1
|
Barbato F, Bombaci A, Colacicco G, Bruno G, Ippolito D, Pota V, Dongiovanni S, Sica G, Bocchini G, Valente T, Scaglione M, Mainenti PP, Guarino S. Chest Dynamic MRI as Early Biomarker of Respiratory Impairment in Amyotrophic Lateral Sclerosis Patients: A Pilot Study. J Clin Med 2024; 13:3103. [PMID: 38892814 PMCID: PMC11172785 DOI: 10.3390/jcm13113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neuromuscular progressive disorder characterized by limb and bulbar muscle wasting and weakness. A total of 30% of patients present a bulbar onset, while 70% have a spinal outbreak. Respiratory involvement represents one of the worst prognostic factors, and its early identification is fundamental for the early starting of non-invasive ventilation and for the stratification of patients. Due to the lack of biomarkers of early respiratory impairment, we aimed to evaluate the role of chest dynamic MRI in ALS patients. Methods: We enrolled 15 ALS patients and 11 healthy controls. We assessed the revised ALS functional rating scale, spirometry, and chest dynamic MRI. Data were analyzed by using the Mann-Whitney U test and Cox regression analysis. Results: We observed a statistically significant difference in both respiratory parameters and pulmonary measurements at MRI between ALS patients and healthy controls. Moreover, we found a close relationship between pulmonary measurements at MRI and respiratory parameters, which was statistically significant after multivariate analysis. A sub-group analysis including ALS patients without respiratory symptoms and with normal spirometry values revealed the superiority of chest dynamic MRI measurements in detecting signs of early respiratory impairment. Conclusions: Our data suggest the usefulness of chest dynamic MRI, a fast and economically affordable examination, in the evaluation of early respiratory impairment in ALS patients.
Collapse
Affiliation(s)
- Francesco Barbato
- Department of Emergency and Urgent Medicine, Stroke Unit, Santa Maria delle Grazie Hospital, 80078 Naples, Italy;
| | - Alessandro Bombaci
- PhD Program of Neuroscience, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neurology Unit, IRCSS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Department of Neurology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanni Colacicco
- NeuroMuscular Omnicentre (NEMO), Serena Onlus, 20162 Milan, Italy; (G.C.); (D.I.); (S.D.)
| | - Giorgia Bruno
- Division of Pediatric Neurology, Department of Neurosciences, “Santobono-Pausilipon” Children’s Hospital, 80121 Naples, Italy;
| | - Domenico Ippolito
- NeuroMuscular Omnicentre (NEMO), Serena Onlus, 20162 Milan, Italy; (G.C.); (D.I.); (S.D.)
| | - Vincenzo Pota
- Department of Women, Child, General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Salvatore Dongiovanni
- NeuroMuscular Omnicentre (NEMO), Serena Onlus, 20162 Milan, Italy; (G.C.); (D.I.); (S.D.)
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| | - Giorgio Bocchini
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| | - Tullio Valente
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Council of Research (CNR), 80145 Naples, Italy;
| | - Salvatore Guarino
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (G.B.); (T.V.); (S.G.)
| |
Collapse
|
2
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
3
|
Hu B, Yin G, Fu S, Zhang B, Shang Y, Zhang Y, Ye J. The influence of mouth opening on pharyngeal pressure loss and its underlying mechanism: A computational fluid dynamic analysis. Front Bioeng Biotechnol 2023; 10:1081465. [PMID: 36698641 PMCID: PMC9868155 DOI: 10.3389/fbioe.2022.1081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Objective: During inspiration, mechanical energy generated from respiratory muscle produces a negative pressure gradient to fulfill enough pulmonary ventilation. The pressure loss, a surrogate for energy loss, is considered as the portion of negative pressure without converting into the kinetic energy of airflow. Mouth opening (MO) during sleep is a common symptom in patients with obstructive sleep apnoea-hypopnea syndrome (OSAHS). This study aimed to evaluate the effects of mouth opening on pharyngeal pressure loss using computational fluid dynamics (CFD) simulation. Methods: A total of four subjects who were morphologically distinct in the pharyngeal characteristics based on Friedman tongue position (FTP) grades were selected. Upper airway computed tomography (CT) scan was performed under two conditions: Mouth closing (MC) and mouth opening, in order to reconstruct the upper airway models. computational fluid dynamics was used to simulate the flow on the two different occasions: Mouth closing and mouth opening. Results: The pharyngeal jet was the typical aerodynamic feature and its formation and development were different from mouth closing to mouth opening in subjects with different Friedman tongue position grades. For FTP I with mouth closing, a pharyngeal jet gradually formed with proximity to the velopharyngeal minimum area plane (planeAmin). Downstream the planeAmin, the jet impingement on the pharyngeal wall resulted in the frictional loss associated with wall shear stress (WSS). A rapid luminal expansion led to flow separation and large recirculation region, corresponding to the interior flow loss. They all contributed to the pharyngeal total pressure loss. While for FTP I with mouth opening, the improved velopharyngeal constriction led to smoother flow and a lower total pressure loss. For FTP IV, the narrower the planeAmin after mouth opening, the stronger the jet formation and its impingement on the pharyngeal wall, predicting a higher frictional loss resulted from higher WSS. Besides, a longer length of the mouth opening-associated constant constrictive segment was another important morphological factor promoting frictional loss. Conclusion: For certain OSAHS patients with higher Friedman tongue position grade, mouth opening-related stronger jet formation, more jet breakdown and stronger jet flow separation might contribute to the increased pharyngeal pressure loss. It might require compensation from more inspiratory negative static pressure that would potentially increase the severity of OSAHS.
Collapse
Affiliation(s)
- Bin Hu
- Department of Otolaryngology-Head Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoping Yin
- Department of Otolaryngology-Head Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Song Fu
- School of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Baoshou Zhang
- School of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Yan Shang
- School of Aeronautics and Astronautics, Tsinghua University, Beijing, China
| | - Yuhuan Zhang
- Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingying Ye
- Department of Otolaryngology-Head Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,Sleep Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China,*Correspondence: Jingying Ye,
| |
Collapse
|
4
|
Characteristics of Diaphragmatic and Chest Wall Motion in People with Normal Pulmonary Function: A Study with Free-Breathing Dynamic MRI. J Clin Med 2022; 11:jcm11247276. [PMID: 36555894 PMCID: PMC9785439 DOI: 10.3390/jcm11247276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: We aimed to quantitatively study the characteristic of diaphragm and chest wall motion using free-breathing dynamic magnetic resonance imaging (D-MRI) in Chinese people with normal lung function. Methods: 74 male subjects (mean age, 37 ± 11 years old) were prospectively enrolled, and they underwent high-resolution CT(HRCT), pulmonary functional tests (PFTs), and D-MRI in the same day. D-MRI was acquired with a gradient-echo sequence during the quiet and deep breathing. The motion of the diaphragm and chest wall were respectively assessed by measuring thoracic anteroposterior diameter (AP), left−right diameter (LR), cranial−caudal diameter (CC), and thoracic area ratios between end-inspiration and end-expiration. The effect of age, body mass index (BMI), and smoking on respiratory muscle function was also analyzed. Results: The mean ratio of right and left AP was greater than that of LR on three transversal planes during both quiet and deep breathing. The mean ratio at the anterior diaphragm (AND, Quiet: 1.04 ± 0.03; Deep: 1.15 ± 0.09) was weaker than that of the apex (vs. APD, Quiet: 1.08 ± 0.05, p < 0.001; Deep: 1.29 ± 0.12, p < 0.001) and posterior diaphragm (vs. POD, Quiet: 1.09 ± 0.04, p < 0.001; Deep: 1.30 ± 0.12, p < 0.001) both in quiet and deep breathing. Compared with non-smokers, the left AP and thoracic area ratios in smokers were significantly decreased (p < 0.05). However, the ratios of AP, LR, CC, and thoracic area on each plane were similar among groups in different age and BMI. Conclusions: During both quiet and deep breathing, the chest wall motion is prominent in the anteroposterior direction. The motions of diaphragm apex and posterior diaphragm were more prominent than that of the anterior diaphragm. Smoking may affect the respiratory muscle mobility. Dynamic MRI can quantitatively evaluate the motion of respiratory muscles.
Collapse
|
5
|
Yang X, Liu M, Duan J, Sun H, An J, Benkert T, Dai H, Wang C. Three-dimensional ultrashort echo time magnetic resonance imaging in assessment of idiopathic pulmonary fibrosis, in comparison with high-resolution computed tomography. Quant Imaging Med Surg 2022; 12:4176-4189. [PMID: 35919053 PMCID: PMC9338383 DOI: 10.21037/qims-21-1133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
Background We aimed to evaluate the image quality, feasibility, and diagnostic performance of three-dimensional ultrashort echo time magnetic resonance imaging (3D UTE-MRI) to assess idiopathic pulmonary fibrosis (IPF) compared with high-resolution computed tomography (HRCT) and half-Fourier single-shot turbo spin-echo (HASTE) MRI. Methods A total of 36 patients with IPF (34 men; mean age: 62±8 years, age range: 43 to 78 years) were prospectively included and underwent HRCT and chest MRI on the same day. Chest MRI was performed with a free-breathing 3D spiral UTE pulse sequence and HASTE sequence on a 1.5 T MRI. Two radiologists independently evaluated the image quality of the HRCT, HASTE, and 3D UTE-MRI. They assessed the representative imaging features of IPF, including honeycombing, reticulation, traction bronchiectasis, and ground-glass opacities. Image quality of the 3D UTE-MRI, HASTE, and HRCT were assessed using a 5-point visual scoring method. Kappa and weighted kappa analysis were used to measure intra- and inter-observer and inter-method agreements. Sensitivity (SE), specificity (SP), and accuracy (AC) were used to assess the performance of 3D UTE-MRI for detecting image features of IPF and monitoring the extent of pulmonary fibrosis. Linear regressions and Bland-Altman plots were generated to assess the correlation and agreement between the assessment of the extent of pulmonary fibrosis made by the 2 observers. Results The image quality of HRCT was higher than that of HASTE and UTE-MRI (HRCT vs. UTE-MRI vs. HASTE: 4.9±0.3 vs. 4.1±0.7 vs. 3.0±0.3; P<0.001). Interobserver agreement of HRCT, HASTE, and 3D UTE-MRI when assessing pulmonary fibrosis was substantial and excellent (HRCT: 0.727≤ κ ≤1, P<0.001; HASTE: 0.654≤ κ ≤1, P<0.001; 3D UTE-MRI: 0.719≤ κ ≤0.824, P<0.001). In addition, reticulation (SE: 97.1%; SP: 100%; AC: 97.2%; κ =0.654), honeycombing (SE: 83.3%; SP: 100%; AC: 86.1%; κ =0.625) patterns, and traction bronchiectasis (SE: 94.1%; SP: 100%; AC: 94.4%, κ =0.640) were also well-visualized on 3D UTE-MRI, which was significantly superior to HASTE. Compared with HRCT, the sensitivity of 3D UTE-MRI to detect signs of pulmonary fibrosis (n=35) was 97.2%. The interobserver agreement in elevation of the extent of pulmonary fibrosis with HRCT and 3D UTE-MRI was R2=0.84 (P<0.001) and R2=0.84 (P<0.001), respectively. The extent of pulmonary fibrosis assessed with 3D UTE-MRI [median =9, interquartile range (IQR): 6.25 to 10.00] was lower than that from HRCT (median =12, IQR: 9.25 to 13.00; U=320.00, P<0.001); however, they had a positive correlation (R=0.72, P<0.001). Conclusions As a radiation-free non-contrast enhanced imaging method, although the image quality of 3D UTE-MRI is inferior to that of HRCT, it has high reproducibility to identify the imaging features of IPF and evaluate the extent of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jianghui Duan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Haishuang Sun
- National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
MRI changes in diaphragmatic motion and curvature in Pompe disease over time. Eur Radiol 2022; 32:8681-8691. [PMID: 35829785 DOI: 10.1007/s00330-022-08940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate changes in diaphragmatic function in Pompe disease using MRI over time, both during natural disease course and during treatment with enzyme replacement therapy (ERT). METHODS In this prospective study, 30 adult Pompe patients and 10 healthy controls underwent pulmonary function tests and spirometry-controlled MRI twice, with an interval of 1 year. In the sagittal view of 3D gradient echo breath-hold acquisitions, diaphragmatic motion (cranial-caudal ratio between end-inspiration and end-expiration) and curvature (diaphragm height and area ratio) were calculated using a machine learning algorithm based on convolutional neural networks. Changes in outcomes after 1 year were compared between Pompe patients and healthy controls using the Mann-Whitney test. RESULTS Pulmonary function outcomes and cranial-caudal ratio in Pompe patients did not change significantly over time compared to healthy controls. Diaphragm height ratio increased by 0.04 (-0.38 to 1.79) in Pompe patients compared to -0.02 (-0.18 to 0.25) in healthy controls (p = 0.02). An increased diaphragmatic curvature over time was observed in particular in untreated Pompe patients (p = 0.03), in those receiving ERT already for over 3 years (p = 0.03), and when severe diaphragmatic weakness was found on the initial MRI (p = 0.01); no progression was observed in Pompe patients who started ERT less than 3 years ago and in Pompe patients with mild diaphragmatic weakness on their initial MRI. CONCLUSIONS MRI enables to detect small changes in diaphragmatic curvature over 1-year time in Pompe patients. It also showed that once severe diaphragmatic weakness has occurred, improvement of diaphragmatic muscle function seems unlikely. KEY POINTS • Changes in diaphragmatic curvature in Pompe patients over time assessed with 3D MRI may serve as an outcome measure to evaluate the effect of treatment on diaphragmatic function. • Diaphragmatic curvature showed a significant deterioration after 1 year in Pompe patients compared to healthy controls, but the curvature seems to remain stable over this period in patients who were treated with enzyme replacement therapy for less than 3 years, possibly indicating a positive effect of ERT. • Improvement of diaphragmatic curvature over time is rarely seen in Pompe patients once diaphragmatic motion shows severe impairment (cranial-caudal inspiratory/expiratory ratio < 1.4).
Collapse
|
7
|
Harlaar L, Ciet P, van Tulder G, Brusse E, Timmermans RGM, Janssen WGM, de Bruijne M, van der Ploeg AT, Tiddens HAWM, van Doorn PA, van der Beek NAME. Diaphragmatic dysfunction in neuromuscular disease, an MRI study. Neuromuscul Disord 2021; 32:15-24. [PMID: 34973872 DOI: 10.1016/j.nmd.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
The aim of this exploratory study was to evaluate diaphragmatic function across various neuromuscular diseases using spirometry-controlled MRI. We measured motion of the diaphragm relative to that of the thoracic wall (cranial-caudal ratio vs. anterior posterior ratio; CC-AP ratio), and changes in the diaphragmatic curvature (diaphragm height and area ratio) during inspiration in 12 adults with a neuromuscular disease having signs of respiratory muscle weakness, 18 healthy controls, and 35 adult Pompe patients - a group with prominent diaphragmatic weakness. CC-AP ratio was lower in patients with myopathies (n=7, 1.25±0.30) and motor neuron diseases (n=5, 1.30±0.10) than in healthy controls (1.37±0.14; p=0.001 and p=0.008), but not as abnormal as in Pompe patients (1.12±0.18; p=0.011 and p=0.024). The mean diaphragm height ratio was 1.17±0.33 in patients with myopathies, pointing at an insufficient diaphragmatic contraction. This was also seen in patients with Pompe disease (1.28±0.36), but not in healthy controls (0.82±0.33) or patients with motor neuron disease (0.82±0.24). We conclude that spirometry-controlled MRI enables us to investigate respiratory dysfunction across neuromuscular diseases, suggesting that the diaphragm is affected in a different way in myopathies and motor neuron diseases. Whether MRI can also be used to evaluate progression of diaphragmatic dysfunction requires additional studies.
Collapse
Affiliation(s)
- Laurike Harlaar
- Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, Department of Neurology, Rotterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, Department of Paediatrics, Rotterdam, the Netherlands
| | - Pierluigi Ciet
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - Gijs van Tulder
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
| | - Esther Brusse
- Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, Department of Neurology, Rotterdam, the Netherlands
| | - Remco G M Timmermans
- Rijndam Rehabilitation Centre Rotterdam, location Erasmus MC, Rotterdam, the Netherlands
| | - Wim G M Janssen
- Rijndam Rehabilitation Centre Rotterdam, location Erasmus MC, Rotterdam, the Netherlands
| | - Marleen de Bruijne
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands; University of Copenhagen, Department of Computer Science, Copenhagen, Denmark
| | - Ans T van der Ploeg
- Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, Department of Paediatrics, Rotterdam, the Netherlands
| | - Harm A W M Tiddens
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - Pieter A van Doorn
- Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, Department of Neurology, Rotterdam, the Netherlands
| | - Nadine A M E van der Beek
- Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, Department of Neurology, Rotterdam, the Netherlands.
| |
Collapse
|