1
|
Yao Y, Liu H, Gu Y, Xu X, Zhang X. A causal association between amyotrophic lateral sclerosis and atrial fibrillation: a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1351495. [PMID: 38665232 PMCID: PMC11043605 DOI: 10.3389/fcvm.2024.1351495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Objectives To look into the connection between amyotrophic lateral sclerosis (ALS) and atrial fibrillation (AF) using Mendelian randomization (MR). Methods Two-sample MR was performed using genetic information from genome-wide association studies (GWAS). Genetic variants robustly associated with ALS and AF were used as instrumental variables. GWAS genetic data for ALS (n = 138,086, ncase = 27,205) and AF (n = 1,030,836, ncase = 60,620), publicly available from IEU Open. The specific MR protocols were Inverse variance-weighted (IVW), Simple mode, MR Egger, Weighted mode, and Weight median estimator (WME). Subsequently, the MR-Egger intercept and Cochran Q examine were used to evaluate instrumental variables (IVs)' heterogeneity and multiplicative effects (IVs). In addition, MR-PRESSO analysis was conducted to exclude any potential pleiotropy. Results The IVW method demonstrated that ALS positively affected AF [OR: 1.062, 95% CI (1.004-1.122); P = 0.035]. Indeed, other MR methods were in accordance with the tendency of the IVW method (all OR > 1), and sensitivity testing verified the reliability of this MR result. Conclusions This MR study proves a positive causal connection between ALS and atrial fibrillation. Further studies are warranted to elucidate the mechanisms linking ALS and AF.
Collapse
Affiliation(s)
| | | | | | - Xiaojin Xu
- Department of Cardiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Xiwen Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
2
|
Liu D, Aziz NA, Imtiaz MA, Pehlivan G, Breteler MMB. Associations of measured and genetically predicted leukocyte telomere length with vascular phenotypes: a population-based study. GeroScience 2024; 46:1947-1970. [PMID: 37782440 PMCID: PMC10828293 DOI: 10.1007/s11357-023-00914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Shorter leukocyte telomere length (LTL) is associated with cardiovascular dysfunction. Whether this association differs between measured and genetically predicted LTL is still unclear. Moreover, the molecular processes underlying the association remain largely unknown. We used baseline data of the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany [56.2% women, age: 55.5 ± 14.0 years (range 30 - 95 years)]. We calculated genetically predicted LTL in 4180 participants and measured LTL in a subset of 1828 participants with qPCR. Using multivariable regression, we examined the association of measured and genetically predicted LTL, and the difference between measured and genetically predicted LTL (ΔLTL), with four vascular functional domains and the overall vascular health. Moreover, we performed epigenome-wide association studies of three LTL measures. Longer measured LTL was associated with better microvascular and cardiac function. Longer predicted LTL was associated with better cardiac function. Larger ΔLTL was associated with better microvascular and cardiac function and overall vascular health, independent of genetically predicted LTL. Several CpGs were associated (p < 1e-05) with measured LTL (n = 5), genetically predicted LTL (n = 8), and ΔLTL (n = 27). Genes whose methylation status was associated with ΔLTL were enriched in vascular endothelial signaling pathways and have been linked to environmental exposures, cardiovascular diseases, and mortality. Our findings suggest that non-genetic causes of LTL contribute to microvascular and cardiac function and overall vascular health, through an effect on the vascular endothelial signaling pathway. Interventions that counteract LTL may thus improve vascular function.
Collapse
Affiliation(s)
- Dan Liu
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - N Ahmad Aziz
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mohammed Aslam Imtiaz
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - Gökhan Pehlivan
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany
| | - Monique M B Breteler
- German Center for Neurodegenerative Diseases (DZNE), Population Health Sciences, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Yu W, Mei Y, Lu Z, Zhou L, Jia F, Chen S, Wang Z. The causal relationship between genetically determined telomere length and meningiomas risk. Front Neurol 2023; 14:1178404. [PMID: 37693759 PMCID: PMC10484632 DOI: 10.3389/fneur.2023.1178404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies have shown that longer leukocyte telomere length (LTL) is significantly associated with increased risk of meningioma. However, there is limited evidence concerning the causal association of LTL with benign and malignant meningiomas or with the location of benign tumors. Methods We used three LTL datasets from different sources, designated by name and sample size as LTL-78592, LTL-9190, and LTL-472174. The linkage disequilibrium score (LDSC) was used to explore the association between LTL and meningioma. We utilized two-sample bidirectional Mendelian randomization (TSMR) to evaluate whether LTL is causally related to meningioma risk. We adjusted for confounders by conducting multivariable Mendelian randomization (MVMR). Results In the LTL-78592, longer LTL was significantly associated with increased risk of malignant [odds ratio (OR) = 5.14, p = 1.04 × 10-5], benign (OR = 4.81, p < 0.05), benign cerebral (OR = 5.36, p < 0.05), and benign unspecified meningioma (OR = 8.26, p < 0.05). The same results were obtained for the LTL-9190. In the LTL-472174, longer LTL was significantly associated with increased risk of malignant (OR = 4.94, p < 0.05), benign (OR = 3.14, p < 0.05), and benign cerebral meningioma (OR = 3.59, p < 0.05). Similar results were obtained in the MVMR. In contrast, only benign cerebral meningioma displayed a possible association with longer LTL (OR = 1.01, p < 0.05). No heterogeneity or horizontal pleiotropy was detected. Conclusion In brief, genetically predicted longer LTL may increase the risk of benign, malignant, and benign cerebral meningiomas, regardless of the LTL measure, in European populations.
Collapse
Affiliation(s)
- Weijie Yu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Yunyun Mei
- Department of Neurosurgery, Fudan University Shanghai Cancer Center (Xiamen Hospital), Xiamen, China
| | - Zhenwei Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Fang Jia
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Sifang Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Zhanxiang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| |
Collapse
|
4
|
Lu L, Zeng H, Wan B, Sun M. Leukocyte telomere length and bipolar disorder risk: evidence from Mendelian randomization analysis. PeerJ 2023; 11:e15129. [PMID: 37020849 PMCID: PMC10069421 DOI: 10.7717/peerj.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/04/2023] [Indexed: 04/03/2023] Open
Abstract
Objective
We aim to test whether leukocyte telomere length (LTL) is causally associated with the risk of bipolar disorder (BD) using the Mendelian randomization (MR) method.
Methods
Results of a genome-wide association study (GWAS) conducted with 472,174 individuals of European descent were used to screen for single-nucleotide polymorphisms (SNPs) related with LTL traits. Summary-level data for BD (7,647 cases and 27,303 controls) were obtained from UK Biobank. An inverse-variance-weighted (IVW) method was employed as the primary MR analysis. Sensitivity analyses were conducted via MR-Egger, maximum likelihood, MR-pleiotropy residual sum outlier (MR-PRESSO), and MR-robust adjusted profile score (MR-RAPS) methods. Finally, the MR Steiger test was utilized to validate the hypothesized relationship between exposure and outcome.
Results
Two-sample MR analysis revealed inverse relationships between genetically predicted LTL and BD risk (IVW OR [odds ratio] = 0.800, 95% CI [0.647–0.989] P = 0.039). Genetically predicted LTL exhibits a consistent connection with BD across five MR methods. Sensitivity analyses showed that the genetically determined effect of LTL on BD was stable and reliable. Furthermore, the MR Steiger test demonstrated that LTL was causal for BD rather than the opposite (P < 0.001).
Conclusion
Our findings show that genetically determined LTL reduces the risk of BD. More research is required to clarify the mechanisms underlying this apparent causal connection. In addition, these findings may be useful for developing strategies for the prevention and treatment of BD.
Collapse
Affiliation(s)
- Likui Lu
- The First Affiliated Hospital of Soochow University, Institute for Fetology, Suzhou, Jiangsu, China
| | - Hongtao Zeng
- The First Affiliated Hospital of Soochow University, Institute for Fetology, Suzhou, Jiangsu, China
| | - Bangbei Wan
- Hainan Women and Children’s Medical Center, Reproductive Medical Center, Haikou, Hainan, China
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Department of Urology, Haikou, Hainan, China
| | - Miao Sun
- The First Affiliated Hospital of Soochow University, Institute for Fetology, Suzhou, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Is Telomere Length Shortening a Risk Factor for Neurodegenerative Disorders? Dement Neurocogn Disord 2022; 21:83-92. [PMID: 35949423 PMCID: PMC9340245 DOI: 10.12779/dnd.2022.21.3.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
Telomeres are located at the end of chromosomes. They are known to protect chromosomes and prevent cellular senescence. Telomere length shortening has been considered an important marker of aging. Many studies have reported this concept in connection with neurodegenerative disorders. Considering the role of telomeres, it seems that longer telomeres are beneficial while shorter telomeres are detrimental in preventing neurodegenerative disorders. However, several studies have shown that people with longer telomeres might also be vulnerable to neurodegenerative disorders. Before these conflicting results can be explained through large-scale longitudinal clinical studies on the role of telomere length in neurodegenerative disorders, it would be beneficial to simultaneously review these opposing results. Understanding these conflicting results might help us plan future studies to reveal the role of telomere length in neurodegenerative disorders. In this review, these contradictory findings are thoroughly discussed, with the aim to better understand the role of telomere length in neurodegenerative disorders.
Collapse
|
6
|
Li Y, Yang S, Liao M, Zheng Z, Li M, Wei X, Liu M, Yang L. Association between genetically predicted leukocyte telomere length and non-scarring alopecia: A two-sample Mendelian randomization study. Front Immunol 2022; 13:1072573. [PMID: 36798520 PMCID: PMC9926966 DOI: 10.3389/fimmu.2022.1072573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Background The most commonly acknowledged non-scarring alopecia are androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have revealed various risk factors associated with alopecia. However, the relationship between leukocyte telomere length (LTL) and non-scarring alopecia remains unclear. Methods A two-sample Mendelian randomization (MR) analysis was performed to evaluate the causality between genetically predicted LTL and the risk of non-scarring alopecia. MR analyses were performed using the inverse variance-weighted (IVW) method and complemented with other MR methods. Results The summary statistics of the genome-wide association studies (GWAS) for AGA and AA were obtained from the FinnGen biobank, which included 119,185 and 211,428 individuals, respectively. A total of 126 single nucleotide polymorphisms (SNPs) with genome-wide significance were selected as the instrumental variables for LTL. The MR analyses suggested a causal relationship between LTL and AGA, and the risk of AGA increased by 3.19 times as the genetically predicted LTL was shortened by one standard deviation in log transformed form under the IVW method (OR = 4.19, 95% CI = 1.20-14.61, p = 0.024). The other MR methods also demonstrated a similar trend of the effect of LTL on AGA. There was no causal relationship between LTL and AA (p > 0.05). Sensitivity analyses further demonstrated that the current results were less likely to be affected by confounders and bias. Conclusion Our results suggested a potential causal relationship between LTL and AGA, and shortened LTL was associated with an increased risk of AGA.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Minjun Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Guzonjić A, Sopić M, Ostanek B, Kotur-Stevuljević J. Telomere length as a biomarker of aging and diseases. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
As research related to healthspan and lifespan has become a hot topic, the necessity for a reliable and practical biomarker of aging (BoA), which can provide information about mortality and morbidity risk, along with remaining life expectancy, has increased. The chromosome terminus non-coding protective structure that prevents genomic instability is called a telomere. The continual shortening of telomeres, which affects their structure as well as function, is a hallmark of agedness. The aforementioned process is a potential cause of age-related diseases (ARDs), leading to a bad prognosis and a low survival rate, which compromise health and longevity. Hence, studies scrutinizing the BoAs often include telomere length (TL) as a prospective candidate. The results of these studies suggest that TL measurement can only provide an approximate appraisal of the aging rate, and its implementation into clinical practice and routine use as a BoA has many limitations and challenges. Nevertheless, measuring TL while determining other biomarkers can be used to assess biological age. This review focuses on the importance of telomeres in health, senescence, and diseases, as well as on summarizing the results and conclusions of previous studies evaluating TL as a potential BoA.
Collapse
|