1
|
Rustamov J, Rustamov Z, Mohamad MS, Zaki N, Al Tenaiji A, Al Harbi M, Al Jasmi F. An expert rule-based approach for identifying infantile-onset Pompe disease patients using retrospective electronic health records. Sci Rep 2024; 14:21523. [PMID: 39277702 PMCID: PMC11401873 DOI: 10.1038/s41598-024-72259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Pompe disease (OMIM #232300), a rare genetic disorder, leads to glycogen buildup in the body due to an enzyme deficiency, particularly harming the heart and muscles. Infantile-onset Pompe disease (IOPD) requires urgent treatment to prevent mortality, but the unavailability of these methods often delays diagnosis. Our study aims to streamline IOPD diagnosis in the UAE using electronic health records (EHRs) for faster, more accurate detection and timely treatment initiation. This study utilized electronic health records from the Abu Dhabi Healthcare Company (SEHA) healthcare network in the UAE to develop an expert rule-based screening approach operationalized through a dashboard. The study encompassed six diagnosed IOPD patients and screened 93,365 subjects. Expert rules were formulated to identify potential high-risk IOPD patients based on their age, particular symptoms, and creatine kinase levels. The proposed approach was evaluated using accuracy, sensitivity, and specificity. The proposed approach accurately identified five true positives, one false negative, and four false positive IOPD cases. The false negative case involved a patient with both Pompe disease and congenital heart disease. The focus on CHD led to the overlooking of Pompe disease, exacerbated by no measurement of creatine kinase. The false positive cases were diagnosed with Mitochondrial DNA depletion syndrome 12-A (SLC25A4 gene), Immunodeficiency-71 (ARPC1B mutation), Niemann-Pick disease type C (NPC1 gene mutation leading to frameshift), and Group B Streptococcus meningitis. The proposed approach of integrating expert rules with a dashboard facilitated efficient data visualization and automated patient screening, which aids in the early detection of Pompe disease. Future studies are encouraged to investigate the application of machine learning methodologies to enhance further the precision and efficiency of identifying patients with IOPD.
Collapse
Affiliation(s)
- Jaloliddin Rustamov
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Zahiriddin Rustamov
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohd Saberi Mohamad
- Health Data Science Lab, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Center for Engineering Computational Intelligence, Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
| | - Nazar Zaki
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Al Tenaiji
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Mariam Al Harbi
- Research Department, SEHA-Corporate Medical and Clinical Affairs, Abu Dhabi, United Arab Emirates
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Yabe H, Koike T, Yamamoto S, Otsuka K, Nakajima J, Shibata M, Fujita S, Kaneko R, Akiyama K, Toyama D, Kato S, Morimoto T, Uchiyama A, Yabe M. Allogeneic stem cell transplantation for inherited metabolic disorders: 35 years' experience at a single institution. Int J Hematol 2024; 120:365-374. [PMID: 38951435 DOI: 10.1007/s12185-024-03810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Hematopoietic stem cell transplants for inherited metabolic disorders performed at Tokai University Hospital between June 5, 1986, and May 28, 2021, were analyzed and compared between the period before 2007 and the period from 2007 onward based on availability of medical resources. Transplants were performed for 38 patients with mucopolysaccharidosis, 33 with adrenoleukodystrophy, and 16 with another disorder. Before 2007, oral busulfan-based regimens were mainly used. From 2007 onward, intravenous busulfan-based regimens or 4 Gy of thoracoabdominal irradiation (TAI), fludarabine, and melphalan (Mel)/treosulfan were adopted. Between 2002 and 2010, adrenoleukodystrophy was treated with 12 Gy of TAI and Mel. HLA-identical sibling bone marrow was used in 43% of cases before 2007 and 15% from 2007 onward, while alternative donors were selected for other transplants. Overall survival and event-free survival (EFS) before 2007 and from 2007 onward were 76% and 62%, and 97% and 85%, respectively (P = 0.006 and 0.017). Transplant era predicted superior overall survival and EFS, while myeloablative conditioning also predicted EFS. The incidence of primary graft failure decreased from 2007 onward, especially in cord blood transplant when 4 Gy of TAI with 150 mg/m2 fludarabine and 180 mg/m2 Mel or 42 g/m2 treosulfan were used as conditioning.
Collapse
Affiliation(s)
- Hiromasa Yabe
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan.
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Shohei Yamamoto
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Kohei Otsuka
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Junko Nakajima
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Mayuko Shibata
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Sachio Fujita
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Ryota Kaneko
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Kosuke Akiyama
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Daisuke Toyama
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Shunichi Kato
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Tsuyoshi Morimoto
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Atsushi Uchiyama
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| | - Miharu Yabe
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259 1193, Japan
| |
Collapse
|
3
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
4
|
Mackels L, Servais L. The Importance of Early Treatment of Inherited Neuromuscular Conditions. J Neuromuscul Dis 2024; 11:253-274. [PMID: 38306060 DOI: 10.3233/jnd-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
There has been tremendous progress in treatment of neuromuscular diseases over the last 20 years, which has transformed the natural history of these severely debilitating conditions. Although the factors that determine the response to therapy are many and in some instance remain to be fully elucidated, early treatment clearly has a major impact on patient outcomes across a number of inherited neuromuscular conditions. To improve patient care and outcomes, clinicians should be aware of neuromuscular conditions that require prompt treatment initiation. This review describes data that underscore the importance of early treatment of children with inherited neuromuscular conditions with an emphasis on data resulting from newborn screening efforts.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Adult Neurology Department, Citadelle Hospital, Liège, Belgium
| | - Laurent Servais
- Neuromuscular Centre, Division of Paediatrics, University and University Hospital of Liège, Liège, Belgium
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
5
|
Tajmir-Riahi A, Khatami S, Shemirani F, Mirzazadeh R. Two fluorimetric determinations of acid α-glucosidase activity in dried blood spot: Pompe disease in Iranian population. Anal Biochem 2023; 682:115346. [PMID: 37821037 DOI: 10.1016/j.ab.2023.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Pompe disease is a lysosomal storage disorder. This study aimed to validate and compare 2 fluorimetric methods for measuring α-glucosidase acid activity in dried blood spot sample (DBS), with potential applications in neonatal screening, and disease follow-up of Pompe patients among the Iranian population for the first time. MATERIALS AND METHODS The evaluation involved 3 enzyme levels and 7 parameters. The analysis included 141 Healthy individuals, 8 Pompe patients, and 10 obligate heterozygotes using reference and modified methods. RESULTS Both methods exhibited highly linear calibration curves. The limit of detection (LOD) and limit of quantification (LOQ) were obtained in the micromolar concentration range in 2 methods. Inter-day and intra-day precision, expressed as relative standard deviations (RSD%) were calculated. The normal ranges were determined in healthy individuals. Receiver operating characteristic (ROC) curves were analyzed, and 2 parameters, total neutral α-glucosidase (NAG)/acid α-glucosidase (GAA) and pH ratio, were identified as cut-off values with excellent accuracy, sensitivity, and specificity for evaluating Pompe disease in both methods. CONCLUSIONS Establishing and implementing these 2 methods for the Iranian population effectively differentiated between healthy and patient individuals. Method II, with its shorter incubation time, demonstrated practicality in the clinical setting.
Collapse
Affiliation(s)
| | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
6
|
Goldstein JL, McGlaughon J, Kanavy D, Goomber S, Pan Y, Deml B, Donti T, Kearns L, Seifert BA, Schachter M, Son RG, Thaxton C, Udani R, Bali D, Baudet H, Caggana M, Hung C, Kyriakopoulou L, Rosenblum L, Steiner R, Pinto E Vairo F, Wang Y, Watson M, Fernandez R, Weaver M, Clarke L, Rehder C. Variant Classification for Pompe disease; ACMG/AMP specifications from the ClinGen Lysosomal Diseases Variant Curation Expert Panel. Mol Genet Metab 2023; 140:107715. [PMID: 37907381 PMCID: PMC10872922 DOI: 10.1016/j.ymgme.2023.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Jennifer L Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Dona Kanavy
- Duke University Health System, Durham, NC, USA
| | | | | | - Brett Deml
- Prevention Genetics, Marshfield, WI, USA
| | | | - Liz Kearns
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Bryce A Seifert
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Rachel G Son
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rupa Udani
- Wisconsin State Lab of Hygiene at University of Wisconsin, Madison, WI, USA
| | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Caggana
- Newborn Screening Program, Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | | | | | - Robert Steiner
- Prevention Genetics, Marshfield, WI, USA; Medical College of Wisconsin, Brookfield, WI, USA
| | | | | | - Michael Watson
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Raquel Fernandez
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
7
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
8
|
Lin S, Nateqi J, Weingartner-Ortner R, Gruarin S, Marling H, Pilgram V, Lagler FB, Aigner E, Martin AG. An artificial intelligence-based approach for identifying rare disease patients using retrospective electronic health records applied for Pompe disease. Front Neurol 2023; 14:1108222. [PMID: 37153672 PMCID: PMC10160659 DOI: 10.3389/fneur.2023.1108222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Objective We retrospectively screened 350,116 electronic health records (EHRs) to identify suspected patients for Pompe disease. Using these suspected patients, we then describe their phenotypical characteristics and estimate the prevalence in the respective population covered by the EHRs. Methods We applied Symptoma's Artificial Intelligence-based approach for identifying rare disease patients to retrospective anonymized EHRs provided by the "University Hospital Salzburg" clinic group. Within 1 month, the AI screened 350,116 EHRs reaching back 15 years from five hospitals, and 104 patients were flagged as probable for Pompe disease. Flagged patients were manually reviewed and assessed by generalist and specialist physicians for their likelihood for Pompe disease, from which the performance of the algorithms was evaluated. Results Of the 104 patients flagged by the algorithms, generalist physicians found five "diagnosed," 10 "suspected," and seven patients with "reduced suspicion." After feedback from Pompe disease specialist physicians, 19 patients remained clinically plausible for Pompe disease, resulting in a specificity of 18.27% for the AI. Estimating from the remaining plausible patients, the prevalence of Pompe disease for the greater Salzburg region [incl. Bavaria (Germany), Styria (Austria), and Upper Austria (Austria)] was one in every 18,427 people. Phenotypes for patient cohorts with an approximated onset of symptoms above or below 1 year of age were established, which correspond to infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), respectively. Conclusion Our study shows the feasibility of Symptoma's AI-based approach for identifying rare disease patients using retrospective EHRs. Via the algorithm's screening of an entire EHR population, a physician had only to manually review 5.47 patients on average to find one suspected candidate. This efficiency is crucial as Pompe disease, while rare, is a progressively debilitating but treatable neuromuscular disease. As such, we demonstrated both the efficiency of the approach and the potential of a scalable solution to the systematic identification of rare disease patients. Thus, similar implementation of this methodology should be encouraged to improve care for all rare disease patients.
Collapse
Affiliation(s)
- Simon Lin
- Science Department, Symptoma GmbH, Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Jama Nateqi
- Science Department, Symptoma GmbH, Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | - Vinzenz Pilgram
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Florian B. Lagler
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
- Department of Pediatrics and Institute for Inherited Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Alistair G. Martin
- Science Department, Symptoma GmbH, Vienna, Austria
- *Correspondence: Alistair G. Martin
| |
Collapse
|
9
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
10
|
Marques JS. The Clinical Management of Pompe Disease: A Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091404. [PMID: 36138713 PMCID: PMC9497581 DOI: 10.3390/children9091404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/09/2023]
Abstract
Pompe disease (PD) is an inherited metabolic disorder caused by a deficiency of acid α-glucosidase (GAA), leading to lysosomal accumulation of glycogen, mainly in skeletal and cardiac muscles as well as the nervous system. Patients with PD develop cellular dysfunction and muscle damage. PD can be classified into two classic forms, namely infantile-onset PD (IOPD) and late-onset PD (LOPD). Delayed treatment, particularly in IOPD, would result in significant organ damage and early death. Nonetheless, early diagnosis and timely treatment are often hampered by the rarity of PD and its wide variety of, but overlapping, symptoms. This article reviews the common clinical presentations of PD and outlines the essentials of PD management. In particular, the implications of newborn screening (NBS) and clinical performance of enzyme replacement therapy (ERT) are highlighted.
Collapse
Affiliation(s)
- Jorge Sales Marques
- Conde S. Januário Hospital, Macau 999078, China;
- Hospital Cuf Trindade, 4000-541 Porto, Portugal
| |
Collapse
|
11
|
Stevens D, Milani-Nejad S, Mozaffar T. Pompe Disease: a Clinical, Diagnostic, and Therapeutic Overview. Curr Treat Options Neurol 2022; 24:573-588. [PMID: 36969713 PMCID: PMC10035871 DOI: 10.1007/s11940-022-00736-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose of Review
This review summarizes the clinical presentation and provides an update on the current strategies for diagnosis of Pompe disease. We will review the available treatment options. We examine newly approved treatments as well as upcoming therapies in this condition. We also provide commentary on the unmet needs in clinical management and research for this disease.
Recent Findings
In March 2015, Pompe disease was added to the Recommended Uniform Screening Panel (RUSP) and since then a number of states have added Pompe disease to their slate of diseases for their Newborn Screening (NBS) program. Data emerging from these programs is revising our knowledge of incidence of Pompe disease. In 2021, two randomized controlled trials involving new forms of enzyme replacement therapy (ERT) were completed and one new product is already FDA-approved and on the market, whereas the other product will come up for FDA review in the fall. Neither of the new ERT were shown to be superior to the standard of care product, alglucosidase. The long-term effectiveness of these newer forms of ERT is unclear. Newer versions of the ERT are in development in addition to multiple different strategies of gene therapy to deliver GAA, the gene responsible for producing acid alpha-glucosidase, the defective protein in Pompe Disease. Glycogen substrate reduction is also in development in Pompe disease and other glycogen storage disorders.
Summary
There are significant unmet needs as it relates to clinical care and therapeutics in Pompe disease as well as in research. The currently available treatments lose effectiveness over the long run and do not have penetration into neuronal tissues and inconsistent penetration in certain muscles. More definitive gene therapy and enzyme replacement strategies are currently in development and testing.
Collapse
Affiliation(s)
- David Stevens
- Departments of Neurology, 200 S. Manchester Avenue, Ste. 206, Orange, CA 92868, USA
| | - Shadi Milani-Nejad
- Departments of Neurology, 200 S. Manchester Avenue, Ste. 206, Orange, CA 92868, USA
| | - Tahseen Mozaffar
- Departments of Neurology, 200 S. Manchester Avenue, Ste. 206, Orange, CA 92868, USA
- Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, USA
- The Institute for Immunology, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
12
|
Sawada T, Kido J, Sugawara K, Yoshida S, Matsumoto S, Shimazu T, Matsushita Y, Inoue T, Hirose S, Endo F, Nakamura K. Newborn screening for Gaucher disease in Japan. Mol Genet Metab Rep 2022; 31:100850. [PMID: 35242582 PMCID: PMC8866142 DOI: 10.1016/j.ymgmr.2022.100850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive inborn metabolic disorder caused by a glucocerebrosidase (GCase) defect. GD is classified into three main types depending on accompanying neurological symptoms. Enzyme replacement therapy and substrate reduction therapy are limited in the treatment of neurological symptoms, and using genotype and GCase activity to discriminate between non-neuronopathic and neuronopathic GD may be challenging as the two sometimes phenotypically overlap. The number of patients exhibiting neurological symptoms in Japan is significantly higher than that in Europe and the United States, and newborn screening (NBS) is still not actively performed in Japan. Definitive determination of the actual frequency and proportion of the type of GD from the results of NBS remains inconclusive. We performed NBS for Fabry disease, Pompe disease, and GD, mainly in the Kyushu area in Japan. Herein, we discuss the results of NBS for GD, as well as, the insights gained from following the clinical course of patients diagnosed through NBS. A total of 155,442 newborns were screened using an enzyme activity assay using dried blood spots. We found four newborns showing lower GCase activity and were definitively diagnosed with GD by GBA gene analysis. The frequency of GD diagnosis through NBS was 1 in 77,720 when limited to the probands. This frequency is higher than that previously estimated in Japan. In the future, NBS for GD is expected to be performed in many regions of Japan and contribute to detecting more patients with GD. Early screening and diagnosis may have a very significant impact on the quality of life and potentially longevity in infants with GD. Newborn screening (NBS) identified 4 cases of Gaucher disease (GD) with few false positives in Japan. The frequency of GD diagnosis through NBS was 1 in 77,720, being higher than the previously estimated. Early diagnosis may have a very significant impact on the quality of life and potentially longevity in infants with GD.
Collapse
|
13
|
Saito Y, Nakamura K, Fukuda T, Sugie H, Hayashi S, Noguchi S, Nishino I. Muscle biochemical and pathological diagnosis in Pompe disease. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329085. [PMID: 35470251 DOI: 10.1136/jnnp-2022-329085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Pompe disease is reportedly less prevalent in Japan than in neighbouring countries, raising a possibility that some patients may be overlooked. Therefore, all muscle biopsy samples received at our institute were screened for Pompe disease to determine the accuracy of the disease prevalence. METHODS The acid α-glucosidase (GAA) activity was assayed using 10 µm frozen muscle sections from 2408 muscle biopsies received between July 2015 and January 2018. Genetic analysis was performed for samples with decreased activity. The number of myopathologically diagnosed patients was retrospectively assessed. RESULTS The GAA activity was distributed similarly to previous results from dried blood spot screening. GAA activity measured using muscle sections corresponded to that measured using muscle blocks. Of 163 patients with GAA activity <3 nmol/hour/mg protein, 43 (26%) patients had homozygous pseudodeficiency alleles in GAA (p.G576S and p.E689K). In the retrospective analysis, the number of patients diagnosed with Pompe disease via muscle biopsies decreased to zero over time. DISCUSSION Muscle pathology is an accurate method to diagnose Pompe disease. It is unlikely that a significant number of patients with Pompe disease are overlooked. Pathological variants were rare, and the majority carried a pseudodeficiency allele, which further supports our conclusion.
Collapse
Affiliation(s)
- Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
14
|
Tocan V, Mushimoto Y, Kojima-Ishii K, Matsuda A, Toda N, Toyomura D, Hirata Y, Sanefuji M, Sawada T, Sakai Y, Nakamura K, Ohga S. The earliest enzyme replacement for infantile-onset Pompe disease in Japan. Pediatr Int 2022; 64:e15286. [PMID: 36074069 DOI: 10.1111/ped.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Infantile-onset Pompe disease (IOPD) is the most severe phenotype of a lysosomal storage disorder caused by acid alpha-glucosidase (GAA) deficiency. An enzymatic newborn screening (NBS) program started regionally in Japan in 2013 for early enzyme replacement therapy (ERT). We report the ERT responses of the first NBS-identified Japanese IOPD case and of another case diagnosed prior to NBS, to discuss the problems of promptly starting ERT in Japan. METHODS Acid alpha-glucosidase activity was measured by fluorometric assay in both patients. The diagnosis of IOPD was confirmed by next-generation followed by Sanger-method sequencing (patient 1) or direct sequencing of polymerase chain reaction (PCR)-amplified products (patient 2) of the GAA gene. RESULTS A female infant identified by NBS had a novel out-of-frame (p.F181Dfs*6) variant and a reported pathogenic (p.R600C) variant, along with two pseudodeficiency variants. Enzyme replacement therapy was started at age 58 days when the infant had increased serum levels of creatine kinase and slight myocardial hypertrophy. Clinical and biochemical markers improved promptly. She has been alive and well without delayed development at age 14 months. Patient 2, a Japanese male, received a diagnosis of IOPD at age 5 months before the NBS era. He had a homozygotic variant of GAA (p.R608X), later registered as a cross-reactive immunological material (CRIM)-negative genotype, and developed a high titer of anti-rhGAA antibodies. The patient has survived myocardial hypertrophy with continuous respiratory support for 12 years of ERT. CONCLUSIONS Enzyme replacement therapy should not be delayed over the age of 2 months for reversible cardiac function, although CRIM-negative cases may hamper turnaround time reduction.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Akane Matsuda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Naoko Toda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Daisuke Toyomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Yuichiro Hirata
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan.,Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| |
Collapse
|