1
|
Fletcher C, Hadchouel A, Thumerelle C, Mazenq J, Fleury M, Corvol H, Jedidi N, Benhamida M, Bessaci K, Bilhouee T, Borie R, Brouard J, Cantais A, Clement A, Coutier L, Cisterne C, Cros P, Dalphin ML, Delacourt C, Deneuville E, Dubus JC, Egron C, Epaud R, Fayon M, Forgeron A, Gachelin E, Galode F, Gertini I, Giovannini-Chami L, Gourdan P, Guiddir T, Herzog A, Houdouin V, Hullo É, Jarreau PH, Labbé G, Labouret G, Ladaurade A, Le Clainche Viala L, Marguet C, Masson-Rouchaud A, Perisson C, Rames C, Reix P, Renoux MC, Roditis L, Schweitzer C, Tatopoulos A, Trioche-Eberschweiler P, Troussier F, Vigier C, Weiss L, Legendre M, Louvrier C, de Becdelievre A, Coulomb A, Sileo C, Ducou le Pointe H, Berteloot L, Delestrain C, Nathan N. Epidemiology of childhood interstitial lung disease in France: the RespiRare cohort. Thorax 2024; 79:842-852. [PMID: 38964860 DOI: 10.1136/thorax-2023-221325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Interstitial lung disease in children (chILD) are rare and mostly severe lung diseases. Very few epidemiological data are available in limited series of patients. The aim of this study was to assess the prevalence and incidence of chILD in France. METHODS We performed within the RespiRare network a multicentre retrospective observational study in patients with chILD from 2000 to 2022 and a prospective evaluation of chILD's incidence between February 2022 and 2023. RESULTS chILD was reported in 790 patients in 42 centres. The estimated 2022 prevalence in France was 44 /million children (95% CI 40.76 to 47.46) and the computed incidence was 4.4 /million children (95% CI 3.44 to 5.56). The median age at diagnosis was 3 months with 16.9% of familial forms. Lung biopsy and genetic analyses were performed in 23.4% and 76.9%, respectively. The most frequent chILD aetiologies in the <2 years group were surfactant metabolism disorders (16.3%) and neuroendocrine cell hyperplasia of infancy (11.8%), and in the 2-18 years group diffuse alveolar haemorrhage (12.2%), connective tissue diseases (11.4%), hypersensitivity pneumonitis (8.8%) and sarcoidosis (8.8%). The management included mainly oxygen therapy (52%), corticosteroid pulses (56%), oral corticosteroids (44%), azithromycin (27.2%), enteral nutrition (26.9%), immunosuppressants (20.3%) and hydroxychloroquine (15.9%). The 5-year survival rate was 57.3% for the patients diagnosed before 2 years and 86% between 2 and 18 years. CONCLUSION This large and systematic epidemiological study confirms a higher incidence and prevalence of chILD than previously described. In order to develop international studies, efforts are still needed to optimise the case collection and to harmonise diagnostic and management practices.
Collapse
Affiliation(s)
- Camille Fletcher
- Paediatric Pulmonology Department and Reference Center for Rare Lung Diseases, RespiRare, Sorbonne University, AP-HP, Armand Trousseau Hospital, Paris, France
- Laboratory of Childhood Genetic Diseases, UMR_S933, Sorbonne University, INSERM, Armand Trousseau Hospital, Paris, France
| | - Alice Hadchouel
- AP-HP, Service de Pneumologie Pédiatrique and Reference center for rare lung diseases RespiRare, Necker-Enfants Malades Hospital, Paris, France
- INSERM U1151 INEM, Université Paris Cité, INSERM, Paris, France
| | | | - Julie Mazenq
- Pediatric Pulmonology Department and Reference Center for Rare Lung Diseases RespiRare, Aix-Marseille University, AP-HM, Marseille, France
- INRAE, C2VN, INSERM, Marseille, France
| | - Manon Fleury
- APHP, Armand Trousseau Hospital, Pediatric Pulmonology Department and Reference Center for Rare Lung Diseases RespiRare, Sorbonne University, Paris, France
| | - Harriet Corvol
- Paediatric Pulmonology Department and Reference Center for Rare Lung Diseases, RespiRare, Sorbonne University, AP-HP, Armand Trousseau Hospital, Paris, France
- CDR Saint-Antoine, Paris, France
| | - Nouha Jedidi
- Paediatric Pulmonology Department and Reference Center for Rare Lung Diseases, RespiRare, Sorbonne University, AP-HP, Armand Trousseau Hospital, Paris, France
| | - Myriam Benhamida
- Pediatric Department, University Hospital Centre Nantes, Nantes, France
| | - Katia Bessaci
- Pediatric Pulmonology Department, University Hospital Centre Reims, Reims, France
| | - Tiphaine Bilhouee
- Pediatric Department, University Hospital Centre Nantes, Nantes, France
| | - Raphael Borie
- APHP, Bichat Hospital, Pulmonology Department A, Université Paris Cité, Paris, France
- Inserm UMR-S 1152 PHERE, INSERM, Paris, France
| | - Jacques Brouard
- Medical Pediatric Department, Inserm UMRS 1311, DYNAMICURE, UNICAEN, University Hospital Centre Caen, Caen, France
| | - Aurélie Cantais
- Pediatric Department, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Annick Clement
- Plateforme d'expertise maladies rares, AP-HP.Sorbonne University, Paris, France
| | - Laurianne Coutier
- Pediatric Pulmonology Department, University Hospital Lyon, Lyon, France
| | - Camille Cisterne
- Pediatric Pulmonology Department, Lille University Hospital, Lille, France
| | - Pierrick Cros
- Pediatric Department, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Marie-Laure Dalphin
- Pediatric Pulmonology Department, Centre Hospitalier Universitaire de Besancon, Besancon, France
| | - Christophe Delacourt
- AP-HP, Service de Pneumologie Pédiatrique and Reference center for rare lung diseases RespiRare, Necker-Enfants Malades Hospital, Paris, France
- INSERM U1151 INEM, Université Paris Cité, INSERM, Paris, France
| | - Eric Deneuville
- Pediatric Pulmonology Department, University Hospital Centre Rennes, Rennes, France
| | - Jean-Christophe Dubus
- Pediatric Pulmonology Department and Reference Center for Rare Lung Diseases RespiRare, Aix-Marseille University, AP-HM, Marseille, France
- IRD, MEPHI, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France
| | - Carole Egron
- University Hospital Centre Clermont-Ferrand, Clermont-Ferrand, France
| | - Ralph Epaud
- Pédiatrie, Centre Hospitalier Intercommunal de Créteil, Creteil, France
- FHU SENEC; University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Michael Fayon
- Pediatric Pulmonology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Clinical Investigation Center (CIC 1401); Bordeaux University, Cardio-Thoracic Research Center of Bordeaux, Inserm, U1045, INSERM, Bordeaux, France
| | - Aude Forgeron
- Pediatric Pulmonology Department, Hospital Centre Le Mans, Le Mans, France
| | - Elsa Gachelin
- Pediatric Pulmonology Department, CHU Nord Réunion, Saint-Denis, France
| | - François Galode
- Pediatric Pulmonology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Isabelle Gertini
- Pediatric Pulmonology Department, Tours University hospital, Tours, France
| | - Lisa Giovannini-Chami
- Pediatric Pulmonology Department, Hôpitaux Pédiatriques de Nice CHU-LENVAL, Nice, France
| | - Pierre Gourdan
- Pediatric Pulmonology Department, Hôpitaux Pédiatriques de Nice CHU-LENVAL, Nice, France
| | - Tamazoust Guiddir
- Pediatric Pulmonology Department, AP-HP - Université Paris Saclay, Hospital Bicetre, Le Kremlin-Bicetre, France
| | - Audrey Herzog
- Pediatric Pulmonology Department, CHU de Strasbourg, Strasbourg, France
| | - Véronique Houdouin
- Pediatric Pulmonology Department, AP-HP - Paris University, Robert Debré Hospital, Paris, France
| | - Églantine Hullo
- Pediatric Pulmonology Department, University Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Pierre-Henri Jarreau
- Néonatal intensive care unit, Cochin Hospital, Université Paris Cité, Paris, France
| | - Guillame Labbé
- University Hospital Centre Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Alice Ladaurade
- Pediatric Pulmonology Department, Centre Hospitalier Universitaire de Besancon, Besancon, France
| | | | | | | | - Caroline Perisson
- Pediatric Pulmonology Department, CHU de La Réunion Sites Sud, Saint-Pierre, Réunion
| | - Cinthia Rames
- Pediatric Department, CHU Amiens-Picardie, Amiens, France
| | - Philippe Reix
- Pediatric Pulmonology Department, University Hospital Lyon, Lyon, France
| | | | - Léa Roditis
- Pediatric Pulmonology Department, CHU Toulouse, Toulouse, France
| | | | | | | | | | - Clémentine Vigier
- Pediatric Pulmonology Department, University Hospital Centre Rennes, Rennes, France
| | - Laurence Weiss
- Pediatric Pulmonology Department, CHU de Strasbourg, Strasbourg, France
| | - Marie Legendre
- Laboratory of Childhood Genetic Diseases, UMR_S933, Sorbonne University, INSERM, Armand Trousseau Hospital, Paris, France
- APHP, Armand Trousseau Hospital, Molecular Genetics Department, Sorbonne University, Paris, France
| | - Camille Louvrier
- Laboratory of Childhood Genetic Diseases, UMR_S933, Sorbonne University, INSERM, Armand Trousseau Hospital, Paris, France
- APHP, Armand Trousseau Hospital, Molecular Genetics Department, Sorbonne University, Paris, France
| | - Alix de Becdelievre
- Molecular Genetics Department, Centre Hospitalier Universitaire Henri Mondor, Creteil, France
- INSERM U-955, Université Paris Est Creteil, INSERM, Créteil, France
| | - Aurore Coulomb
- Pathology Department, Sorbonne University, AP-HP, Armand-Trousseau Hospital, Paris, France
| | - Chiara Sileo
- APHP, Sorbonne University, Radiology Department, Armand-Trousseau Hospital, Paris, France
| | - Hubert Ducou le Pointe
- APHP, Sorbonne University, Radiology Department, Armand-Trousseau Hospital, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, APHP, Université Paris Cité, Necker-Enfants Malades Hospitals, Paris, France
| | - Céline Delestrain
- Pédiatrie, Centre Hospitalier Intercommunal de Créteil, Creteil, France
- FHU SENEC; University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Nadia Nathan
- Paediatric Pulmonology Department and Reference Center for Rare Lung Diseases, RespiRare, Sorbonne University, AP-HP, Armand Trousseau Hospital, Paris, France
- Laboratory of Childhood Genetic Diseases, UMR_S933, Sorbonne University, INSERM, Armand Trousseau Hospital, Paris, France
| |
Collapse
|
2
|
Aoust L, Berteloot L, Drabent P, Garcelon N, Bodemer C, Molina TJ, Bader-Meunier B, Hadchouel A. Unclassifiable interstitial lung disease and autoimmunity: Towards IPAF in children? Pediatr Pulmonol 2023; 58:3303-3313. [PMID: 37701997 DOI: 10.1002/ppul.26660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/14/2023] [Accepted: 08/19/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Interstitial pneumonia with autoimmune features (IPAF) has been defined for adults with interstitial lung disease (ILD) and autoimmunity who do not meet the criteria for a specific connective tissue disease (CTD). We aimed to determine whether IPAF criteria could apply to children. METHODS We retrospectively studied patients with ILD and autoimmunity followed at Necker Hospital between 2008 and 2019. Children were classified according to specific CTD and IPAF criteria. The epidemiology and course of the disease were studied according to the final diagnosis. RESULTS Among 27 patients, 6 fulfilled the criteria for IPAF and represented 4.5% of all patients with ILD during the study period. Other diagnoses included juvenile dermatomyositis (30%), overlap syndromes (19%), systemic lupus erythematosus (15%), systemic sclerosis (7%), mixed CTD (4%), and rheumatoid arthritis (4%). IPAF patients were more frequently boys versus CTD-ILD patients (67% vs. 14%, p = .02). Two patients had severe respiratory distress that led to death for one of them. The course was favorable for the others, with a good response to steroids. The course tended to be more favorable for IPAF patients than for those with CTD-ILD (0% lung fibrosis in the IPAF group vs. 43% in the CTD-ILD group, p = .07). CONCLUSION We confirmed the existence of IPAF in children. Its prevalence was lower than in adults but comparable to that found for other pediatric series. Boys were more highly represented than in CTD-ILD. The course was favorable for most cases. Larger and more prospective studies are needed to confirm these results.
Collapse
Affiliation(s)
- Laura Aoust
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Laureline Berteloot
- Institut Imagine, INSERM UMRS 1163, Paris, France
- AP-HP, Service d'Imagerie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Philippe Drabent
- AP-HP, Hôpitaux Universitaires Necker-Enfants Malades et Robert Debré, Service d'Anatomie Pathologique, Paris, France
| | - Nicolas Garcelon
- Imagine Institute, Data Science Platform, INSERM UMR 1163, Université de Paris, Paris, France
| | - Christine Bodemer
- APHP, Hôpital Universitaire Necker-Enfants Malades, Service de Dermatologie Pédiatrique, Paris, France
- Université Paris Cité, Paris, France
| | - Thierry Jo Molina
- Institut Imagine, INSERM UMRS 1163, Paris, France
- AP-HP, Hôpitaux Universitaires Necker-Enfants Malades et Robert Debré, Service d'Anatomie Pathologique, Paris, France
- Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- APHP, Hôpital Universitaire Necker-Enfants Malades, Service d'Immunologie et Rhumatologie Pédiatriques, Paris, France
- Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Paris Cité University, Paris, France
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Imagine Institute, INSERM U1163, Paris Cité University, Paris, France
| | - Alice Hadchouel
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Nayir Buyuksahin H, Kiper N. Childhood Interstitial Lung Disease. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2023; 36:5-15. [PMID: 36695653 DOI: 10.1089/ped.2022.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Childhood interstitial lung disease (chILD) is a heterogeneous group of diseases with various clinical and imaging findings. The incidence and prevalence have increased in recent years, probably due to better comprehension of these rare diseases and increased awareness among physicians. chILDs present with nonspecific pulmonary symptoms, such as tachypnea, hypoxemia, cough, rales, and failure to thrive. Unnecessary invasive procedures can be avoided if specific mutations are detected through genetic examinations or if typical imaging patterns are recognized on computed tomography. Disease knowledge and targeted therapies are improving through international collaboration. Pulmonary involvement in systemic diseases is not uncommon. Pulmonary involvement may be the first finding in connective tissue diseases. This review aims to present a systematic patient-targeted approach to the diagnosis of chILD.
Collapse
Affiliation(s)
- Halime Nayir Buyuksahin
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Nathan N, Griese M, Michel K, Carlens J, Gilbert C, Emiralioglu N, Torrent-Vernetta A, Marczak H, Willemse B, Delestrain C, Epaud R. Diagnostic workup of childhood interstitial lung disease. Eur Respir Rev 2023; 32:32/167/220188. [PMID: 36813289 PMCID: PMC9945877 DOI: 10.1183/16000617.0188-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 02/24/2023] Open
Abstract
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous diseases with significant morbidity and mortality. An accurate and quick aetiological diagnosis may contribute to better management and personalised treatment. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review summarises the roles of the general paediatrician, paediatric pulmonologists and expert centres in the complex diagnostic workup. Each patient's aetiological chILD diagnosis must be reached without prolonged delays in a stepwise approach from medical history, signs, symptoms, clinical tests and imaging, to advanced genetic analysis and specialised procedures including bronchoalveolar lavage and biopsy, if necessary. Finally, as medical progress is fast, the need to revisit a diagnosis of "undefined chILD" is stressed.
Collapse
Affiliation(s)
- Nadia Nathan
- AP-HP, Sorbonne Université, Pediatric Pulmonology Department and Reference Center for Rare Lung Disease RespiRare, Armand Trousseau Hospital, Paris, France .,Sorbonne Université, Inserm UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Paris, France
| | - Matthias Griese
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Katarzyna Michel
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Carlee Gilbert
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alba Torrent-Vernetta
- Pediatric Allergy and Pulmonology Section, Department of Pediatrics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Honorata Marczak
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brigitte Willemse
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Céline Delestrain
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France,University Paris Est Créteil, INSERM, IMRB, Créteil, France
| |
Collapse
|
5
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
6
|
Terwiel M, Borie R, Crestani B, Galvin L, Bonella F, Fabre A, Froidure A, Griese M, Grutters JC, Johannson K, Kannengiesser C, Kawano-Dourado L, Molina-Molina M, Prasse A, Renzoni EA, van der Smagt J, Poletti V, Antoniou K, van Moorsel CHM. Genetic testing in interstitial lung disease: An international survey. Respirology 2022; 27:747-757. [PMID: 35652243 DOI: 10.1111/resp.14303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Genetic analysis is emerging for interstitial lung diseases (ILDs); however, ILD practices are not yet standardized. We surveyed patients', relatives' and pulmonologists' experiences and needs on genetic testing in ILD to evaluate the current situation and identify future needs. METHODS A clinical epidemiologist (MT) together with members of the ERS taskforce and representatives of the European Idiopathic Pulmonary Fibrosis and related disorders Federation (EU-IPFF) patient organisation developed a survey for patients, relatives and pulmonologists. Online surveys consisted of questions on five main topics: awareness of hereditary ILD, the provision of information, genetic testing, screening of asymptomatic relatives and clinical impact of genetic analysis in ILD. RESULTS Survey respondents consisted of 458 patients with ILD, 181 patients' relatives and 352 pulmonologists. Most respondents think genetic testing can be useful, particularly for explaining the cause of disease, predicting its course, determining risk for developing disease and the need to test relatives. Informing patients and relatives on genetic analysis is primarily performed by the pulmonologist, but 88% (218) of pulmonologists identify a need for more information and 96% (240) ask for guidelines on genetic testing in ILD. A third of the pulmonologists who would offer genetic testing currently do not offer a genetic test, primarily because they have limited access to genetic tests. Following genetic testing, 72% (171) of pulmonologists may change the diagnostic work-up and 57% (137) may change the therapeutic approach. CONCLUSION This survey shows that there is wide support for implementation of genetic testing in ILD and a high need for information, guidelines and access to testing among patients, their relatives and pulmonologists.
Collapse
Affiliation(s)
- Michelle Terwiel
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France.,INSERM, Unité 1152, Université de Paris, Paris, France
| | - Liam Galvin
- European Idiopathic Pulmonary Fibrosis and Related Disorders Federation, Overijse, Belgium
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital & School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Service de Pneumologie, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UC Louvain, Bruxelles, Belgium
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Kerri Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Caroline Kannengiesser
- INSERM, Unité 1152, Université de Paris, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, APHP, Paris, France
| | - Leticia Kawano-Dourado
- INSERM, Unité 1152, Université de Paris, Paris, France.,Pneumologie, Hôpital Bichat, APHP, Paris, France.,HCOR Research Institute, Hospital do Coracao, Sao Paulo, Brazil
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, Bellvitge University Hospital-IDIBELL, CIBERES, Barcelona, Spain
| | - Antje Prasse
- Pneumologie, Hannover Hochschule, Hannover, Germany
| | - Elisabetta A Renzoni
- Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Diseases, NHLI, Imperial College, London, UK
| | - Jasper van der Smagt
- Klinische Genetica, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Venerino Poletti
- Department of Diseases of the Thorax, University of Bologna/GB Morgagni Hospital, Forli, Italy
| | - Katerina Antoniou
- Department of Thoracic Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
7
|
Nathan N. Childhood Interstitial Lung Diseases (chILD) Recognition: When Epidemiology Increases a Rare Disease Incidence. ARCHIVOS DE BRONCONEUMOLOGÍA 2022; 58:217-218. [DOI: 10.1016/j.arbres.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
|
8
|
Xu X, Liu L, Xu X, Ma Q, Teng L, Zhou H, Yang L, Lu M. Etiologic Profile of Older Children With Diffuse Radiological Changes in Eastern China. Front Pediatr 2022; 10:823350. [PMID: 35586823 PMCID: PMC9108256 DOI: 10.3389/fped.2022.823350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To analyze the etiology of chest diffuse radiological changes (DRC) in children older than 2 years. METHODS A retrospective study was conducted on a primary cohort of children with DRC underwent high resolution computed tomography (HRCT). RESULTS DRC mainly included bronchial wall thickening, interlobular septal thickening, pleural thickening, ground glass opacity, mosaic perfusion, reticular & linear opacities, nodular opacity, and tree-in-bud. Of the identified 457 children with DRC, 83 of children older than 2 years with DRC were included in the present study. Ground glass opacity (53, 63.9%) and reticular & linear opacities (44, 53.0%) were frequently identified findings of HRCT, and no tree-in-bud pattern was observed. By contrast, among children with DRC by M. pneumoniae (n = 64), bronchial wall thickening (33, 51.6%), and mosaic perfusion (17, 26.6%) were common patterns of HRCT in addition to ground glass opacity (36, 56.3%). Most of etiologies were connective tissue disease (24, 28.9%), followed by diffuse alveolar hemorrhage syndrome (9, 10.8%), Langerhans cell histiocytosis (7, 8.4%), and recurrent aspiration (6, 7.2%). CONCLUSIONS This study adds further insights into the role of HRCT in diagnosing childhood interstitial lung diseases, indirectly reflecting disease compositions.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingke Liu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuchen Xu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qian Ma
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Liping Teng
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haichun Zhou
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Li Yang
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
9
|
陈 慧. [Current Status of and Challenges in Diagnosis and Treatment of Childhood Diffuse Parenchymal Lung Diseases/Childhood Interstitial Lung Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:721-724. [PMID: 34622582 PMCID: PMC10408899 DOI: 10.12182/20210960101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/23/2022]
Abstract
The medical field in China has witnessed encouraging progress in specialized theoretical research and clinical practice concerning childhood diffuse parenchymal lung diseases/childhood interstitial lung diseases (chDPLD/chILD) after many years of hard work. However, we have also encountered many tasks and challenges. We must approach the problem with a holistic perspective, and collect, accumulate and analyze, in a uniform way, the data from all over the country. We should try our best to obtain more pathological materials for further analysis of the diagnosis and treatment as well as clinical research. The diagnosis protocol and treatment recommendations should be revised regularly. Moreover, we emphasize the adoption of the clinico-radio-genetic-pathological (C-R-G-P) management model and the multi-disciplinary team (MDT) approach to the diagnosis and treatment of chDPLD/chILD. In this way, we will be able to improve our cognitive understanding and enrich our experience in the prevention and management of chDPLD/chILD further more.
Collapse
Affiliation(s)
- 慧中 陈
- 首都儿科研究所附属儿童医院 (北京 100020)Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
10
|
Ademhan Tural D, Emiralioglu N, Ozsezen B, Sunman B, Nayir Buyuksahin H, Guzelkas I, Oguz B, Bilginer Y, Orhan D, Yalcin E, Dogru D, Ozcelik U, Ozen S, Kiper N. Clinical spectrum of children with interstitial pneumonia with autoimmune features. Respir Med 2021; 187:106566. [PMID: 34416614 DOI: 10.1016/j.rmed.2021.106566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interstitial pneumonia with autoimmune features (IPAF) is a term used to describe adult patients with interstitial lung disease (ILD) who display some clinical or serological features of autoimmune diseases and who do not meet the full criteria for a specific connective tissue disease (CTD). The aim of this study was to define the demographic, clinical, radiologic, serologic and histopathologic features and assess treatment in children with IPAF. METHODS This retrospective cohort study was conducted at a tertiary referral pediatric pulmonology center between January 2010 and August 2020. Children with proven interstitial pneumonia with no known etiologies were evaluated for IPAF according to European Respiratory Society/American Thoracic Society research statement of IPAF. RESULTS Among 132 children with ILD, 17 patients were evaluated in detail for IPAF criteria and six patients were further diagnosed as having IPAF. The incidence of IPAF in our patients with ILD was 4.5%. Four of these patients were female. The median age at the time of ILD diagnosis was 10.5 years. The most common initial symptom was shortness of breath, and the most common physical examination sign was crackles in both lungs. Steroid therapy was given to all patients and four patients received other immunosuppressive agents for steroid sparing. Two of those patients died because of respiratory insufficiency during the follow-up. CONCLUSION Children with interstitial pneumonia and certain clinical, serologic, and/or morphologic features should raise suspicion for the presence of an underlying systemic autoimmune disease. IPAF is also seen in children and should be categorized in chILD classifications.
Collapse
Affiliation(s)
- Dilber Ademhan Tural
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey.
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Beste Ozsezen
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Birce Sunman
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Halime Nayir Buyuksahin
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ismail Guzelkas
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Berna Oguz
- Department of Radiology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatric Rheumatology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Diclehan Orhan
- Department of Pediatric Pathology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ugur Ozcelik
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
11
|
van Moorsel CHM, van der Vis JJ, Grutters JC. Genetic disorders of the surfactant system: focus on adult disease. Eur Respir Rev 2021; 30:30/159/200085. [PMID: 33597124 DOI: 10.1183/16000617.0085-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Genes involved in the production of pulmonary surfactant are crucial for the development and maintenance of healthy lungs. Germline mutations in surfactant-related genes cause a spectrum of severe monogenic pulmonary diseases in patients of all ages. The majority of affected patients present at a very young age, however, a considerable portion of patients have adult-onset disease. Mutations in surfactant-related genes are present in up to 8% of adult patients with familial interstitial lung disease (ILD) and associate with the development of pulmonary fibrosis and lung cancer.High disease penetrance and variable expressivity underscore the potential value of genetic analysis for diagnostic purposes. However, scarce genotype-phenotype correlations and insufficient knowledge of mutation-specific pathogenic processes hamper the development of mutation-specific treatment options.This article describes the genetic origin of surfactant-related lung disease and presents spectra for gene, age, sex and pulmonary phenotype of adult carriers of germline mutations in surfactant-related genes.
Collapse
Affiliation(s)
- Coline H M van Moorsel
- Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearts and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanne J van der Vis
- Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Dept of Clinical Chemistry, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearts and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Frémond ML, Nathan N. COPA syndrome, 5 years after: Where are we? Joint Bone Spine 2020; 88:105070. [PMID: 32919065 DOI: 10.1016/j.jbspin.2020.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Heterozygous missense mutations in COPA, encoding coatomer protein subunit alpha (COPA), cause an interferonopathy mainly associating lung, joint and kidney involvement. This rare autoinflammatory disease is characterised by variable expression and a remarkably high frequency of clinical non-penetrance. Lung features, predominantly chronic diffuse alveolar haemorrhage (DAH), are observed in almost patients and can result in end-stage respiratory insufficiency. The initially described phenotype was broadened to include isolated DAH or lupus nephritis. Rare manifestations reminiscent of other monogenic interferonopathies occur. This indicates the need for careful clinical evaluation in patients with suspicion or diagnosis of COPA syndrome. Considering the dominant inheritance model and the highly variable phenotype, ranging from severe multi-organic disorder to non-penetrance, a careful family screening is recommended. New insights in disease pathogenesis have linked COPA mutations to STING-mediated interferon signalling. Beside a variable efficacy of 'classical' immunosuppressive drugs, Janus kinase (JAK) inhibitors constitute a promising treatment in COPA syndrome, and further targeted therapies are awaited.
Collapse
Affiliation(s)
- Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, 24, boulevard du Montparnasse, 75015 Paris, France.
| | - Nadia Nathan
- Pediatric Pulmonology Department and Reference center for rare lung disease RespiRare, Trousseau University Hospital, AP-HP, Sorbonne Université, Paris, France; Sorbonne Université, Inserm/UMRS_933, Trousseau University Hospital, Paris, France
| |
Collapse
|