1
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 PMCID: PMC11670223 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Makiko Yasuda
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Edward H. Schuchman
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
2
|
Darie-Ion L, Petre BA. An update on multiplexed mass spectrometry-based lysosomal storage disease diagnosis. MASS SPECTROMETRY REVIEWS 2024; 43:1135-1149. [PMID: 37584312 DOI: 10.1002/mas.21864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Lysosomal storage disorders (LSDs) are a type of inherited metabolic disorders in which biomolecules, accumulate as a specific substrate in lysosomes due to specific individual enzyme deficiencies. Despite the fact that LSDs are incurable, various approaches, including enzyme replacement therapy, hematopoietic stem cell transplantation, or gene therapy are now available. Therefore, a timely diagnosis is a critical initial step in patient treatment. The-state-of-the-art in LSD diagnostic uses, in the first stage, enzymatic activity determination by fluorimetry or by mass spectrometry (MS) with the aid of dry blood spots, based on different enzymatic substrate structures. Due to its sensitivity, high precision, and ability to screen for an unprecedented number of diseases in a single assay, multiplexed tandem MS-based enzyme activity assays for the screening of LSDs in newborns have recently received a lot of attention. Here, (i) we review the current approaches used for simultaneous enzymatic activity determination of LSDs in dried blood spots using multiplex-LC-MS/MS; (ii) we explore the need for designing novel enzymatic substrates that generate different enzymatic products with distinct molecular masses in multiplexed-MS studies; and (iii) we give examples of the relevance of affinity-MS technique as a basis for reversing undesirable immune-reactivity in enzyme replacement therapy.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Group of Biochemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iaşi, Romania
| | - Brînduşa Alina Petre
- Group of Biochemistry, Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iaşi, Romania
- Laboratory of Proteomics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, Iaşi, Romania
| |
Collapse
|
3
|
Kumar M, Aguiar M, Jessel A, Thurberg BL, Underhill L, Wong H, George K, Davidson V, Schuchman EH. The impact of sphingomyelin on the pathophysiology and treatment response to olipudase alfa in acid sphingomyelinase deficiency. GENETICS IN MEDICINE OPEN 2024; 2:101888. [PMID: 39669638 PMCID: PMC11613795 DOI: 10.1016/j.gimo.2024.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 12/14/2024]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare progressive genetic disorder caused by pathogenic variants in the SMPD1 gene causing low or absent activity of the enzyme acid sphingomyelinase, resulting in subsequent accumulation of its substrate, sphingomyelin. Signs and symptoms of excessive lysosomal sphingomyelin storage, such as hepatosplenomegaly and pulmonary impairment, and in a subset of patients, progressive neurological manifestations, have long been recognized as hallmarks of the disease. Uncontrolled accumulation of sphingomyelin has important and complex downstream metabolic and immunologic consequences that contribute to the disease burden. This review article expounds on the complex and multifaceted role of sphingomyelin in the pathophysiology of ASMD and discusses the animal studies and human interventional trials demonstrating that sphingomyelin and its related metabolites are linked to ASMD clinical manifestations, disease burden, and response to treatment. The relationship between the diverse manifestations of ASMD and sphingomyelin accumulation and the connections between sphingomyelin clearance and reversal of the noncentral nervous system manifestations by olipudase alfa therapy also are described.
Collapse
|
4
|
Müller AR, den Hollander B, van de Ven PM, Roes KCB, Geertjens L, Bruining H, van Karnebeek CDM, Jansen FE, de Wit MCY, Ten Hoopen LW, Rietman AB, Dierckx B, Wijburg FA, Boot E, Brands MMG, van Eeghen AM. Cannabidiol (Epidyolex®) for severe behavioral manifestations in patients with tuberous sclerosis complex, mucopolysaccharidosis type III and fragile X syndrome: protocol for a series of randomized, placebo-controlled N-of-1 trials. BMC Psychiatry 2024; 24:23. [PMID: 38177999 PMCID: PMC10768432 DOI: 10.1186/s12888-023-05422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Many rare genetic neurodevelopmental disorders (RGNDs) are characterized by intellectual disability (ID), severe cognitive and behavioral impairments, potentially diagnosed as a comorbid autism spectrum disorder or attention-deficit hyperactivity disorder. Quality of life is often impaired due to irritability, aggression and self-injurious behavior, generally refractory to standard therapies. There are indications from previous (case) studies and patient reporting that cannabidiol (CBD) may be an effective treatment for severe behavioral manifestations in RGNDs. However, clear evidence is lacking and interventional research is challenging due to the rarity as well as the heterogeneity within and between disease groups and interindividual differences in treatment response. Our objective is to examine the effectiveness of CBD on severe behavioral manifestations in three RGNDs, including Tuberous Sclerosis Complex (TSC), mucopolysaccharidosis type III (MPS III), and Fragile X syndrome (FXS), using an innovative trial design. METHODS We aim to conduct placebo-controlled, double-blind, block-randomized, multiple crossover N-of-1 studies with oral CBD (twice daily) in 30 patients (aged ≥ 6 years) with confirmed TSC, MPS III or FXS and severe behavioral manifestations. The treatment is oral CBD up to a maximum of 25 mg/kg/day, twice daily. The primary outcome measure is the subscale irritability of the Aberrant Behavior Checklist. Secondary outcome measures include (personalized) patient-reported outcome measures with regard to behavioral and psychiatric outcomes, disease-specific outcome measures, parental stress, seizure frequency, and adverse effects of CBD. Questionnaires will be completed and study medication will be taken at the participants' natural setting. Individual treatment effects will be determined based on summary statistics. A mixed model analysis will be applied for analyzing the effectiveness of the intervention per disorder and across disorders combining data from the individual N-of-1 trials. DISCUSSION These N-of-1 trials address an unmet medical need and will provide information on the effectiveness of CBD for severe behavioral manifestations in RGNDs, potentially generating generalizable knowledge at an individual-, disorder- and RGND population level. TRIAL REGISTRATION EudraCT: 2021-003250-23, registered 25 August 2022, https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-003250-23/NL .
Collapse
Affiliation(s)
- A R Müller
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - B den Hollander
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - P M van de Ven
- Department of Data Science and Biostatistics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K C B Roes
- Department of Health Evidence, Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Geertjens
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
| | - H Bruining
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - C D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - F E Jansen
- Department of Pediatric Neurology, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L W Ten Hoopen
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A B Rietman
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B Dierckx
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F A Wijburg
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - E Boot
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- The Dalglish Family 22Q Clinic, Toronto, ON, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M M G Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - A M van Eeghen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- 's Heeren Loo Care Group, Amersfoort, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
6
|
Villalba Silva GC, Steindorff T, Silvestri Schuh R, Cardoso Flores N, Matte U. Drug Repositioning Applied to Cardiovascular Disease in Mucopolysaccharidosis. Life (Basel) 2022; 12:2085. [PMID: 36556450 PMCID: PMC9784427 DOI: 10.3390/life12122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are genetic metabolic diseases characterized by defects in the activity of lysosomal hydrolases. In MPS, secondary cell disturbance affects pathways related to cardiovascular disorders. Hence, the study aimed to identify MPS-related drugs targeting cardiovascular disease and select a list of drugs for repositioning. We obtained a list of differentially expressed genes and pathways. To identify drug perturbation-driven gene expression and drug pathways interactions, we used the CMAP and LINCS databases. For molecular docking, we used the DockThor web server. Our results suggest that pirfenidone and colchicine are promising drugs to treat cardiovascular disease in MPS patients. We also provide a brief description of good practices for the repositioning analysis. Furthermore, the list of drugs and related MPS-enriched genes could be helpful to new treatments and considered for pathophysiological studies.
Collapse
Affiliation(s)
| | - Thiago Steindorff
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Roselena Silvestri Schuh
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, Porto Alegre 2752, RS, Brazil
| | - Natalia Cardoso Flores
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Biomedical Sciences School, Institute of Health Sciences, UFRGS, Ramiro Barcelos, Porto Alegre 2600, RS, Brazil
| | - Ursula Matte
- Bioinformatics Core, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Ramiro Barcelos, Porto Alegre 2350, RS, Brazil
- Genetics and Molecular Biology Graduate Program, UFRGS, Av. Bento Gonçalves, Porto Alegre 9500, RS, Brazil
| |
Collapse
|
7
|
Puhl AC, Ekins S. Advancing the Research and Development of Enzyme Replacement Therapies for Lysosomal Storage Diseases. GEN BIOTECHNOLOGY 2022; 1:156-162. [PMID: 35706761 PMCID: PMC9192161 DOI: 10.1089/genbio.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the increasing interest in developing gene therapies for rare diseases, it is easy to overlook that there are numerous rare lysosomal storage diseases (LSD) with treatments that have been approved by regulatory agencies in the United States and Europe. These primarily consist of enzyme replacement therapies (ERT), which are recombinant human proteins that are delivered for the life of the patient via different routes and may have distinct safety and distribution advantages over gene therapies. The research and development of ERT is a lengthy and expensive process, which is usually performed in academic laboratories before transfer to pharmaceutical companies and is hence a process ripe for disruption. There may still be considerable scientific and investment potential for ERT, however we need to develop a pipeline of proteins analogous to what has been created in some open science efforts as well as apply technologies to decrease manufacturing costs. In this Perspective, we illustrate the opportunity to fill the rare LSD treatment gap with ERTs while gene therapies are in development for these life-shortening diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, USA
- Address correspondence to: Ana C. Puhl, Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, USA.
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, USA
- Address correspondence to: Sean Ekins, Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, USA.
| |
Collapse
|
8
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|