1
|
Lu B, Li X, Miao W, Liu Q, Li R, Cui C, Gao Q, Lian R. Upregulation of WDR4 mediated by RBFOX2 promotes laryngeal cancer progression through the WDR4/m7G/lncRNA ZFAS1/RBFOX2 axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03779-0. [PMID: 39774908 DOI: 10.1007/s00210-024-03779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
High levels of the N7 methylguanosine (m7G) methyltransferase WD repeat domain 4 (WDR4) are associated with the progression of multiple tumors, including head and neck squamous cell carcinoma. Laryngeal cancer (LC) is the second most common malignant tumor of the head and neck. However, the role of WDR4 in LC remains unclear. Here, we found that WDR4 expression was significantly upregulated in LC tissues and cells. Silencing WDR4 inhibited proliferation, invasion, and epithelial-mesenchymal transition (EMT, manifested by an increase in E-cadherin protein levels and a decrease in N-cadherin and Vimentin protein levels) in TU177 and M4E cells. Furthermore, the levels of m7G and ZFAS1 were significantly upregulated in LC tissues and cells. Mechanistic studies revealed that WDR4 upregulated the levels of ZFAS1 and RBFOX2 proteins by promoting the stability of ZFAS1 in an m7G-dependent manner, and RBFOX2 promoted WDR4 expression by binding to WDR4 mRNA. Overexpression of WDR4 increased m7G and ZFAS1 levels, whereas overexpression of WDR4 with m7G catalytic site mutation had no effect on m7G and ZFAS1 levels in TU177 and M4E cells. Silencing ZFAS1 or RBFOX2 counteracted the promoting effect of WDR4 overexpression on the malignant proliferation of TU177 and M4E cells. TU177 cells transfected with sh-WDR4 lentiviral vectors were intraperitoneally injected into nude mice to construct xenograft tumor models. Knockdown of WDR4 significantly inhibited LC tumor growth in vivo. In conclusion, RBFOX2-mediated upregulation of WDR4 promoted LC progression through the WDR4/m7G/ZFAS1/RBFOX2 axis.
Collapse
Affiliation(s)
- Baocai Lu
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China
| | - Xiao Li
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China
| | - Wenjie Miao
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China
| | - Qi Liu
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China
| | - Ruixue Li
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China
| | - Can Cui
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China
| | - Qingzu Gao
- Department of Pathology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Rong Lian
- Department of Otolaryngology, the First Affiliated Hospital of Xinxiang Medical University, No. 88, Jiankang Road, Xinxiang, Henan, 453100, China.
| |
Collapse
|
2
|
Zhao Y, Li J, Dian M, Bie Y, Peng Z, Zhou Y, Zhou B, Hao W, Wang X. Role of N6-methyladenosine methylation in nasopharyngeal carcinoma: current insights and future prospective. Cell Death Discov 2024; 10:490. [PMID: 39695216 DOI: 10.1038/s41420-024-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck squamous cell carcinoma prevalent in Southern China, Southeast Asia, and North Africa. Despite advances in treatment options, the prognosis for advanced NPC remains poor, underscoring the urgent need to explore its underlying mechanisms and develop novel therapeutic strategies. Epigenetic alterations have been shown to play a key role in NPC progression. Recent studies indicate that dysregulation of RNA modifications in NPC specifically affects tumor-related transcripts, influencing various oncogenic processes. This review provides a comprehensive overview of altered RNA modifications and their regulators in NPC, with a focus on m6A and its regulatory mechanisms. We discuss how m6A RNA modification influences gene expression and affects NPC initiation and progression at the molecular level, analyzing its impact on cancer-related biological functions. Understanding these modifications could reveal new biomarkers and therapeutic targets for NPC, offering promising directions for future research and precision medicine.
Collapse
Affiliation(s)
- YaYan Zhao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - MeiJuan Dian
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - YaNan Bie
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - ZhiTao Peng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - BingQian Zhou
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - WeiChao Hao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - XiCheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Liu X, Ma Z, Zhang X, Li S, An J, Luo Z. Research Progress of Long Non-coding RNA-ZFAS1 in Malignant Tumors. Cell Biochem Biophys 2024; 82:3145-3156. [PMID: 39060915 DOI: 10.1007/s12013-024-01441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Long non-coding RNAs (lncRNAs), although incapable of encoding proteins, play crucial roles in multiple layers of gene expression regulation, epigenetic modifications, and post-transcriptional regulation. Zinc finger antisense 1 (ZFAS1), a lncRNA located in the 20q13 region of the human genome, exhibits dual functions as an oncogene or tumor suppressor in various human malignancies. ZFAS1 plays a crucial role in cancer progression, metastasis, invasion, apoptosis, cell cycle regulation, and drug resistance through complex molecular mechanisms. Additionally, ZFAS1 has a long half-life of over 16 h, demonstrating exceptional stability, and making it a potential biomarker. This review integrates recent studies on the role and molecular mechanisms of ZFAS1 in malignancies and summarizes its clinical significance. By summarizing the role of ZFAS1 in cancer, we aim to highlight its potential as an anti-cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Provincial, Lanzhou, 730030, Gansu, China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
4
|
Peng T, Xie Y, Zhao S, Wang X, Zhang W, Xie Y, Wang C, Xie N. TRPML1 ameliorates seizures-related neuronal injury by regulating autophagy and lysosomal biogenesis via Ca 2+/TFEB signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167477. [PMID: 39173889 DOI: 10.1016/j.bbadis.2024.167477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Alterations in autophagy have been observed in epilepsy, although their exact etiopathogenesis remains elusive. Transient Receptor Potential Mucolipin Protein 1 (TRPML1) is an ion channel protein that regulates autophagy and lysosome biogenesis. To explore the role of TRPML1 in seizures-induced neuronal injury and the potential mechanisms involved, an hyperexcitable neuronal model induced by Mg2+-free solution was used for the study. Our results revealed that TRPML1 expression was upregulated after seizures, which was accompanied by intracellular ROS accumulation, mitochondrial damage, and neuronal apoptosis. Activation of TRPML1 by ML-SA1 diminished intracellular ROS, restored mitochondrial function, and subsequently alleviated neuronal apoptosis. Conversely, inhibition of TRPML1 had the opposite effect. Further examination revealed that the accumulation of ROS and damaged mitochondria was associated with interrupted mitophagy flux and enlarged defective lysosomes, which were attenuated by TRPML1 activation. Mechanistically, TRPML1 activation allows more Ca2+ to permeate from the lysosome into the cytoplasm, resulting in the dephosphorylation of TFEB and its nuclear translocation. This process further enhances autophagy initiation and lysosomal biogenesis. Additionally, the expression of TRPML1 is positively regulated by WTAP-mediated m6A modification. Our findings highlighted crucial roles of TRPML1 and autophagy in seizures-induced neuronal injury, which provides a new target for epilepsy treatment.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu Province, PR China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China.
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
5
|
Janakiraman P, Jayaprakash JP, Muralidharan SV, Narayan KP, Khandelia P. N6-methyladenosine RNA modification in head and neck squamous cell carcinoma (HNSCC): current status and future insights. Med Oncol 2024; 42:12. [PMID: 39580759 DOI: 10.1007/s12032-024-02566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
N6-methyladenosine (m6A) plays a pivotal role in regulating epitranscriptomic mechanisms and is closely linked to the normal functioning of diverse classes of RNAs, both coding as well as noncoding. Recent research highlights the role of m6A RNA methylation in the onset and progression of several cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC ranks as the seventh most common cancer globally, with a five-year patient survival rate of just 50%. Elevated m6A RNA methylation levels and deregulated expression of various m6A modifiers, i.e. writers, readers, and erasers, have been reported across nearly all HNSCC subtypes. Numerous studies have demonstrated that m6A modifications significantly impact key hallmarks of HNSCC, such as proliferation, apoptosis, migration, and invasion. Furthermore, m6A impacts epithelial-mesenchymal transition (EMT), drug resistance, and aerobic glycolysis, and disrupts the tumor microenvironment. Additionally, transcripts regulated by m6A in HNSCC present themselves as potential diagnostic and prognostic biomarkers. This review attempts to comprehensively summarize the role of m6A RNA methylation and its modifiers in regulating various facets of HNSCC pathogenesis.
Collapse
Affiliation(s)
- Pramodha Janakiraman
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Sridhanya Velayudham Muralidharan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
6
|
Wang F, Liao Q, Qin Z, Li J, Wei Q, Li M, Deng H, Xiong W, Tan M, Zhou M. Autophagy: a critical mechanism of N 6-methyladenosine modification involved in tumor progression and therapy resistance. Cell Death Dis 2024; 15:783. [PMID: 39468015 PMCID: PMC11519594 DOI: 10.1038/s41419-024-07148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
N6-Methyladenosine (m6A) is an evolutionarily highly conserved epigenetic modification that affects eukaryotic RNAs, especially mRNAs, and m6A modification is commonly linked to tumor proliferation, progression, and therapeutic resistance by participating in RNA metabolism. Autophagy is an intracellular degradation and recycling biological process by which cells remove damaged organelles, protein aggregates, and other intracellular wastes, and release nutrients to maintain cell survival when energy is scarce. Recent studies have shown that m6A modification plays a critical role in the regulation of autophagy, affecting the initiation of autophagy, the formation and assembly of autophagosomes, and lysosomal function by regulating critical regulatory molecules involved in the process of autophagy. Moreover, autophagy can also affect the expression of the three types of regulators related to m6A, which in turn affects the levels of their target genes via m6A modification. Thus, m6A modification and autophagy form a sophisticated regulatory network through mutual regulation, which plays an important role in tumor progression and therapeutic resistance. In this manuscript, we reviewed the effects of m6A modification on autophagy as well as the effects of autophagy on m6A modification and the roles of the m6A-autophagy axis in tumor progression and therapy resistance. Additionally, we summarized the value and application prospects of key molecules in the m6A-autophagy axis in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Feiyang Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiudi Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zihao Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jingyi Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
7
|
Zhao C, Zhang F, Tian Y, Tang B, Luo J, Zhang J. m 6 A reader IGF2BP1 reduces the sensitivity of nasopharyngeal carcinoma cells to Taxol by upregulation of AKT2. Anticancer Drugs 2024; 35:501-511. [PMID: 38478015 DOI: 10.1097/cad.0000000000001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Taxol is widely used in the treatment of nasopharyngeal carcinoma (NPC); nevertheless, the acquired resistance of NPC to Taxol remains one of the major obstacles in clinical treatment. In this study, we aimed to investigate the role and mechanism of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in Taxol resistance of NPC. Taxol-resistant NPC cell lines were established by exposing to gradually increased concentration of Taxol. Relative mRNA and protein levels were tested using qRT-PCR and western blot, respectively. NPC cell viability and apoptosis were assessed by cell counting kit-8 and flow cytometry analysis, respectively. Cell migration and invasion capacities were measured using transwell assay. Interaction between IGF2BP1 and AKT2 was examined by RNA immunoprecipitation assay. The N6-methyladenosine level of AKT2 was tested using methylated RNA immunoprecipitation-qPCR. IGF2BP1 expression was enhanced in Taxol-resistant NPC cell lines. Knockdown of IGF2BP1 strikingly enhanced the sensitivity of NPC cells to Taxol and repressed the migration and invasion of NPC cells. Mechanistically, IGF2BP1 elevated the expression of AKT2 by increasing its mRNA stability. Furthermore, overexpression of AKT2 reversed the inhibitory roles of IGF2BP1 silence on Taxol resistance and metastasis. Our results indicated that IGF2BP1 knockdown enhanced the sensitivity of NPC cells to Taxol by decreasing the expression of AKT2, implying that IGF2BP1 might be promising candidate target for NPC treatment.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | | | | | | | | | | |
Collapse
|
8
|
Dou Z, Ma XT, Piao MN, Wang JP, Li JL. Overview of the interplay between m6A methylation modification and non-coding RNA and their impact on tumor cells. Transl Cancer Res 2024; 13:3106-3125. [PMID: 38988908 PMCID: PMC11231769 DOI: 10.21037/tcr-23-2401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common internal modifications in eukaryotic RNA. The presence of m6A on transcripts can affect a series of fundamental cellular processes, including mRNA splicing, nuclear transportation, stability, and translation. The m6A modification is introduced by m6A methyltransferases (writers), removed by demethylases (erasers), and recognized by m6A-binding proteins (readers). Current research has demonstrated that m6A methylation is involved in the regulation of malignant phenotypes in tumors by controlling the expression of cancer-related genes. Non-coding RNAs (ncRNAs) are a diverse group of RNA molecules that do not encode proteins and are widely present in the human genome. This group includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI interaction RNAs (piRNAs). They function as oncogenes or tumor suppressors through various mechanisms, regulating the initiation and progression of cancer. Previous studies on m6A primarily focused on coding RNAs, but recent discoveries have revealed the significant regulatory role of m6A in ncRNAs. Simultaneously, ncRNAs also exert their influence by modulating the stability, splicing, translation, and other biological processes of m6A-related enzymes. The interplay between m6A and ncRNAs collectively contributes to the occurrence and progression of malignant tumors in humans. This review provides an overview of the interactions between m6A regulatory factors and ncRNAs and their impact on tumors.
Collapse
Affiliation(s)
- Zheng Dou
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Ting Ma
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-Na Piao
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Wang
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Mehrab Mohseni M, Zamani H, Momeni M, Shirvani-Farsani Z. An update on the molecular mechanisms of ZFAS1 as a prognostic, diagnostic, or therapeutic biomarker in cancers. Discov Oncol 2024; 15:219. [PMID: 38856786 PMCID: PMC11164845 DOI: 10.1007/s12672-024-01078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Zinc finger antisense 1 (ZFAS1), a newly discovered long noncoding RNA, is expressed in various tissues and organs and has been introduced an oncogenic gene in human malignancies. In various cancers, ZFAS1 regulates apoptosis, cell proliferation, the cell cycle, migration, translation, rRNA processing, and spliceosomal snRNP assembly; targets signaling cascades; and interacts with transcription factors via binding to key proteins and miRNAs, with conflicting findings on its effect on these processes. ZFAS1 is elevated in different types of cancer, like colorectal, colon, osteosarcoma, and gastric cancer. Considering the ZFAS1 expression pattern, it also has the potential to be a diagnostic or prognostic marker in various cancers. The current review discusses the mode of action of ZFAS1 in various human cancers and its regulation function related to chemoresistance comprehensively, as well as the potential role of ZFAS1 as an effective and noninvasive cancer-specific biomarker in tumor diagnosis, prognosis, and treatment. We expected that the current review could fill the current scientific gaps in the ZFAS1-related cancer causative mechanisms and improve available biomarkers.
Collapse
Affiliation(s)
- Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Hedyeh Zamani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Mina Momeni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran.
| |
Collapse
|
10
|
Liu XY, Qiao D, Zhang YL, Liu ZX, Chen YL, Que RY, Cao HY, Dai YC. Identification of marker genes associated with N6-methyladenosine and autophagy in ulcerative colitis. World J Clin Cases 2024; 12:1750-1765. [PMID: 38660076 PMCID: PMC11036473 DOI: 10.12998/wjcc.v12.i10.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Both N6-methyladenosine (m6A) methylation and autophagy are considered relevant to the pathogenesis of ulcerative colitis (UC). However, a systematic exploration of the role of the com-bination of m6A methylation and autophagy in UC remains to be performed. AIM To elucidate the autophagy-related genes of m6A with a diagnostic value for UC. METHODS The correlation between m6A-related genes and autophagy-related genes (ARGs) was analyzed. Finally, gene set enrichment analysis (GSEA) was performed on the characteristic genes. Additionally, the expression levels of four characteristic genes were verified in dextran sulfate sodium (DSS)-induced colitis in mice. RESULTS GSEA indicated that BAG3, P4HB and TP53INP2 were involved in the inflammatory response and TNF-α signalling via nuclear factor kappa-B. Furthermore, polymerase chain reaction results showed significantly higher mRNA levels of BAG3 and P4HB and lower mRNA levels of FMR1 and TP53INP2 in the DSS group compared to the control group. CONCLUSION This study identified four m6A-ARGs that predict the occurrence of UC, thus providing a scientific reference for further studies on the pathogenesis of UC.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Dan Qiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ya-Li Zhang
- Institute of Digestive Diseases, Long Hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zi-Xuan Liu
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - You-Lan Chen
- Department of Gastroenterology, Shu Guang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ren-Ye Que
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Hong-Yan Cao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| |
Collapse
|
11
|
Yang Z, Zhang S, Xiong J, Xia T, Zhu R, Miao M, Li K, Chen W, Zhang L, You Y, You B. The m 6A demethylases FTO and ALKBH5 aggravate the malignant progression of nasopharyngeal carcinoma by coregulating ARHGAP35. Cell Death Discov 2024; 10:43. [PMID: 38263362 PMCID: PMC10806234 DOI: 10.1038/s41420-024-01810-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification that can be removed by demethylases [fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5)], which regulate gene expression and cell function. We show that m6A levels and m6A demethylase levels are altered in nasopharyngeal carcinoma (NPC) tissues vs. normal tissues. High FTO and ALKBH5 predict a poor prognosis in NPC patients. Silencing FTO and ALKBH5 inhibited the malignant behavior of patient-derived NPC cells in a short time. However, as time progressed, the inhibitory effect of FTO or ALKBH5 was weakened, and the cosilencing of FTO and ALKBH5 maintained a better inhibitory effect. Combined transcriptome and m6A-seq analysis revealed a downstream target gene that was jointly regulated by FTO and ALKBH5 in NPC, and ARHGAP35 was chosen to do further study. The synergistic silencing of FTO and ALKBH5 increased the methylation level on the mRNA CDS of a new transcription factor (ARHGAP35) and positively regulate the protein coding capacity and mRNA stability of ARHGAP35, thus leading to increased expression of ARHGAP35 and inhibition of the malignant phenotype of tumor cells. Our study revealed that the growth and metastasis of NPC can be stably inhibited through synergistic silencing of the demethylases FTO and ALKBH5, which play a positive role in the treatment of NPC by regulating the downstream transcript ARHGAP35 and increasing its m6A level.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Siyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jiayan Xiong
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rui Zhu
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Mengyu Miao
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Keying Li
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Wenyue Chen
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Lin Zhang
- Haimen People's Hospital, Nantong, China
| | - Yiwen You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
12
|
Zheng J, Jiang S, Lin X, Wang H, Liu L, Cai X, Sun Y. Comprehensive analyses of mitophagy-related genes and mitophagy-related lncRNAs for patients with ovarian cancer. BMC Womens Health 2024; 24:37. [PMID: 38218807 PMCID: PMC10788026 DOI: 10.1186/s12905-023-02864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Both mitophagy and long non-coding RNAs (lncRNAs) play crucial roles in ovarian cancer (OC). We sought to explore the characteristics of mitophagy-related gene (MRG) and mitophagy-related lncRNAs (MRL) to facilitate treatment and prognosis of OC. METHODS The processed data were extracted from public databases (TCGA, GTEx, GEO and GeneCards). The highly synergistic lncRNA modules and MRLs were identified using weighted gene co-expression network analysis. Using LASSO Cox regression analysis, the MRL-model was first established based on TCGA and then validated with four external GEO datasets. The independent prognostic value of the MRL-model was evaluated by Multivariate Cox regression analysis. Characteristics of functional pathways, somatic mutations, immunity features, and anti-tumor therapy related to the MRL-model were evaluated using abundant algorithms, such as GSEA, ssGSEA, GSVA, maftools, CIBERSORT, xCELL, MCPcounter, ESTIMATE, TIDE, pRRophetic and so on. RESULTS We found 52 differentially expressed MRGs and 22 prognostic MRGs in OC. Enrichment analysis revealed that MRGs were involved in mitophagy. Nine prognostic MRLs were identified and eight optimal MRLs combinations were screened to establish the MRL-model. The MRL-model stratified patients into high- and low-risk groups and remained a prognostic factor (P < 0.05) with independent value (P < 0.05) in TCGA and GEO. We observed that OC patients in the high-risk group also had the unfavorable survival in consideration of clinicopathological parameters. The Nomogram was plotted to make the prediction results more intuitive and readable. The two risk groups were enriched in discrepant functional pathways (such as Wnt signaling pathway) and immunity features. Besides, patients in the low-risk group may be more sensitive to immunotherapy (P = 0.01). Several chemotherapeutic drugs (Paclitaxel, Veliparib, Rucaparib, Axitinib, Linsitinib, Saracatinib, Motesanib, Ponatinib, Imatinib and so on) were found with variant sensitivity between the two risk groups. The established ceRNA network indicated the underlying mechanisms of MRLs. CONCLUSIONS Our study revealed the roles of MRLs and MRL-model in expression, prognosis, chemotherapy, immunotherapy, and molecular mechanism of OC. Our findings were able to stratify OC patients with high risk, unfavorable prognosis and variant treatment sensitivity, thus improving clinical outcomes for OC patients.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Huihui Wang
- Department of Anesthesiology, The Central hospital of Wenzhou City, 32 Dajian Lane, Wenzhou, 325000, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
13
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Zhang H, Liao J, Jin L, Lin Y. NLRP3 inflammasome involves in the pathophysiology of sepsis-induced myocardial dysfunction by multiple mechanisms. Biomed Pharmacother 2023; 167:115497. [PMID: 37741253 DOI: 10.1016/j.biopha.2023.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is one of the serious health-affecting problems worldwide. At present, the mechanisms of SIMD are still not clearly elucidated. The NOD-like receptor protein 3 (NLRP3) inflammasome has been assumed to be involved in the pathophysiology of SIMD by regulating multiple biological processes. NLRP3 inflammasome and its related signaling pathways might affect the regulation of inflammation, autophagy, apoptosis, and pyroptosis in SIMD. A few molecular specific inhibitors of NLRP3 inflammasome (e.g., Melatonin, Ulinastatin, Irisin, Nifuroxazide, and Ginsenoside Rg1, etc.) have been developed, which showed a promising anti-inflammatory effect in a cellular or animal model of SIMD. These experimental findings indicated that NLRP3 inflammasome could be a promising therapeutic target for SIMD treatment. However, the clinical translation of NLRP3 inhibitors for treating SIMD still requires robust in vivo and preclinical trials.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Litong Jin
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Yan Lin
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
15
|
Sun X, Fu S, Yuan X, Pu X, Wang R, Wang X, Lu H. RNA N6-methyladenosine (m6A) modification in HNSCC: molecular mechanism and therapeutic potential. Cancer Gene Ther 2023; 30:1209-1214. [PMID: 37221404 DOI: 10.1038/s41417-023-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Head and neck squamous cell carcinoma ranks seventh in incidence of malignant tumours in the world. Although there are treatments including surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy, drug resistance to treatment is caused by various reasons, and the survival rate of patients remains frustrating. To overcome the bottleneck of treatment at this stage, it is urgent to identify possible diagnostic and prognostic markers. N6-methyladenosine is a methylation modification on the sixth N atom of adenine which is the most abundant epitope transcriptome modification in mammalian genes. N6-methyladenosine modification is reversible and results from the interaction among writers, erasers and readers. A large number of studies have proven that N6-methyladenosine modification has important significance in promoting the progression and treatment of tumours and have made great progress in research. In this review, we introduce how N6-methyladenosine modification promotes the occurrence and development of tumours, the mechanism of drug resistance, and new findings of N6-methyladenosine modification in radiotherapy and chemotherapy, immunotherapy, and targeted therapy. N6-methyladenosine modification provides more possibilities for improving the overall survival rate and prognosis of patients.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Department of Radiation Oncology, Cancer Institute Of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Shengqiao Fu
- Department of Radiation Oncology, Cancer Institute Of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute Of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute Of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - RunKun Wang
- Department of Otorhinolaryngology, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute Of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hanqiang Lu
- Department of Otorhinolaryngology, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
16
|
Wang P, Chen W, Zhao S, Cheng F. The role of LncRNA-regulated autophagy in AKI. Biofactors 2023; 49:1010-1021. [PMID: 37458310 DOI: 10.1002/biof.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 10/04/2023]
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome involving a series of pathophysiological processes regulated by multiple pathways at the molecular and cellular level. Long noncoding RNAs (lncRNAs) play an important role in the regulation of epigenetics, and their regulation of autophagy-related genes in AKI has attracted increasing attention. However, the role of lncRNA-regulated autophagy in AKI has not been fully elucidated. Evidence indicated that lncRNAs play regulatory roles in most factors that induce AKI. LncRNAs can regulate autophagy in AKI via a complex network of regulatory pathways to affect the development and prognosis of AKI. This article reviewed and analyzed the pathways of lncRNA regulation of autophagy in AKI in recent years. The results provide new ideas for further study of the pathophysiological process and targeted therapy for AKI.
Collapse
Affiliation(s)
- Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
18
|
Tang J, Zhang J, Lu Y, He J, Wang H, Liu B, Tu C, Li Z. Novel insights into the multifaceted roles of m 6A-modified LncRNAs in cancers: biological functions and therapeutic applications. Biomark Res 2023; 11:42. [PMID: 37069649 PMCID: PMC10111779 DOI: 10.1186/s40364-023-00484-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
N6-methyladenosine (m6A) is considered as the most common and important internal transcript modification in several diseases like type 2 diabetes, schizophrenia and especially cancer. As a main target of m6A methylation, long non-coding RNAs (lncRNAs) have been proved to regulate cellular processes at various levels, including epigenetic modification, transcriptional, post-transcriptional, translational and post-translational regulation. Recently, accumulating evidence suggests that m6A-modified lncRNAs greatly participate in the tumorigenesis of cancers. In this review, we systematically summarized the biogenesis of m6A-modified lncRNAs and the identified m6A-lncRNAs in a variety of cancers, as well as their potential diagnostic and therapeutic applications as biomarkers and therapeutic targets, hoping to shed light on the novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jinhui Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Yu Lu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Huang H, Pan R, Wang S, Guan Y, Zhao Y, Liu X. Current and potential roles of RNA modification-mediated autophagy dysregulation in cancer. Arch Biochem Biophys 2023; 736:109542. [PMID: 36758911 DOI: 10.1016/j.abb.2023.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Autophagy, a cellular lysosomal degradation and survival pathway, supports nutrient recycling and adaptation to metabolic stress and participates in various stages of tumor development, including tumorigenesis, metastasis, and malignant state maintenance. Among the various factors contributing to the dysregulation of autophagy in cancer, RNA modification can regulate autophagy by directly affecting the expression of core autophagy proteins. We propose that autophagy disorder mediated by RNA modification is an important mechanism for cancer development. Therefore, this review mainly discusses the role of RNA modification-mediated autophagy regulation in tumorigenesis. We summarize the molecular basis of autophagy and the core proteins and complexes at different stages of autophagy, especially those involved in cancer development. Moreover, we describe the crosstalk of RNA modification and autophagy and review the recent advances and potential role of the RNA modification/autophagy axis in the development of multiple cancers. Furthermore, the dual role of the RNA modification/autophagy axis in cancer drug resistance is discussed. A comprehensive understanding and extensive exploration of the molecular crosstalk of RNA modifications with autophagy will provide important insights into tumor pathophysiology and provide more options for cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Ruining Pan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Yue Zhao
- Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
20
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|
21
|
Mohamed ZK, Amare YW, Getahun MS, Negussie YM, Gurara AM. Cervical Cancer Screening Service Utilization and Associated Factors Among Women Living With HIV Receiving Anti-Retroviral Therapy at Adama Hospital Medical College, Ethiopia. SAGE Open Nurs 2023; 9:23779608231152072. [PMID: 36726790 PMCID: PMC9885028 DOI: 10.1177/23779608231152072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Cervical cancer is the second highest cause of cancer-related mortality in the world, and it is one of the top 20 causes of mortality in Ethiopia. Even though cervical cancer is more common among women living with HIV, the utilization of cervical cancer screening services remains low in Ethiopia. Objectives This study aimed to assess cervical cancer screening service utilization and associated factors among women living with HIV receiving anti-retroviral therapy at Adama Hospital Medical College, Ethiopia. Methods An institution-based cross-sectional study was conducted among a sample of 304 women living with HIV from 1st-30th June 2022. Data were collected using an interviewer-administered questionnaire. The data were entered into Epi info version 7 and exported to SPSS version 25 for analysis. Bi-variable logistic regression analysis was used to identify candidate variables at p < .25. Finally, multivariable logistic regression analysis was used to identify the independent predictors of cervical cancer screening service utilization at p < .05 with 95% confidence intervals. Results The magnitude of cervical cancer screening service utilization was 26.9% (95% CI: 22.0, 32.6). Being a government employee (AOR: 8.09, 95% CI: 1.5, 41.19), having a family history of cervical cancer (AOR: 3.4, 95% CI: 1.02, 11.9), being aware of cervical cancer screening (AOR: 3.75, 95% CI: 2.11, 14.7), having a history of sexually transmitted infection (AOR: 3.14, 95% CI: 1.95, 10.2), and heard about cervical cancer (AOR: 2.6, 95% CI: 1.05, 6.41) were associated with cervical cancer screening service utilization. Conclusion The magnitude of cervical cancer screening service utilization was low. It was associated with occupation status, family history of cervical cancer, awareness about cervical cancer screening, history of STI, and ever heard about cervical cancer. Thus, to maximize utilization, health education programs and other multidisciplinary strategies had to be implemented.
Collapse
Affiliation(s)
| | | | - Mihiret Shawel Getahun
- Department of Nursing, Adama General Hospital and Medical
College, Adama, Ethiopia,Mihiret Shawel Getahun, Department of
Nursing, Adama General Hospital and Medical College, Adama, Ethiopia.
| | | | | |
Collapse
|
22
|
Liang J, Sun J, Zhang W, Wang X, Xu Y, Peng Y, Zhang L, Xiong W, Liu Y, Liu H. Novel Insights into The Roles of N 6-methyladenosine (m 6A) Modification and Autophagy in Human Diseases. Int J Biol Sci 2023; 19:705-720. [PMID: 36632456 PMCID: PMC9830520 DOI: 10.7150/ijbs.75466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular degradation and recycling process. It is important for maintaining vital cellular function and metabolism. Abnormal autophagy activity can cause the development of various diseases. N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification in eukaryotes, affecting almost all aspects of RNA metabolism. The process of m6A modification is dynamic and adjustable. Its regulation depends on the regulation of m6A methyltransferases, m6A demethylases, and m6A binding proteins. m6A methylation and autophagy are two crucial and independent cellular events. Recent studies have shown that m6A modification mediates the transcriptional and post-transcriptional regulation of autophagy-related genes, affecting autophagy regulatory networks in multiple diseases. However, the regulatory effects of m6A regulators on autophagy in human diseases are not adequately acknowledged. In the present review, we summarized the latest knowledge of m6A modification in autophagy and elucidated the molecular regulatory mechanisms underlying m6A modification in autophagy regulatory networks. Moreover, we discuss the potentiality of m6A regulators serving as promising predictive biomarkers for human disease diagnosis and targets for therapy. This review will increase our understanding of the relationship between m6A methylation and autophagy, and provide novel insights to specifically target m6A modification in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,✉ Corresponding authors: Hengwei Liu, Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China. E-mail: and Yi Liu, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. E-mail:
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.,✉ Corresponding authors: Hengwei Liu, Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China. E-mail: and Yi Liu, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. E-mail:
| |
Collapse
|
23
|
Frequency, subtypes distribution, and risk factors of Blastocystis spp. in COVID-19 patients in Tehran, capital of Iran: A case-control study. New Microbes New Infect 2022; 51:101063. [PMID: 36514342 PMCID: PMC9733120 DOI: 10.1016/j.nmni.2022.101063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background Recent theories on the possible interactions between the intestinal parasites and COVID-19 have stated that these co-infections may cause immune imbalance and further complications in the affected patients. Until now, there is no data about Blastocystis subtypes as an intestinal parasite in COVID-19 patients. Therefore, the present work was done to evaluate the molecular prevalence of Blastocystis spp. and related risk factors in Iranian patients with COVID-19. Method Stool samples were gathered from 200 COVID-19 patients and 200 control, being matched regarding age, gender and residence. Then, stool samples were surveyed by parasitological methods, including direct slide smear and formalin-ether concentration. In the following, PCR and sequencing were used to detect Blastocystis spp. and their subtypes. Results The frequency of Blastocystis spp. in patients with COVID-19 (7.5%; 15/200 by molecular method vs. 6%; 12/200 by microscopy method) was slightly higher than in individuals without COVID-19 (4.5%; 9/200 by molecular method vs. 4%; 8/200 by microscopy method), this difference was not statistically significant (P value = 0.57 for molecular method vs. P value = 0.81 for microscopy method). Regarding associated factors for Blastocystis spp., we found significant differences regarding the residence (rural), loose and watery stool with diarrhea, and duration of treatment (6 weeks <) in the COVID-19 group. Blastocystis ST3 was the most common subtype in the patients with COVID-19 and control group. Conclusions Based on this results, health education, improved sanitation and good personal hygiene are highly recommended to prevent Blastocystis in COVID-19 patients.
Collapse
|
24
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
26
|
The Value of m5C-Related lncRNAs in the Prognostic Assessment and Immunotherapy of Stomach Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2747799. [PMID: 35711526 PMCID: PMC9197623 DOI: 10.1155/2022/2747799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs) are closely associated with a variety of tumors, including stomach adenocarcinoma (STAD). However, the role of 5-methylcytosine- (m5C-) related lncRNAs in STAD is still uncertain. This study investigated the value of m5C-related lncRNAs in prognostic evaluation and immunotherapy of STAD. STAD transcriptome sequencing data were downloaded from The Cancer Genome Atlas (TCGA) database, and m5C-related lncRNAs were screened by Pearson correlation analysis. A prognostic m5C-related lncRNA signature (m5CRLSig) associated with STAD was established using univariate and multivariate Cox regression analysis. We constructed a prognostic risk model for STAD with six m5C-related lncRNAs. The receiver operating characteristic (ROC) curve was used to examine the predictive efficacy. Univariate and multifactorial Cox regression analysis and principal component analysis (PCA) validated m5CRLSig as an independent factor of STAD prognosis. The clinicopathological characteristics of the model showed higher risk scores for stages II-IV, grade 3, N1-3, and death status. The calibration curve of a nomogram revealed that the nomogram had an excellent predictive function for survival risk. Furthermore, the expression of six m5C-related lncRNAs in STAD and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR), which verified the feasibility of the m5CRLSig as a prognostic marker for STAD. m5C-related lncRNAs were linked to multiple immune-associated pathways, according to gene set enrichment analysis (GSEA). CIBERSORT analysis indicated that m5CRLSig was involved in immune cell infiltration. Risk score was associated with immune checkpoint gene expression, immune function scores, and chemotherapeutic drug sensitivity. Therefore, m5CRLSig can efficiently assess the prognosis of STAD patients and can be used as a biological marker for immunotherapy.
Collapse
|