1
|
Lam C, Scaglia F, Berry GT, Larson A, Sarafoglou K, Andersson HC, Sklirou E, Tan QKG, Starosta RT, Sadek M, Wolfe L, Horikoshi S, Ali M, Barone R, Campbell T, Chang IJ, Coles K, Cook E, Eklund EA, Engelhardt NM, Freeman M, Friedman J, Fu DYT, Botzo G, Rawls B, Hernandez C, Johnsen C, Keller K, Kramer S, Kuschel B, Leshinski A, Martinez-Duncker I, Mazza GL, Mercimek-Andrews S, Miller BS, Muthusamy K, Neira J, Patterson MC, Pogorelc N, Powers LN, Ramey E, Reinhart M, Squire A, Thies J, Vockley J, Vreugdenhil H, Witters P, Youbi M, Zeighami A, Zemet R, Edmondson AC, Morava E. Frontiers in congenital disorders of glycosylation consortium, a cross-sectional study report at year 5 of 280 individuals in the natural history cohort. Mol Genet Metab 2024; 142:108509. [PMID: 38959600 PMCID: PMC11299528 DOI: 10.1016/j.ymgme.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.
Collapse
Affiliation(s)
- Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong KongSAR, China
| | - Gerard T Berry
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, USA
| | - Kyriakie Sarafoglou
- Divisions of Endocrinology and Genetics-Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Hans C Andersson
- Hayward Genetics Center, Dept Pediatrics Tulane School of Medicine, USA
| | - Evgenia Sklirou
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Queenie K G Tan
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Rodrigo T Starosta
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, USA
| | - Mustafa Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Lynne Wolfe
- Medical Genetic Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Seishu Horikoshi
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, IRCCS, Troina, Italy
| | - Teresa Campbell
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Irene J Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Kiaira Coles
- Child Health Research Enterprise, Children's Hospital Colorado, USA
| | - Edward Cook
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Erik A Eklund
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Nicole M Engelhardt
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Mary Freeman
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA; Rady Children's Hospital, San Diego, CA, USA
| | - Debbie Y T Fu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace Botzo
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Christin Johnsen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Kierstin Keller
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Sara Kramer
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Kuschel
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Angela Leshinski
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ivan Martinez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Gina L Mazza
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Juanita Neira
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Marc C Patterson
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Natalie Pogorelc
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Lex N Powers
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth Ramey
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Michaela Reinhart
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Audrey Squire
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Hayden Vreugdenhil
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Peter Witters
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Mehdi Youbi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Aziza Zeighami
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Eva Morava
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
2
|
Boerrigter MM, te Morsche RHM, Venselaar H, Pastoors N, Geerts AM, Hoorens A, Drenth JPH. Novel α-1,3-Glucosyltransferase Variants and Their Broad Clinical Polycystic Liver Disease Spectrum. Genes (Basel) 2023; 14:1652. [PMID: 37628703 PMCID: PMC10454741 DOI: 10.3390/genes14081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Protein-truncating variants in α-1,3-glucosyltransferase (ALG8) are a risk factor for a mild cystic kidney disease phenotype. The association between these variants and liver cysts is limited. We aim to identify pathogenic ALG8 variants in our cohort of autosomal dominant polycystic liver disease (ADPLD) individuals. In order to fine-map the phenotypical spectrum of pathogenic ALG8 variant carriers, we performed targeted ALG8 screening in 478 ADPLD singletons, and exome sequencing in 48 singletons and 4 patients from two large ADPLD families. Eight novel and one previously reported pathogenic variant in ALG8 were discovered in sixteen patients. The ALG8 clinical phenotype ranges from mild to severe polycystic liver disease, and from innumerable small to multiple large hepatic cysts. The presence of <5 renal cysts that do not affect renal function is common in this population. Three-dimensional homology modeling demonstrated that six variants cause a truncated ALG8 protein with abnormal functioning, and one variant is predicted to destabilize ALG8. For the seventh variant, immunostaining of the liver tissue showed a complete loss of ALG8 in the cystic cells. ALG8-associated ADPLD has a broad clinical spectrum, including the possibility of developing a small number of renal cysts. This broadens the ADPLD genotype-phenotype spectrum and narrows the gap between liver-specific ADPLD and kidney-specific ADPKD.
Collapse
Affiliation(s)
- Melissa M. Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Research Institute for Medical Innovation, 6500 HB Nijmegen, The Netherlands
| | - Nikki Pastoors
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Anja M. Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
Tahata S, Weckwerth J, Ligezka A, He M, Lee HE, Heimbach J, Ibrahim SH, Kozicz T, Furuya K, Morava E. Liver transplantation recovers hepatic N-glycosylation with persistent IgG glycosylation abnormalities: Three-year follow-up in a patient with phosphomannomutase-2-congenital disorder of glycosylation. Mol Genet Metab 2023; 138:107559. [PMID: 36965289 PMCID: PMC10164344 DOI: 10.1016/j.ymgme.2023.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.
Collapse
Affiliation(s)
- Shawn Tahata
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America; Division of Medical Genetics, Stanford University, CA, United States of America
| | - Jody Weckwerth
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Anna Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America
| | - Miao He
- Metabolic and Advanced Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Hee Eun Lee
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Julie Heimbach
- Division of Transplant Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Samar H Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Katryn Furuya
- Pediatric Liver Transplant Program, University of Wisconsin Health, Madison, WI, United States of America
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
4
|
Roos D, van Leeuwen K, Madkaikar M, Kambli PM, Gupta M, Mathews V, Rawat A, Kuhns DB, Holland SM, de Boer M, Kanegane H, Parvaneh N, Lorenz M, Schwarz K, Klein C, Sherkat R, Jafari M, Wolach B, den Dunnen JT, Kuijpers TW, Köker MY. Hematologically important mutations: Leukocyte adhesion deficiency (second update). Blood Cells Mol Dis 2023; 99:102726. [PMID: 36696755 DOI: 10.1016/j.bcmd.2023.102726] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, characterized directly after birth by delayed separation of the umbilical cord, mutations are found in ITGB2, the gene that encodes the β subunit (CD18) of the β2 integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Lea and Leb blood group antigens. Finally, in LAD-III, the conformational activation of the hematopoietically expressed β integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells, involved in the regulation of β integrin conformation. This article contains an update of the mutations that we consider to be relevant for the various forms of LAD.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manisha Madkaikar
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Priyanka M Kambli
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Maya Gupta
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Vikram Mathews
- Dept of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Chandigarh, India
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Baruch Wolach
- Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Johan T den Dunnen
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - M Yavuz Köker
- Department of Immunology, Erciyes Medical School, University of Erciyes, Kayseri, Türkiye
| |
Collapse
|
5
|
Fiumara A, Sapuppo A, Ferri L, Arena A, Prato A, Garozzo D, Sturiale L, Morrone A, Barone R. Higher frequency of TMEM199-CDG in the southern mediterranean area is associated with c.92G>C (p.Arg31Pro) mutation. Eur J Med Genet 2023; 66:104709. [PMID: 36706865 DOI: 10.1016/j.ejmg.2023.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Congenital disorders of glycosylation (CDG) are genetic multisystem diseases, characterized by defective glycoconjugate synthesis. A small number of CDG with isolated liver damage have been described, such as TMEM199-CDG, a non-encephalopathic liver disorder with Wilson disease-like phenotype. Only eight patients with TMEM199-CDG have been described including seven Europeans (originating from Greece and Italy) and one Chinese. Three patients from southern Italy (Campania) shared the same known missense mutation pathogenetic variant NM_152464.3:c. 92G > C (p.Arg31Pro), also found in a Greek patient. Here we report a new patient from southern Italy (Sicily), with a homozygous c.92G > C p.(Arg31Pro) variant in TMEM199. The patient's phenotype is characterized by mild non-progressive hepatopathy with a normal hepatic echo structure. A persistent increase in serum transaminases, total and low-density lipoprotein cholesterol and low serum ceruloplasmin and copper levels and normal urinary copper excretion were observed. Matrix-assisted laser desorption/ionization mass spectrometry analyses showed abnormal N- and O- protein glycosylation, indicative of a Golgi processing defect and supporting the function of TMEM199 in maintaining Golgi homeostasis. TMEM199-CDG is an ultra-rare CDG relatively frequent in the southern Mediterranean area (7 in 9 patients, 77%). It is mainly associated with the c.92G > C (p.Arg31Pro) pathogenetic allele globally reported in 4 out of 7 families (57%), including one from Greece and three unrelated families from southern Italy. The almost uniform clinical phenotype described in patients with TMEM199-CDG appears to reflect a higher prevalence of the same variant in patients from the southern Mediterranean area.
Collapse
Affiliation(s)
- Agata Fiumara
- CRR-MET, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Annamaria Sapuppo
- CRR-MET, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Lorenzo Ferri
- Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Alessia Arena
- CRR-MET, Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Adriana Prato
- Child Neuropsychiatry- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Domenico Garozzo
- Institute of Polymers, Composites and Biomaterials - CNR, Catania, Italy
| | - Luisa Sturiale
- Institute of Polymers, Composites and Biomaterials - CNR, Catania, Italy
| | - Amelia Morrone
- Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy; Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- CRR-MET, Department of Clinical and Experimental Medicine, University of Catania, Italy; Child Neuropsychiatry- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Institute of Polymers, Composites and Biomaterials - CNR, Catania, Italy.
| |
Collapse
|
6
|
Zhou SY. [Advances in the diagnosis and treatment of phosphomannomutase 2 deficiency]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:223-228. [PMID: 36854702 DOI: 10.7499/j.issn.1008-8830.2209049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Phosphomannomutase 2 deficiency is the most common form of N-glycosylation disorders and is also known as phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG). It is an autosomal recessive disease with multi-system involvements and is caused by mutations in the PMM2 gene (OMIM: 601785), with varying severities in individuals. At present, there is still no specific therapy for PMM2-CDG, and early identification, early diagnosis, and early treatment can effectively prolong the life span of pediatric patients. This article reviews the advances in the diagnosis and treatment of PMM2-CDG.
Collapse
Affiliation(s)
- Shu-Yan Zhou
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
7
|
Albokhari D, Ng BG, Guberinic A, Daniel EJP, Engelhardt NM, Barone R, Fiumara A, Garavelli L, Trimarchi G, Wolfe L, Raymond KM, Morava E, He M, Freeze HH, Lam C, Edmondson AC. ALG8-CDG: Molecular and phenotypic expansion suggests clinical management guidelines. J Inherit Metab Dis 2022; 45:969-980. [PMID: 35716054 PMCID: PMC9474684 DOI: 10.1002/jimd.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022]
Abstract
Congenital disorders of glycosylation are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid glycan biosynthesis. These disorders mostly manifest with multisystem involvement. Individuals with ALG8-CDG commonly present with hypotonia, protein-losing enteropathy, and hepatic involvement. Here, we describe seven unreported individuals diagnosed with ALG8-CDG based on biochemical and molecular testing and we identify nine novel variants in ALG8, bringing the total to 26 individuals with ALG8-CDG in the medical literature. In addition to the typical multisystem involvement documented in ALG8-CDG, our cohort includes the two oldest patients reported and further expands the phenotype of ALG8-CDG to include stable intellectual disability, autism spectrum disorder and other neuropsychiatric symptoms. We further expand the clinical features in a variety of organ systems including ocular, musculoskeletal, dermatologic, endocrine, and cardiac abnormalities and suggest a comprehensive evaluation and monitoring strategy to improve clinical management.
Collapse
Affiliation(s)
- Daniah Albokhari
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Taibah University College of Medicine, Medina, Saudi Arabia
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Alis Guberinic
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole M Engelhardt
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rita Barone
- Department of Clinical and Experimental Medicine, Division of Child Neurology and Psychiatry, University of Catania, Catania, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University of Catania, Catania, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Department, Local Health Authority (AUSL) of Reggio Emilia Research Unit (IRCCS), Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Mother and Child Department, Local Health Authority (AUSL) of Reggio Emilia Research Unit (IRCCS), Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimiyo M Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, California, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Center of Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Section of Metabolism, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ligezka AN, Mohamed A, Pascoal C, Ferreira VDR, Boyer S, Lam C, Edmondson A, Krzysciak W, Golebiowski R, Perez-Ortiz J, Morava E. Patient-reported outcomes and quality of life in PMM2-CDG. Mol Genet Metab 2022; 136:145-151. [PMID: 35491370 DOI: 10.1016/j.ymgme.2022.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Patient-reported outcomes (PROs) measure important aspects of disease burden, however they have received limited attention in the care of patients with Congenital Disorders of Glycosylation (CDG). We evaluated the PROs and correlation between clinical disease severity scoring and reported quality of life (QoL) in a PMM2-CDG patient cohort. Twenty-five patients with diagnosis of PMM2-CDG were enrolled as part of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study. Patient- Reported Outcomes Measurement Information System (PROMIS) was completed by caregivers to assess health-related QoL. Clinical disease severity was scored by medical providers using the Nijmegen Progression CDG Rating Scale (NPCRS). The domains such as physical activity, strength impact, upper extremity, physical mobility, and a satisfaction in social roles (peer relationships) were found to be the most affected in the PMM2-CDG population compared to US general population. We found a strong correlation between NPCRS 1 (current functional ability) and three out of ten PROMIS subscales. NPCRS 2 (laboratory and organ function) and NPCRS 3 (neurological involvement) did not correlate with PROMIS. Mental health domains, such as anxiety, were positively correlated with depressive symptoms (r = 0.76, p = 0.004), fatigue (r = 0.67, p = 0.04). Surprisingly, patients with severely affected physical mobility showed low anxiety scores according to PROMIS (inverse correlation, r = -0.74, p = 0.005). Additionally, there was a positive correlation between upper extremity and physical mobility (r = 0.75, p = 002). Here, we found that PROMIS is an informative additional tool to measure CDG disease burden, which could be used as clinical trial outcome measures. The addition of PROMIS to clinical follow-up could help improve the quality of care for PMM2-CDG by facilitating a holistic approach for clinical decision-making. SYNOPSIS: We recommend PROMIS as an informative tool to measure disease burden in PMM2-CDG in addition to traditional CDG disease severity scores.
Collapse
Affiliation(s)
- Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anab Mohamed
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Carlota Pascoal
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, NOVA University of Lisbon, Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, 2819-516 Caparica, Portugal; Portuguese Association for CDG, Lisboa, CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Portugal
| | - Vanessa Dos Reis Ferreira
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, NOVA University of Lisbon, Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, 2819-516 Caparica, Portugal; Portuguese Association for CDG, Lisboa, CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Portugal
| | - Suzanne Boyer
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew Edmondson
- Section of Biochemical Genetics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wirginia Krzysciak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Raphael Golebiowski
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Judit Perez-Ortiz
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Metabolic disease center, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Barua S, Berger S, Pereira EM, Jobanputra V. Expanding the phenotype of ATP6AP1 deficiency. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006195. [PMID: 35732497 PMCID: PMC9235842 DOI: 10.1101/mcs.a006195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) are large multisubunit proton pumps conserved among all eukaryotic cells that are involved in diverse functions including acidification of membrane-bound intracellular compartments. The ATP6AP1 gene encodes an accessory subunit of the vacuolar (V)-ATPase protein pump. Pathogenic variants in ATP6AP1 have been described in association with a congenital disorder of glycosylation (CDG), which are highly variable, but often characterized by immunodeficiency, hepatopathy, and neurologic manifestations. Although the most striking and common clinical feature is hepatopathy, the phenotypic and genotypic spectrum of ATP6AP1-CDG continues to expand. Here, we report identical twins who presented with acute liver failure and jaundice. Prenatal features included cystic hygroma, atrial septal defect, and ventriculomegaly. Postnatal features included pectus carinatum, connective tissue abnormalities, and hypospadias. Whole-exome sequencing (WES) revealed a novel de novo in-frame deletion in the ATP6AP1 gene (c.230_232delACT;p.Tyr77del). Although both twins have the commonly reported clinical feature of hepatopathy seen in other individuals with ATP6AP1-CDG-related disorder, they do not have neurological sequelae. This report expands the phenotypic spectrum of ATP6AP1-CDG-related disorder with both probands exhibiting unique prenatal and postnatal features, including fetal ventriculomegaly, umbilical hernia, pectus carinatum, micropenis, and hypospadias. Furthermore, this case affirms that neurological features described in the initial case series on ATP6AP1-CDG do not appear to be central, whereas the prenatal and connective tissue manifestations may be more common than previously thought. This emphasizes the importance of long-term clinical follow-up and variant interpretation using current updated recommendations.
Collapse
Affiliation(s)
- Subit Barua
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Sara Berger
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York 10032, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
10
|
Boyer SW, Johnsen C, Morava E. Nutrition interventions in congenital disorders of glycosylation. Trends Mol Med 2022; 28:463-481. [PMID: 35562242 DOI: 10.1016/j.molmed.2022.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a group of more than 160 inborn errors of metabolism affecting multiple pathways of protein and lipid glycosylation. Patients present with a wide range of symptoms and therapies are only available for very few subtypes. Specific nutritional treatment options for certain CDG types include oral supplementation of monosaccharide sugars, manganese, uridine, or pyridoxine. Additional management includes specific diets (i.e., complex carbohydrate or ketogenic diet), iron supplementation, and albumin infusions. We review the dietary management in CDG with a focus on two subgroups: N-linked glycosylation defects and GPI-anchor disorders.
Collapse
Affiliation(s)
- Suzanne W Boyer
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Liver Involvement in Congenital Disorders of Glycosylation: A Systematic Review. J Pediatr Gastroenterol Nutr 2021; 73:444-454. [PMID: 34173795 PMCID: PMC9255677 DOI: 10.1097/mpg.0000000000003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
An ever-increasing number of disturbances in glycosylation have been described to underlie certain unexplained liver diseases presenting either almost isolated or in a multi-organ context. We aimed to update previous literature screenings which had identified up to 23 forms of congenital disorders of glycosylation (CDG) with associated liver disease. We conducted a comprehensive literature search of three scientific electronic databases looking at articles published during the last 20 years (January 2000-October 2020). Eligible studies were case reports/series reporting liver involvement in CDG patients. Our systematic review led us to point out 41 forms of CDG where the liver is primarily affected (n = 7) or variably involved in a multisystem disease with mandatory neurological abnormalities (n = 34). Herein we summarize individual clinical and laboratory presentation characteristics of these 41 CDG and outline their main presentation and diagnostic cornerstones with the aid of two synoptic tables. Dietary supplementation strategies have hitherto been investigated only in seven of these CDG types with liver disease, with a wide range of results. In conclusion, the systematic review recognized a liver involvement in a somewhat larger number of CDG variants corresponding to about 30% of the total of CDG so far reported, and it is likely that the number may increase further. This information could assist in an earlier correct diagnosis and a possibly proper management of these disorders.
Collapse
|
12
|
Johnsen C, Edmondson AC. Manifestations and Management of Hepatic Dysfunction in Congenital Disorders of Glycosylation. Clin Liver Dis (Hoboken) 2021; 18:54-66. [PMID: 34584669 PMCID: PMC8450475 DOI: 10.1002/cld.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
| | - Andrew C. Edmondson
- Division of Human GeneticsDepartment of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| |
Collapse
|
13
|
The second DDOST-CDG patient with lactose intolerance, developmental delay, and situs inversus totalis. J Hum Genet 2021; 67:103-106. [PMID: 34462534 DOI: 10.1038/s10038-021-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022]
Abstract
Congenital disorders of glycosylation (CDGs) are inherited metabolic diseases affecting protein and lipid glycosylation. DDOST-CDG is a rare, newly identified type of CDGs, with only one case reported so far. In this study, we report a Chinese patient with a homozygous pathogenic variant in DDOST (c.1187G>A) and who presented with feeding difficulty, lactose intolerance, facial dysmorphism, failure to thrive, strabismus, high myopia, astigmatism, hypotonia, developmental delay and situs inversus totalis. Serum transferrin isoelectrofocusing demonstrated defective glycosylation in our patient. This finding further identifies DDOST as a genetic cause of CDGs and expands the clinical phenotype of DDOST-CDG.
Collapse
|
14
|
Lipiński P, Bogdańska A, Socha P, Tylki-Szymańska A. Liver Involvement in Congenital Disorders of Glycosylation and Deglycosylation. Front Pediatr 2021; 9:696918. [PMID: 34291020 PMCID: PMC8286991 DOI: 10.3389/fped.2021.696918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Congenital disorders of glycosylation (CDG) and NGLY1-CDDG (NGLY1-congenital disorder of deglycosylation) usually represent multisystem (especially neurovisceral) diseases with liver involvement reported in some of them. The aim of the study was to characterize the liver phenotype in CDG and NGLY1-CDDG patients hospitalized in our Institute, and to find the most specific features of liver disease among them. Material and Methods: The study involved 39 patients (from 35 families) with CDG, and two patients (from two families) with NGLY1-CDDG, confirmed molecularly, for whom detailed characteristics of liver involvement were available. They were enrolled based on the retrospective analysis of their medical records. Results: At the time of the first consultation, 13/32 patients were diagnosed with hepatomegaly; none of them with splenomegaly. As many as 23/32 persons had elevated serum transaminases, including 16 (70%) who had mildly elevated levels. During the long-term follow-up (available for 19 patients), serum transaminases normalized in 15/19 (79%) of them, including a spontaneous normalization in 12/15 (80%) of them. The GGT activity was observed to be normal in all study cases. Protein C, protein S and antithrombin activities in plasma were observed in 16 patients, and they were decreased in all of them. Conclusions: It is necessary to conduct a long-term follow-up of liver disease in CDG to obtain comprehensive data.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Bogdańska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Difficulties and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
15
|
Lipiński P, Tylki-Szymańska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021; 9:715151. [PMID: 34540767 PMCID: PMC8446601 DOI: 10.3389/fped.2021.715151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous disorders characterized by defects in the synthesis of glycans and their attachment to proteins and lipids. This manuscript aims to provide a classification of the clinical presentation, diagnostic methods, and treatment of CDG based on the literature review and our own experience (referral center in Poland). A diagnostic algorithm for CDG was also proposed. Isoelectric focusing (IEF) of serum transferrin (Tf) is still the method of choice for diagnosing N-glycosylation disorders associated with sialic acid deficiency. Nowadays, high-performance liquid chromatography, capillary zone electrophoresis, and mass spectrometry techniques are used, although they are not routinely available. Since next-generation sequencing became more widely available, an improvement in diagnostics has been observed, with more patients and novel CDG subtypes being reported. Early and accurate diagnosis of CDG is crucial for timely implementation of appropriate therapies and improving clinical outcomes. However, causative treatment is available only for few CDG types.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|