1
|
Nelson CS, Baloh CH. Immunodeficiency: Overview of primary immune regulatory disorders (PIRDs). Allergy Asthma Proc 2024; 45:332-339. [PMID: 39294916 PMCID: PMC11425798 DOI: 10.2500/aap.2024.45.240070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Primary immune regulatory disorders (PIRD) comprise a heterogeneous group of monogenic disorders that impact homeostatic control of inflammation and immune tolerance. Patients with a PIRD typically present to medical care with symptoms of autoimmunity or hyperinflammation as the dominant clinical feature, symptoms that include fever, rash, lymphadenopathy, organomegaly, arthritis, and colitis are commonplace. Notably, PIRDs are a distinct entity from primary immune deficiency disorders (PIDD), which are primarily defined by a qualitative or quantitative defect in immunity, which manifests as a susceptibility to recurrent infections. PIDDs and PIRDs can be challenging to differentiate because the clinical presentations can be similar. Red flags for PIRDs include multiple autoimmune diagnoses in the same patient, chronic lymphadenopathy, hepatomegaly, and/or splenomegaly, chronic colitis, hemophagocytic lymphohistiocytosis (HLH), Epstein Barr virus (EBV) susceptibility, recurrent or persistent fever, vasculitis, and sterile inflammation. For simplicity in this brief review, we limit our discussion of PIRDs to the following categories multiple autoimmune diseases, immune dysregulation with colitis, disorders with HLH and/or EBV susceptibility, autoinflammatory syndromes, type 1 interferonopathies, and disorders of sterile inflammation. Diagnosing a PIRD requires a broad immune evaluation for both immune system deficiencies and inflammation, along with genetic testing. Given the complex nature of these diseases, treatment often requires a team of subspecialists. Treatment, depending on the specific diagnosis, may be somewhat empiric with nonspecific immune modulators, symptom-directed therapies, and, in severe cases, hematopoietic stem cell transplantation; however, with the increasing number of biologics available, we are often able to use targeted immune therapy or even gene therapy.
Collapse
Affiliation(s)
- Cody S Nelson
- From the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; and
| | - Carolyn H Baloh
- From the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
2
|
Dua J, Jadhav R, Pande V, Bahal M, Mane SV. Novel Lipopolysaccharide-Responsive Vesicle Trafficking, Beach- and Anchor-Containing (LRBA) Gene Mutation Identified in a Pediatric Patient: A Case Report. Cureus 2024; 16:e65434. [PMID: 39184709 PMCID: PMC11344606 DOI: 10.7759/cureus.65434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Homozygous mutations in the lipopolysaccharide-responsive vesicle trafficking, beach- and anchor-containing (LRBA) gene lead to a syndrome characterized by early-onset hypogammaglobulinemia, autoimmunity, lymphoproliferation, and inflammatory bowel disease. This report describes a 10-year-old female who experienced three seizure episodes, including two generalized tonic-clonic seizures (GTCS) and one focal seizure, alongside septic shock. The patient had a history of recurrent respiratory tract infections, inflammatory bowel disease, multiple blood transfusions, lymphadenopathy, significant organomegaly, and hematological abnormalities, all consistent with an LRBA deficiency. This case highlights the critical need for prompt recognition and identification of LRBA gene mutations to enable timely management and improve patient outcomes.
Collapse
Affiliation(s)
- Jasleen Dua
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Renuka Jadhav
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Vineeta Pande
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Mridu Bahal
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Shailaja V Mane
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|
3
|
Coppola E, Sgrulletti M, Cortesi M, Romano R, Cirillo E, Giardino G, Dotta L, Cancrini C, Bruzzese D, Badolato R, Moschese V, Pignata C. The Inborn Errors of Immunity-Virtual Consultation System Platform in Service for the Italian Primary Immunodeficiency Network: Results from the Validation Phase. J Clin Immunol 2024; 44:47. [PMID: 38231401 PMCID: PMC10794402 DOI: 10.1007/s10875-023-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Inborn errors of immunity (IEI) represent a heterogeneous group of rare genetically determined diseases. In some cases, patients present with complex or atypical phenotypes, not fulfilling the accepted diagnostic criteria for IEI and, thus, at high risk of misdiagnosis or diagnostic delay. This study aimed to validate a platform that, through the opinion of immunologist experts, improves the diagnostic process and the level of care of patients with atypical/complex IEI. METHODS Here, we describe the functioning of the IEI-Virtual Consultation System (VCS), an innovative platform created by the Italian Immunodeficiency Network (IPINet). RESULTS In the validation phase, from January 2020 to June 2021, 68 cases were entered on the IEI-VCS platform. A final diagnosis was achieved in 35/68 cases (51%, 95% CI 38.7 to 64.2). In 22 out of 35 solved cases, the diagnosis was confirmed by genetic analysis. In 3/35 cases, a diagnosis of secondary immunodeficiency was made. In the remaining 10 cases, an unequivocal clinical and immunological diagnosis was obtained, even though not substantiated by genetic analysis. CONCLUSION From our preliminary study, the VCS represents an innovative and useful system to improve the diagnostic process of patients with complex unsolved IEI disorders, with benefits both in terms of reduction of time of diagnosis and access to the required therapies. These results may help the functioning of other international platforms for the management of complex cases.
Collapse
Affiliation(s)
- Emma Coppola
- Section of Pediatrics, Department of Translational Medical Sciences, Federico II University, Via S. Pansini, 5-80131, Naples, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Roberta Romano
- Section of Pediatrics, Department of Translational Medical Sciences, Federico II University, Via S. Pansini, 5-80131, Naples, Italy
| | - Emilia Cirillo
- Section of Pediatrics, Department of Translational Medical Sciences, Federico II University, Via S. Pansini, 5-80131, Naples, Italy
| | - Giuliana Giardino
- Section of Pediatrics, Department of Translational Medical Sciences, Federico II University, Via S. Pansini, 5-80131, Naples, Italy
| | - Laura Dotta
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Dario Bruzzese
- Department of Public Health, Federico II University, Naples, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy
| | - Claudio Pignata
- Section of Pediatrics, Department of Translational Medical Sciences, Federico II University, Via S. Pansini, 5-80131, Naples, Italy.
| |
Collapse
|
4
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Margarit-Soler A, Deyà-Martínez À, Canizales JT, Vlagea A, García-García A, Marsal J, Del Castillo MT, Planas S, Simó S, Esteve-Sole A, Grande MSL, Badell I, Tarrats MR, Fernández-Avilés F, Alsina L. Case report: Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders. Front Immunol 2022; 13:1070068. [PMID: 36636328 PMCID: PMC9831655 DOI: 10.3389/fimmu.2022.1070068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) haploinsufficiency is a T-cell hyperactivation disorder that can manifest with both immunodeficiency and immune dysregulation. Approximately one-third of patients may present mild symptoms and remain stable under supportive care. The remaining patients may develop severe multiorgan autoimmunity requiring lifelong immunosuppressive treatment. Hematopoietic stem cell transplantation (HSCT) is potentially curable for patients with treatment-resistant immune dysregulation. Nevertheless, little experience is reported regarding the management of complications post-HSCT. We present case 1 (CTLA-4 haploinsufficiency) and case 2 (CTLA-4 insufficiency-like phenotype) manifesting with severe autoimmunity including cytopenia and involvement of the central nervous system (CNS), lung, and gut and variable impairment of humoral responses. Both patients underwent HSCT for which the main complications were persistent mixed chimerism, infections, and immune-mediated complications [graft-versus-host disease (GVHD) and nodular lung disease]. Detailed management and outcomes of therapeutic interventions post-HSCT are discussed. Concretely, post-HSCT abatacept and human leukocyte antigen (HLA)-matched sibling donor lymphocyte infusions may be used to increase T-cell donor chimerism with the aim of correcting the immune phenotype of CTLA-4 haploinsufficiency.
Collapse
Affiliation(s)
- Adriana Margarit-Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Juan Torres Canizales
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Júlia Marsal
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sílvia Planas
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sílvia Simó
- Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain,Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - María Suárez-Lledó Grande
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Badell
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Pediatric Haematology and Stem Cell Transplantation Unit, Pediatric Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Rovira Tarrats
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| |
Collapse
|
6
|
Clinical, immunological, molecular and therapeutic findings in monogenic immune dysregulation diseases: Middle East and North Africa registry. Clin Immunol 2022; 244:109131. [PMID: 36179983 DOI: 10.1016/j.clim.2022.109131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Monogenic immune dysregulation diseases (MIDD) are caused by defective immunotolerance. This study was designed to increase knowledge on the prevalence and spectrum of MIDDs, genetic patterns, and outcomes in Middle East and North Africa (MENA). MIDD patients from 11 MENA countries (Iran, Turkey, Kuwait, Oman, Algeria, Egypt, United Arab Emirates, Tunisia, Jordan, Qatar, and Azerbaijan) were retrospectively evaluated. 343 MIDD patients (58% males and 42% female) at a median (IQR) age of 101 (42-192) months were enrolled. The most common defective genes were LRBA (23.9%), LYST (8.2%), and RAB27A (7.9%). The most prevalent initial and overall manifestations were infections (32.2% and 75.1%), autoimmunity (18.6% and 41%), and organomegaly (13.3% and 53.8%), respectively. Treatments included immunoglobulin replacement therapy (53%), hematopoietic stem cell transplantation (HSCT) (14.3%), immunosuppressives (36.7%), and surgery (3.5%). Twenty-nine (59.2%) patients survived HSCT. Along with infectious complications, autoimmunity and organomegaly may be the initial or predominant manifestations of MIDD.
Collapse
|
7
|
Targeted RNAseq Improves Clinical Diagnosis of Very Early-Onset Pediatric Immune Dysregulation. J Pers Med 2022; 12:jpm12060919. [PMID: 35743704 PMCID: PMC9224647 DOI: 10.3390/jpm12060919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Despite increased use of whole exome sequencing (WES) for the clinical analysis of rare disease, overall diagnostic yield for most disorders hovers around 30%. Previous studies of mRNA have succeeded in increasing diagnoses for clearly defined disorders of monogenic inheritance. We asked if targeted RNA sequencing could provide similar benefits for primary immunodeficiencies (PIDs) and very early-onset inflammatory bowel disease (VEOIBD), both of which are difficult to diagnose due to high heterogeneity and variable severity. We performed targeted RNA sequencing of a panel of 260 immune-related genes for a cohort of 13 patients (seven suspected PID cases and six VEOIBD) and analyzed variants, splicing, and exon usage. Exonic variants were identified in seven cases, some of which had been previously prioritized by exome sequencing. For four cases, allele specific expression or lack thereof provided additional insights into possible disease mechanisms. In addition, we identified five instances of aberrant splicing associated with four variants. Three of these variants had been previously classified as benign in ClinVar based on population frequency. Digenic or oligogenic inheritance is suggested for at least two patients. In addition to validating the use of targeted RNA sequencing, our results show that rare disease research will benefit from incorporating contributing genetic factors into the diagnostic approach.
Collapse
|