in healthy controls during the endurance training intervention, whereas it remained constant in HD patients (P = 0.804 and P = 0.975 for satellite cell content per MyHC-1 fiber and myonucleus, respectively). All further variables were not altered during the training intervention in HD patients and healthy controls. Conclusions Similar skeletal muscle characteristics between HD patients and healthy controls at baseline suggested similar potential for myofiber remodeling in response to exercise. However, the missing satellite cell response in MyHC-1 myofibers following endurance training in HD patients points to a potential dysregulation in the exercise-induced activation and/or proliferation of satellite cells. In the longer-term, impaired myonuclear turnover might be associated with the clinical observation of skeletal muscle wasting.
Collapse
Affiliation(s)
- Sandro Manuel Mueller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Research and Performance Center for Elite Athleticism, OYM, Lorzenparkstrasse 12, 6330, Cham, Switzerland
| | - Violeta Mihaylova
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Frese
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Institute of Human Movement Sciences, ETH Zurich, Zurich, Switzerland
| | - Jens A Petersen
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Ligon-Auer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - David Aguayo
- Institute of Human Movement Sciences, ETH Zurich, Zurich, Switzerland
| | - Martin Flück
- Department of Orthopaedics, Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Hans H Jung
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Marco Toigo
- Research and Performance Center for Elite Athleticism, OYM, Lorzenparkstrasse 12, 6330, Cham, Switzerland. .,Institute of Human Movement Sciences, ETH Zurich, Zurich, Switzerland. .,Department of Orthopaedics, Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Mueller SM, Petersen JA, Jung HH. Exercise in Huntington's Disease: Current State and Clinical Significance. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:601. [PMID: 30783551 PMCID: PMC6377806 DOI: 10.7916/tm9j-f874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/02/2019] [Indexed: 01/17/2023]
Abstract
Background Huntington's disease (HD) is a rare, progressive neurodegenerative disease. Currently, there is no cure for the disease, but treatment may alleviate HD symptoms. In recent years, several exercise training interventions have been conducted in HD patients. In the current article, we review previous studies investigating targeted exercise training interventions in HD patients. Methods We performed a literature search using the PubMed, Scopus, Web of Science, and Google Scholar databases on exercise training interventions in HD patients. Six publications fulfilled the criteria and were included in the review. Results Exercise training resulted in beneficial effects on cardiovascular and mitochondrial function. Training effects on cognition, motor function, and body composition were less congruent, but a positive effect seems likely. Health-related quality of life during the training interventions was stable. Most studies reported no related adverse events in response to training. Discussion Exercise training seems to be safe and feasible in HD patients. However, current knowledge is mainly based on short, small-scale studies and it cannot be transferred to all HD patients. Therefore, longer-term interventions with larger HD patient cohorts are necessary to draw firm conclusions about the potentially positive effects of exercise training in HD patients.
Collapse
Affiliation(s)
| | - Jens A Petersen
- Department of Neurology, University Hospital Zurich, Zurich, CH
| | - Hans H Jung
- Department of Neurology, University Hospital Zurich, Zurich, CH
| |
Collapse
|