1
|
Banic M, Pavlisa G, Hecimovic A, Grzelja J, Anic B, Samarzija M, Jankovic Makek M. Refractory systemic lupus erythematosus with chylous effusion successfully treated with sirolimus: a case report and literature review. Rheumatol Int 2023; 43:1743-1749. [PMID: 37326666 DOI: 10.1007/s00296-023-05363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Chylous effusion is a rare manifestation of systemic lupus erythematosus (SLE). When it does occur in SLE, it is generally well treated with standard pharmacologic or surgical measures. We present a decade of management in a case of SLE with lung affliction and development of refractory bilateral chylous effusion and pulmonary arterial hypertension (PAH). In the first years, the patient was treated under a Sjogren syndrome diagnose. After few years, her respiratory condition worsened due to chylous effusion and PAH. Immunosuppression therapy (methylprednisolone) was reintroduced, and vasodilator therapy commenced. With this, her cardiac function remained stable, but respiratory function continuously worsened despite several therapy trials with different combinations of immunosuppressant (glucocorticoids, resochin, cyclophosphamide and mycophenolate mofetil). On top of pleural effusion worsening, the patient developed ascites and severe hypoalbuminaemia. Even though albumin loss was stabilized with monthly octreotide applications, the patient remained respiratory insufficient and in need of continuous oxygen therapy. At that point, we decided to introduce sirolimus on top of glucocorticoids and mycophenolate mofetil therapy. Her clinical status, radiological finding, and lung function gradually improved and she became respiratory sufficient at rest. The patient remains in our follow-up and has been stable on given therapy for over 3 years despite overcoming a severe COVID-19 pneumonia in 2021. This case adds to the body of evidence of sirolimus effectiveness in patients with refractory systemic lupus and is, to our best knowledge, the first case to report its successful application in a patient with SLE and refractory chylous effusion.
Collapse
Affiliation(s)
- M Banic
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
| | - G Pavlisa
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
| | - A Hecimovic
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - J Grzelja
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - B Anic
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - M Samarzija
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - M Jankovic Makek
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Cottin V, Blanchard E, Kerjouan M, Lazor R, Reynaud-Gaubert M, Taille C, Uzunhan Y, Wemeau L, Andrejak C, Baud D, Bonniaud P, Brillet PY, Calender A, Chalabreysse L, Court-Fortune I, Desbaillets NP, Ferretti G, Guillemot A, Hardelin L, Kambouchner M, Leclerc V, Lederlin M, Malinge MC, Mancel A, Marchand-Adam S, Maury JM, Naccache JM, Nasser M, Nunes H, Pagnoux G, Prévot G, Rousset-Jablonski C, Rouviere O, Si-Mohamed S, Touraine R, Traclet J, Turquier S, Vagnarelli S, Ahmad K. French recommendations for the diagnosis and management of lymphangioleiomyomatosis. Respir Med Res 2023; 83:101010. [PMID: 37087906 DOI: 10.1016/j.resmer.2023.101010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND The present article is an English-language version of the French National Diagnostic and Care Protocol, a pragmatic tool to optimize and harmonize the diagnosis, care pathway, management and follow-up of lymphangioleiomyomatosis in France. METHODS Practical recommendations were developed in accordance with the method for developing a National Diagnosis and Care Protocol for rare diseases of the Haute Autorité de Santé and following international guidelines and literature on lymphangioleiomyomatosis. It was developed by a multidisciplinary group, with the help of patient representatives and of RespiFIL, the rare disease network on respiratory diseases. RESULTS Lymphangioleiomyomatosis is a rare lung disease characterised by a proliferation of smooth muscle cells that leads to the formation of multiple lung cysts. It occurs sporadically or as part of a genetic disease called tuberous sclerosis complex (TSC). The document addresses multiple aspects of the disease, to guide the clinicians regarding when to suspect a diagnosis of lymphangioleiomyomatosis, what to do in case of recurrent pneumothorax or angiomyolipomas, what investigations are needed to make the diagnosis of lymphangioleiomyomatosis, what the diagnostic criteria are for lymphangioleiomyomatosis, what the principles of management are, and how follow-up can be organised. Recommendations are made regarding the use of pharmaceutical specialties and treatment other than medications. CONCLUSION These recommendations are intended to guide the diagnosis and practical management of pulmonary lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Vincent Cottin
- Centre de Référence Coordinateur des maladies pulmonaires rares (OrphaLung), Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, ERN-LUNG, 69677 Lyon, France; UMR 754, INRAE, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France.
| | - Elodie Blanchard
- Centre de Compétence des maladies pulmonaires rares (OrphaLung), GH Sud Haut-Lévêque, Avenue Magellan, 33600 Pessac, France
| | - Mallorie Kerjouan
- Centre de Compétence des maladies pulmonaires rares (OrphaLung), CHU Pontchailloux, 2 rue Henri le Guilloux, 35000 Rennes, France
| | - Romain Lazor
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois, BU44/07.2137, Rue du Bugnon 46, 1011 Lausanne, Suisse
| | - Martine Reynaud-Gaubert
- Centre de Compétence des maladies pulmonaires rares (OrphaLung), Hôpital Nord, Chemin Bourrely, 13015 Marseille, France; URMITE-CNRS-IRD UMR 6236, Aix-Marseille Université, 51 boulevard Pierre Dramard, 13344 Marseille cedex 15, France
| | - Camille Taille
- Centre de Référence Constitutif des maladies pulmonaires rares (OrphaLung), Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France; Université Paris-Diderot, 17 rue Jean Antoine de Baïf, 75013 Paris, France
| | - Yurdagül Uzunhan
- Centre de Référence constitutif des maladies pulmonaires rares (OrphaLung), Hôpital Avicenne, 125 rue Stalingrad, 93000 Bobigny, France; Université Sorbonne Paris Nord, INSERM UMR 1272 "Hypoxie et Poumon", 1 rue Chablis, 93000 Bobigny, Paris, France
| | - Lidwine Wemeau
- Centre de Référence constitutif des maladies pulmonaires rares, CHRU, 5 rue Oscar Lambret, 59000 Lille, France
| | - Claire Andrejak
- Service de pneumologie, CHU Amiens, 1 Place Victor Pauchet, 80054 Amiens, France; UFR de médecine, 3 rue Louvels, 80000 Amiens, France
| | - Dany Baud
- Hôpital Suisse de Paris, 10 rue Minard, 92130 Issy les Moulineaux, France
| | - Philippe Bonniaud
- Centre de Référence constitutif des maladies pulmonaires rares, CHU de Dijon, BP 77908, 21079, Dijon, France; INSERM, LNC UMR1231, LipSTIC LabEx Team, 21000 Dijon, France
| | - Pierre-Yves Brillet
- Université Sorbonne Paris Nord, INSERM UMR 1272 "Hypoxie et Poumon", 1 rue Chablis, 93000 Bobigny, Paris, France; Service de radiologie, hôpital Avicenne, 125 rue Stalingrad, 93000 Bobigny, France
| | - Alain Calender
- Département de génétique, Hospices Civils de Lyon, 28 avenue Doyen Lepine, 69677 Lyon, France; IBCP, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France
| | - Lara Chalabreysse
- Service de pathologie, Groupe hospitalier est, Hospices Civils de Lyon, 28 avenue Doyen Lepine, 69677 Lyon, France; Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France
| | | | | | - Gilbert Ferretti
- Pole imagerie, CHU Grenoble Alpes, Boulevard Chantourne, 38700 La Tronche, France
| | - Anne Guillemot
- Centre de Référence Coordinateur des maladies pulmonaires rares (OrphaLung), Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, ERN-LUNG, 69677 Lyon, France
| | - Laurane Hardelin
- Centre de Référence Coordinateur des maladies pulmonaires rares (OrphaLung), Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, ERN-LUNG, 69677 Lyon, France
| | - Marianne Kambouchner
- Service d'anatomopatholologie, Hôpital Avicenne, 125 rue Stalingrad, 93000 Bobigny, France
| | - Violette Leclerc
- Association France Lymphangioléiomyomatose, 4, Rue des Vieux-Moulins, 56 680 Plouhinec, France
| | - Mathieu Lederlin
- Service de radiologie, CHU Pontchailloux, 2 rue Henri le Guilloux, 35000 Rennes, France
| | | | - Alain Mancel
- Association France Lymphangioléiomyomatose, 4, Rue des Vieux-Moulins, 56 680 Plouhinec, France
| | - Sylvain Marchand-Adam
- Centre de Compétence des maladies pulmonaires rares (OrphaLung), Hôpital Bretonneau, CHRU Tours, 2 Boulevard Tonnellé, 37000 Tours, France; Université de Tours, CEPR INSERMU1100, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Jean-Michel Maury
- Service de chirurgie thoracique, Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, 69677 Lyon, France
| | - Jean-Marc Naccache
- Service de pneumologie, Hôpital Saint Joseph, 185 rue Raymond Losserand, 75014 Paris, France
| | - Mouhamad Nasser
- Centre de Référence Coordinateur des maladies pulmonaires rares (OrphaLung), Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, ERN-LUNG, 69677 Lyon, France
| | - Hilario Nunes
- Centre de Référence constitutif des maladies pulmonaires rares (OrphaLung), Hôpital Avicenne, 125 rue Stalingrad, 93000 Bobigny, France; Université Sorbonne Paris Nord, INSERM UMR 1272 "Hypoxie et Poumon", 1 rue Chablis, 93000 Bobigny, Paris, France
| | - Gaële Pagnoux
- Service de radiologie, Hôpital Edouard Herriot, 5 place d'Arsonval, 69008 Lyon, France
| | - Grégoire Prévot
- Centre de Compétence des maladies pulmonaires rares (OrphaLung), service de pneumologie, hôpital Larrey, 24 chemin de Pouvourville, 31059 Toulouse cedex 9, France
| | | | - Olivier Rouviere
- Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France; Service de radiologie, Hôpital Edouard Herriot, 5 place d'Arsonval, 69008 Lyon, France
| | - Salim Si-Mohamed
- Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France; Service d'imagerie, Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, 69677 Lyon, France
| | - Renaud Touraine
- Laboratoire de Génétique Chromosomique et Moléculaire, CHU-Hôpital Nord, Laboratoire AURAGEN (Plan France Médecine Génomique 2025), 42270 Saint Priest en Jarest, France
| | - Julie Traclet
- Centre de Référence Coordinateur des maladies pulmonaires rares (OrphaLung), Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, ERN-LUNG, 69677 Lyon, France
| | - Ségolène Turquier
- Service d'exploration fonctionnelle respiratoire, Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, 69677 Lyon, France
| | - Stéphane Vagnarelli
- Centre de Référence constitutif des maladies pulmonaires rares (OrphaLung), Hôpital Avicenne, 125 rue Stalingrad, 93000 Bobigny, France
| | - Kaïs Ahmad
- Centre de Référence Coordinateur des maladies pulmonaires rares (OrphaLung), Hôpital Louis Pradel, Hospices Civils de Lyon, 28 avenue Doyen Lepine, ERN-LUNG, 69677 Lyon, France
| |
Collapse
|
3
|
Pascalau NA, Radu AF, Cseppento DCN, Andronie-Cioara FL, Jurcau A, Mos C, Bungau AF, Bungau SG. An Evidence-Based Update on the Potential Association between Rheumatoid Arthritis and Lymphangioleiomyomatosis. J Pers Med 2023; 13:jpm13040607. [PMID: 37108993 PMCID: PMC10141996 DOI: 10.3390/jpm13040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) represents an uncommon disorder characterized by cystic lung destruction and chronic respiratory failure. Lung damage caused by various mechanisms may represent a hypothesis for studying the association between LAM and rheumatoid arthritis (RA), which is the most prevalent autoinflammatory rheumatic disease and may affect the lungs as an extra-articular manifestation. Despite their distinct clinical presentations, the pathophysiology of both disorders includes dysregulated immunological function, abnormal cellular development, and inflammation. Current research suggests a potential relationship between RA and LAM, as some RA patients have been reported to develop LAM. However, the association of RA and LAM raises important therapeutic dilemmas. For this reason, the trajectory of a patient who was identified in our medical records as suffering from both LAM and RA, treated with many novel molecules and biological therapy, but with a negative outcome due to respiratory and multiorgan failure, has been exemplified. The delay in the diagnosis of LAM is due to a correlation between RA and LAM, worsening the vital prognosis and also hindering pulmonary transplantation. In addition, extensive research is essential for understanding the potential connection between these two disorders and discovering any similar mechanisms involved that may underlie their occurrence. This may contribute to the development of new therapeutic options that target shared pathways implicated in the pathogenesis of RA and LAM.
Collapse
|
4
|
Long-term clinical course and progression of lymphangioleiomyomatosis in a single lung transplant referral centre in Korea. Sci Rep 2022; 12:8260. [PMID: 35585116 PMCID: PMC9117329 DOI: 10.1038/s41598-022-12314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
We aimed to describe the clinical features of lymphangioleiomyomatosis (LAM) in Korean patients and identify factors associated with progressive disease (PD). Clinical features of 54 patients with definite or probable LAM from 2005 to 2018 were retrospectively analysed. Common features were pneumothorax (66.7%) and abdominal lymphadenopathy (50.0%). Twenty-three (42.6%) patients were initially treated with mechanistic target of rapamycin (mTOR) inhibitors. Lung transplantation (LT) was performed in 13 (24.1%) patients. Grouped based on the annual decline in forced expiratory volume in 1 s (FEV1) from baseline and LT, 36 (66.7%) patients exhibited stable disease (SD). All six deaths (11.1%) occurred in PD. Proportion of SD was higher in those treated initially with mTOR inhibitors than in those under observation (p = 0.043). Univariate analysis revealed sirolimus use, and baseline forced vital capacity, FEV1, and diffusing capacity of the lungs for carbon monoxide are associated with PD. Multivariate analysis showed that only sirolimus use (odds ratio 0.141, 95% confidence interval 0.021-0.949, p = 0.044) reduced PD. Kaplan-Meier analysis estimates overall survival of 92.0% and 74.7% at 5 and 10 years, respectively. A considerable proportion of LAM patients remain clinically stable without treatment. LT is an increasingly viable option for patients with severe lung function decline.
Collapse
|
5
|
Hagan M, Shenkar R, Srinath A, Romanos SG, Stadnik A, Kahn ML, Marchuk DA, Girard R, Awad IA. Rapamycin in Cerebral Cavernous Malformations: What Doses to Test in Mice and Humans. ACS Pharmacol Transl Sci 2022; 5:266-277. [PMID: 35592432 PMCID: PMC9112291 DOI: 10.1021/acsptsci.2c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/29/2022]
Abstract
Cerebral cavernous malformations (CCMs) are hemorrhagic neurovascular lesions that affect more than 1 million people in the United States. Rapamycin inhibits CCM development and bleeding in murine models. The appropriate dosage to modify disease phenotype remains unknown. Current approved indications by the U.S. Food and Drug Administration and clinicaltrials.gov were queried for rapamycin human dosing for various indications. A systematic literature search was conducted on PubMed to investigate mouse dosimetry of rapamycin. In humans, low daily doses of <2 mg/day or trough level targets <15 ng/mL were typically used for benign indications akin to CCM disease, with relatively low complication rates. Higher oral doses in humans, used for organ rejection, result in higher complication rates. Oral dosing in mice, between 2 and 4 mg/kg/day, achieved blood trough levels in the 5-15 ng/mL range, a concentration likely to be targeted in human studies to treat CCM. Preclinical studies are needed utilizing dosing strategies which achieve blood levels corresponding to likely human dosimetry.
Collapse
Affiliation(s)
- Matthew
J. Hagan
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Robert Shenkar
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Abhinav Srinath
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Sharbel G. Romanos
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Agnieszka Stadnik
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Mark L. Kahn
- Department
of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Douglas A. Marchuk
- Department
of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Romuald Girard
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Issam A. Awad
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Li M, Lan Y, Gao J, Yuan S, Hou S, Guo T, Zhao F, Wang Y, Yuan W, Wang X. Rapamycin Promotes the Expansion of Myeloid Cells by Increasing G-CSF Expression in Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:779159. [PMID: 35372343 PMCID: PMC8969869 DOI: 10.3389/fcell.2022.779159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Rapamycin, also known as sirolimus, an inhibitor of mammalian target of rapamycin (mTOR), is a regulatory kinase responsible for multiple signal transduction pathways. Although rapamycin has been widely used in treating various hematologic diseases, the effects of rapamycin are still not fully understood. Here we found that both oral and intraperitoneal administration of rapamycin led to the expansion of myeloid lineage, while intraperitoneal administration of rapamycin impaired granulocyte differentiation in mice. Rapamycin induced bone marrow mesenchymal stem cells to produce more G-CSF in vitro and in vivo, and promoted the myeloid cells expansion. Our results thus demonstrated that intraperitoneal administration of rapamycin might promote the expansion of myeloid lineage while impair myeloid cell differentiation in vivo.
Collapse
Affiliation(s)
- Minghao Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Shanghai Blood Center, Shanghai, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juan Gao
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomin Wang,
| |
Collapse
|
7
|
Immunosuppressive Drugs. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8987166 DOI: 10.1016/b978-0-12-818731-9.00068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunosuppressant is a class of medicines that inhibit or decrease the intensity of the immune response in the body. Most of these medications are used to allow the body less likely to resist a transplanted organ. In solid organ transplantation, immunosuppressive agents are needed for the activation of early-stage immunosuppression, the management of late-stage immunosuppression or for the maintenance of organ rejection. The emergence of novel agents and improvements in immunosuppression regimens after transplantation are significant factors leading to this progress. However, these drugs also increase the risk of infection, cancers and specific adverse side effects specific to each agent in patients particularly in pregnant women and fertility issues. Corona virus disease being hot topic of debate is has given positive outcome to immunosuppressive drugs however need more attention in future. Transplant centers across the world utilize multiple immunosuppression protocols; nevertheless, each patient can require an individually formulated immunosuppression regimen to manage the advantages and possible damage of treatment thus eliminating the likelihood of their primary disease recurrence.
Collapse
|
8
|
McCarthy C, Gupta N, Johnson SR, Yu JJ, McCormack FX. Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2021; 9:1313-1327. [PMID: 34461049 DOI: 10.1016/s2213-2600(21)00228-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a slowly progressive, low-grade, metastasising neoplasm of women, characterised by infiltration of the lung parenchyma with abnormal smooth muscle-like cells, resulting in cystic lung destruction. The invading cell in LAM arises from an unknown source and harbours mutations in tuberous sclerosis complex (TSC) genes that result in constitutive activation of the mechanistic target of rapamycin (mTOR) pathway, dysregulated cellular proliferation, and a programme of frustrated lymphangiogenesis, culminating in disordered lung remodelling and respiratory failure. Over the past two decades, all facets of LAM basic and clinical science have seen important advances, including improved understanding of molecular mechanisms, novel diagnostic and prognostic biomarkers, effective treatment strategies, and comprehensive clinical practice guidelines. Further research is needed to better understand the natural history of LAM; develop more powerful diagnostic, prognostic, and predictive biomarkers; optimise the use of inhibitors of mTOR complex 1 in the treatment of LAM; and explore novel approaches to the development of remission-inducing therapies.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St Vincent's University Hospital, University College Dublin, Dublin, Ireland.
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Simon R Johnson
- Division of Respiratory Medicine, University of Nottingham, NIHR Respiratory Biomedical Research Centre, Nottingham, UK
| | - Jane J Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Zhang J, Liu D, Yue B, Ban L, Zhou M, Wang H, Lv J, Wu B, Zhai Z, Xu KF, Chen W, Chen J. A Retrospective Study of Lung Transplantation in Patients With Lymphangioleiomyomatosis: Challenges and Outcomes. Front Med (Lausanne) 2021; 8:584826. [PMID: 33665195 PMCID: PMC7924661 DOI: 10.3389/fmed.2021.584826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Lymphangioleiomyomatosis (LAM) is a rare systemic disease that generally leads to a progressive decline in pulmonary function. Experience, especially from the Asian population, including combined drug therapy before and after lung transplantation (LT) in LAM, is still limited. This study aimed to summarize the clinical data from patients with pulmonary LAM who underwent LT at centers in China. Methods: A retrospective review of all patients with LAM undergoing LT at the two largest centers in China between 2010 and 2018 was conducted. Pre- and posttransplant data were assessed and analyzed. Results: Overall, 25 patients with LAM underwent bilateral LT. The mean age was 35.0 ± 8.6 years at diagnosis and 36.8 ± 9.3 years at the time of transplant. Before LT, only six patients could complete pulmonary function test; the reachable mean forced expiratory volume in one second (FEV1) before LT was 15.9 ± 6.9%. Twenty-one patients (84%) had a recurrent pneumothorax, four (16.0%) of which required pleurodesis. Eight patients (32%) were treated with sirolimus pretransplant for 3.9 years (1-9 years). The average intra-surgery bleeding volume was 1,280 ± 730 ml in need of a transfusion of 1,316 ± 874 ml due to moderate-to-severe adhesion and pretransplant pleurodesis. The causes of death of four patients (16%) included primary graft dysfunction, bronchial dehiscence with long-term use of sirolimus, and uncontrollable infections. The median follow-up time from LT was 41.1 ± 25.0 months. Conclusions: LT for LAM patients from the Asian population has been reinforced from the data that we presented. Peri-transplantation use of sirolimus and LAM-related complications should be further defined and under constant surveillance.
Collapse
Affiliation(s)
- Ji Zhang
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Dong Liu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Bingqing Yue
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Le Ban
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Min Zhou
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongmei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Lv
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Bo Wu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Peking University Health Science Center, Beijing, China
| | - Kai-Feng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Wenhui Chen
- Department of Lung Transplantation, Center for Lung Transplantation, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China.,Department of Lung Transplantation, Center for Lung Transplantation, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents. Molecules 2021; 26:molecules26020425. [PMID: 33467464 PMCID: PMC7829871 DOI: 10.3390/molecules26020425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Sirolimus is a hydrophobic macrolide compound that has been used for long-term immunosuppressive therapy, prevention of restenosis, and treatment of lymphangioleiomyomatosis. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of sirolimus in both porcine whole blood and lung tissue. Blood and lung tissue homogenates were deproteinized with acetonitrile and injected into the LC-MS/MS system for analysis using the positive electrospray ionization mode. The drug was separated on a C18 reversed phase column with a gradient mobile phase (ammonium formate buffer (5 mM) with 0.1% formic acid and acetonitrile) at 0.2 mL/min. The selected reaction monitoring transitions of m/z 931.5 → 864.4 and m/z 809.5 → 756.5 were applied for sirolimus and ascomycin (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 0.5–50 ng/mL. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in porcine whole blood and lung tissue homogenates, and all values were within acceptable ranges. The method was applied to a pharmacokinetic study to quantitate sirolimus levels in porcine blood and its distribution in lung tissue following the application of stents in the porcine coronary arteries. It enabled the quantification of sirolimus concentration until 2 and 14 days in blood and in lung tissue, respectively. This method would be appropriate for both routine porcine pharmacokinetic and bio-distribution studies of sirolimus formulations.
Collapse
|
11
|
Shigeta K, Kikuchi M, Tanaka M, Takasaki S, Oishi H, Sado T, Matsuda Y, Noda M, Okada Y, Mano N, Yamaguchi H. Development of a precise quantitative method for monitoring sirolimus in whole blood using LC/ESI–MS/MS. Biomed Chromatogr 2020; 34:e4853. [DOI: 10.1002/bmc.4853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Kensuke Shigeta
- Faculty of Pharmaceutical SciencesTohoku University Sendai Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical SciencesTohoku University Sendai Japan
- Department of Pharmaceutical sciencesTohoku University Hospital Sendai Japan
| | - Masaki Tanaka
- Department of Pharmaceutical sciencesTohoku University Hospital Sendai Japan
| | - Shinya Takasaki
- Department of Pharmaceutical sciencesTohoku University Hospital Sendai Japan
| | - Hisashi Oishi
- Department of Thoracic SurgeryTohoku University Hospital Sendai Japan
| | - Tetsu Sado
- Department of Thoracic SurgeryTohoku University Hospital Sendai Japan
| | - Yasushi Matsuda
- Department of Thoracic SurgeryTohoku University Hospital Sendai Japan
| | - Masafumi Noda
- Department of Thoracic SurgeryTohoku University Hospital Sendai Japan
| | - Yoshinori Okada
- Department of Thoracic SurgeryTohoku University Hospital Sendai Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical SciencesTohoku University Sendai Japan
- Department of Pharmaceutical sciencesTohoku University Hospital Sendai Japan
| | - Hiroaki Yamaguchi
- Faculty of Pharmaceutical SciencesTohoku University Sendai Japan
- Department of Pharmaceutical sciencesTohoku University Hospital Sendai Japan
- Yamagata University Graduate School of Medicine/Department of PharmacyYamagata University Hospital Yamagata Japan
| |
Collapse
|
12
|
Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020; 9:cells9040933. [PMID: 32290135 PMCID: PMC7226975 DOI: 10.3390/cells9040933] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.
Collapse
|
13
|
Abstract
With the discovery of rapamycin 45 years ago, studies in the mechanistic target of rapamycin (mTOR) field started 2 decades before the identification of the mTOR kinase. Over the years, studies revealed that the mTOR signaling is a master regulator of homeostasis and integrates a variety of environmental signals to regulate cell growth, proliferation, and metabolism. Deregulation of mTOR signaling, particularly hyperactivation, frequently occurs in human tumors. Recent advances in molecular profiling have identified mutations or amplification of certain genes coding proteins involved in the mTOR pathway (eg, PIK3CA, PTEN, STK11, and RICTOR) as the most common reasons contributing to mTOR hyperactivation. These genetic alterations of the mTOR pathway are frequently observed in lung neoplasms and may serve as a target for personalized therapy. mTOR inhibitor monotherapy has met limited clinical success so far; however, rational drug combinations are promising to improve efficacy and overcome acquired resistance. A better understanding of mTOR signaling may have the potential to help translation of mTOR pathway inhibitors into the clinical setting.
Collapse
|