1
|
Down regulation of IL-10 and TGF-β1 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine 2022; 153:155838. [DOI: 10.1016/j.cyto.2022.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
|
2
|
Sandoval C, Araujo G, Sosa W, Avalos S, Silveira F, Corbett C, Zúniga C, Laurenti M. In situ cellular immune response in non-ulcerated skin lesions due to Leishmania (L.) infantum chagasi infection. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200149. [PMID: 33708246 PMCID: PMC7909480 DOI: 10.1590/1678-9199-jvatitd-2020-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background Skin lesions of patients affected by non-ulcerated cutaneous leishmaniasis
(NUCL) caused by L. (L.) infantum chagasi are characterized
by lymphohistiocytic inflammatory infiltrate associated with epithelioid
granuloma and scarce parasitism. However, the in situ
cellular immune response of these patients is unclear. Therefore, the aim of
the present study was to characterize the cellular immune response in the
skin lesions of patients affected by NUCL. Methods Twenty biopsies were processed by immunohistochemistry using primary
antibodies to T lymphocytes (CD4, CD8), NK cells, B lymphocytes,
macrophages, nitric oxide synthase and interferon-gamma. Results Immunohistochemistry revealed higher expression of all cellular types and
molecules (IFN-γ, iNOS) in the dermis of diseased skin compared to the skin
of healthy individuals (p < 0.05). Morphometric analysis performed in the
skin lesions sections showed the predominance of CD8+ T
lymphocytes in the mononuclear infiltrate, followed by macrophages, mostly
iNOS+, a response that could be mediated by IFN-γ. Conclusion Our study improves knowledge of the cellular immune response in
non-ulcerated or atypical cutaneous leishmaniasis caused by L. (L.)
infantum chagasi in Central America and pointed to the pivotal
participation of CD8+ T lymphocytes in the host defense
mechanisms against the parasite in patients with NUCL.
Collapse
Affiliation(s)
- Carmen Sandoval
- Laboratory of Infectious Diseases Pathology, Department of Pathology, Medical School (FMUSP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Gabriela Araujo
- Laboratory of Infectious Diseases Pathology, Department of Pathology, Medical School (FMUSP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Wilfredo Sosa
- Laboratory of Infectious Diseases Pathology, Department of Pathology, Medical School (FMUSP), University of São Paulo (USP), São Paulo, SP, Brazil.,Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Sara Avalos
- Master Program in Infectious and Zoonotic diseases, School of Microbiology, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Fernando Silveira
- Department of Parasitology, Evandro Chagas Institute, Secretariat of Health Surveillance, Ministry of Health, Belém, PA, Brazil.,Institute of Tropical Medicine, Federal University of Pará, Belém, PA, Brazil
| | - Carlos Corbett
- Laboratory of Infectious Diseases Pathology, Department of Pathology, Medical School (FMUSP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Concepción Zúniga
- Department of Health Surveillance, School Hospital, Tegucigalpa, Honduras
| | - Marcia Laurenti
- Laboratory of Infectious Diseases Pathology, Department of Pathology, Medical School (FMUSP), University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
3
|
da Silva AVA, de Souza TL, Figueiredo FB, Mendes AAV, Ferreira LC, Filgueira CPB, Cuervo P, Porrozzi R, Menezes RC, Morgado FN. Detection of amastigotes and histopathological alterations in the thymus of Leishmania infantum-infected dogs. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:127-139. [PMID: 32207879 PMCID: PMC7212199 DOI: 10.1002/iid3.285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022]
Abstract
Introduction In canine visceral leishmaniasis (CVL), lymphopenia, and the disorganization of lymphoid organs such as spleen and lymph nodes have been demonstrated. However, the involvement of thymus in CVL has not been evaluated so far. Herein, we investigated whether the thymus can be colonized by Leishmania infantum in naturally infected dogs. Methods Thymus were obtained from 16 of 58 dogs and samples of this organ were submitted to immunohistochemistry for laminin and fibronectin detection, histopathology, in situ hybridization and polymerase chain reaction (PCR) targeting the gene ITS‐1 for Leishmania and sequenced. Samples of spleen, skin and popliteal lymph nodes were collected and submitted to immunohistochemistry and parasitological culture followed by multilocus enzyme electrophoresis. Results L. infantum was identified in all dogs. DNA and amastigote forms of Leishmania were detected in the thymus from 16 dogs by PCR and in eight by immunohistochemistry. Besides thymus, parasites were detected in spleen, lymph nodes, and skin. A granulomatous or pyogranulomatous thymitis was observed in eight dogs associated to intact amastigotes forms of this parasite. Fibronectin deposition in thymus was higher in dogs with more clinical signs. Conclusions These results demonstrate that the thymus of dogs can be parasitized by L. infantum, which may generate inflammatory reactions leading to alterations in thymic microarchitecture.
Collapse
Affiliation(s)
- Aurea V A da Silva
- Laboratório de Pesquisa em Leishmanioses, IOC/FIOCRUZ, Rio de Janeiro, Brasil
| | - Tainã L de Souza
- Laboratório de Pesquisa em Leishmanioses, IOC/FIOCRUZ, Rio de Janeiro, Brasil
| | - Fabiano B Figueiredo
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brasil
| | - Artur A V Mendes
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, INI/FIOCRUZ, Rio de Janeiro, Brasil
| | - Luiz C Ferreira
- Serviço de Anatomia Patológica, INI/FIOCRUZ, Rio de Janeiro, Brasil
| | | | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, IOC/FIOCRUZ, Rio de Janeiro, Brasil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, IOC/FIOCRUZ, Rio de Janeiro, Brasil
| | - Rodrigo C Menezes
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, INI/FIOCRUZ, Rio de Janeiro, Brasil
| | - Fernanda N Morgado
- Laboratório de Pesquisa em Leishmanioses, IOC/FIOCRUZ, Rio de Janeiro, Brasil
| |
Collapse
|
4
|
Gonçalves AAM, Leite JC, Resende LA, Mariano RMDS, Silveira P, Melo-Júnior OADO, Ribeiro HS, de Oliveira DS, Soares DF, Santos TAP, Marques AF, Galdino AS, Martins-Filho OA, Dutra WO, da Silveira-Lemos D, Giunchetti RC. An Overview of Immunotherapeutic Approaches Against Canine Visceral Leishmaniasis: What Has Been Tested on Dogs and a New Perspective on Improving Treatment Efficacy. Front Cell Infect Microbiol 2019; 9:427. [PMID: 31921703 PMCID: PMC6930146 DOI: 10.3389/fcimb.2019.00427] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Visceral leishmaniasis (VL), caused by digenetic protozoa of the genus Leishmania, is the most severe form of leishmaniasis. Leishmania infantum is one of the species responsible for VL and the disease caused is considered a zoonosis whose main reservoir is the dog. Canine visceral leishmaniasis (CVL) can lead to the death of the animal if left untreated. Furthermore, the available pharmocologial treatment for CVL presents numerous disadvantages, such as relapses, toxicity, drug resistance, and the fact treated animals continue to be reservoirs when treatment fails to achieve parasitological cure. Moreover, the available VL control methods have not been adequate when it comes to controlling parasite transmission. Advances in immune response knowledge in recent years have led to a better understanding of VL pathogenesis, allowing new treatments to be developed based on immune system activation, often referred to as immunotherapy. In fact, well-defined protocols have been described, ranging from the use of immunomodulators to the use of vaccines. This treatment, which can also be associated with chemotherapy, has been shown to be effective in restoring or inducing an adequate immune response to reduce parasitic burden, leading to clinical improvement. This review focuses on immunotherapy directed at dogs infected by L. infantum, including a literature review of what has already been done in dogs. We also introduce a promising strategy to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Silveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Otoni Alves de Oliveira Melo-Júnior
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Fonseca Soares
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaiza Aline Pereira Santos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Ferreira Marques
- Laboratory of Immuno-Proteome and Parasite Biology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Olindo Assis Martins-Filho
- Laboratory of Diagnostic and Monitoring Biomarkers, René Rachou Institute, FIOCRUZ-Minas, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denise da Silveira-Lemos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
de Martini CC, de Andrade JT, de Almeida SKM, Oliveira Silva KL, de Rezende Eugenio F, Dos Santos PSP, de Lima VMF. Cellular apoptosis and nitric oxide production in PBMC and spleen from dogs with visceral leishmaniasis. Comp Immunol Microbiol Infect Dis 2018; 57:1-7. [PMID: 30017072 DOI: 10.1016/j.cimid.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is involved in the death of the Leishmania parasite and regulation of apoptosis. We quantified the frequency of cells producing NO and its levels in the peripheral blood mononuclear cells (PBMC), leukocytes from spleen in Visceral Leishmaniasis (VL) symptomatic dogs and correlated NO levels with apoptosis and parasite load in the spleen. The percentage of NO+ cells and CD14+/NO+ was higher in PBMC and spleen cells in infected dogs than in controls. The levels of NO+ and CD14+/NO+ cells was higher in PBMC, but lower spleen of dogs infected than compared to control. Late apoptosis rates increased in PBMC and spleen of infected dogs compared to controls, and the NO levels and apoptosis not showed correlation. There was a positive correlation between the percentage of cells producing NO in the spleen and parasite load. The NO participates in the immune response in the canine VL, but it is not apoptosis inducer.
Collapse
Affiliation(s)
- Cleber Costa de Martini
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil
| | - Jéssica Thomé de Andrade
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil
| | - Stéfani Karin Martiniano de Almeida
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil
| | - Kathlenn Liezbeth Oliveira Silva
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil
| | - Flavia de Rezende Eugenio
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil
| | - Paulo Sergio Patto Dos Santos
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Clinical Care, Surgery and Animal Reproduction, Laboratory of Cellular Immunology, Faculty of Veterinary Medicine of Araçatuba, Universidade Estadual Paulista, "Julio de Mesquita Filho", FMVA/UNESP, Rua Clovis Pestana, 793, Araçatuba, São Paulo, CEP 16050-680, Brazil.
| |
Collapse
|
6
|
Nolte A, Junginger J, Baum B, Hewicker-Trautwein M. Heterogeneity of macrophages in canine histiocytic ulcerative colitis. Innate Immun 2017; 23:228-239. [DOI: 10.1177/1753425916686170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histiocytic ulcerative colitis (HUC) is a chronic enteropathy which most notably occurs in Boxer dogs and French bulldogs. The inflamed mucosa is hallmarked by large, foamy, periodic acid–Schiff (PAS)-positive macrophages infiltrating the colonic mucosa. As little is known about their origin and phenotype, an immunohistochemical study was performed using different macrophage markers. Generally, canine colonic macrophages showed high expression of ionised calcium-binding adaptor molecule 1 and MHC class II. In canine HUC, macrophages revealed up-regulation of lysozyme and L1 Ag but decreased CD163 expression compared with controls, suggesting them to be pro-inflammatory cells, whereas the healthy colonic mucosa was characterised by an anti-inflammatory macrophage phenotype. In addition, PAS reaction was used to discriminate macrophage subpopulations. PAS– macrophages displayed higher expression of L1 Ag and CD64, whereas PAS+ cells, which were only present in HUC patients, were characterised by increased expression of lysozyme, inducible nitric oxide synthase and CD204. This indicates PAS+ cells to be mature macrophages contributing to the inflammatory process, which are most likely maintained by differentiation of immature PAS– macrophages continuously recruited from blood monocytes. In summary, macrophage heterogeneity in canine HUC probably illustrates their different maturation states and functions compared with the healthy animals.
Collapse
Affiliation(s)
- Anna Nolte
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Berit Baum
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany
| | | |
Collapse
|
7
|
Venturin GL, Chiku VM, Silva KLO, de Almeida BFM, de Lima VMF. M1 polarization and the effect of PGE 2 on TNF-α production by lymph node cells from dogs with visceral leishmaniasis. Parasite Immunol 2016; 38:698-704. [PMID: 27506591 DOI: 10.1111/pim.12353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/08/2016] [Indexed: 12/01/2022]
Abstract
Canine visceral leishmaniasis (CVL) is caused by the intracellular parasite Leishmania infantum. Increased levels of arginase, nitric oxide (NO2 ) and prostaglandin E2 (PGE2 ) can play a regulatory role regarding the immune response in CVL cases. This study aimed to evaluate the arginase activity in adherent macrophages cultured from the lymph nodes of healthy and naturally infected dogs and to examine the NO2 and PGE2 levels in the supernatant of these cultures. In addition, the regulatory effect of PGE2 on the production of tumour necrosis factor (TNF-α) and interleukin-10 (IL-10) in supernatants from the total lymph node was observed in leucocyte cultures. The arginase activity was lower in the adherent macrophages cultured from the lymph nodes of naturally infected dogs and there were higher concentrations of NO2 and PGE2 in the supernatants of these cultures. Higher TNF-α and IL-10 concentrations were observed in supernatants from total lymph node leucocytes cultures, from infected dogs, and the presence of indomethacin only decreased TNF-α in the supernatant of these cultures. We conclude that the low arginase activity in macrophages suggested that M1 polarization and PGE2 were participating in the immune response and were increasing TNF-α in CVL.
Collapse
Affiliation(s)
- G L Venturin
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V M Chiku
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - K L O Silva
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - B F M de Almeida
- Animal Science, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V M F de Lima
- Department of Surgery and Animal Reproduction, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
8
|
Nascimento M, Albuquerque T, Nascimento A, Caldas I, Do-Valle-Matta M, Souto J, Talvani A, Bahia M, Galvão L, Câmara A, Guedes P. Impairment of Interleukin-17A Expression in Canine Visceral Leishmaniosis is Correlated with Reduced Interferon-γ and Inducible Nitric Oxide Synthase Expression. J Comp Pathol 2015; 153:197-205. [DOI: 10.1016/j.jcpa.2015.10.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
|
9
|
Ulchar I, Celeska I, Stefanovska J, Jakimovska A. Hematological and biochemical parameters in symptomatic and asymptomatic leishmania-seropositive dogs. MACEDONIAN VETERINARY REVIEW 2015. [DOI: 10.14432/j.macvetrev.2015.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
10
|
Adipose tissue macrophages in non-rodent mammals: a comparative study. Cell Tissue Res 2015; 363:461-78. [DOI: 10.1007/s00441-015-2253-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/03/2015] [Indexed: 12/13/2022]
|
11
|
Shen JQ, Yang QL, Xue Y, Cheng XB, Jiang ZH, Yang YC, Chen YD, Zhou XN. Inducible nitric oxide synthase response and associated cytokine gene expression in the spleen of mice infected with Clonorchis sinensis. Parasitol Res 2015; 114:1661-70. [PMID: 25687522 PMCID: PMC4412385 DOI: 10.1007/s00436-015-4347-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/22/2015] [Indexed: 12/26/2022]
Abstract
Clonorchis sinensis is a food-borne parasite that induces a permanent increase of nitrosation in the body upon infection. The spleen is an important secondary lymphoid organ for the regulation of immune responses locally and in the whole body. However, the functions and mechanisms of the spleen in nitric oxide (NO) responses after C. sinensis infection remain unknown. In this study, BALB/c mice were infected with 20, 40, and 80 C. sinensis metacercariae to simulate mild, moderate, and severe infections, respectively. We examined the expression of inducible nitric oxide synthase (iNOS) in the spleen and the relevant cytokine transcription in splenocytes from the mice infected with different amounts of metacercariae. The iNOS of the mice infected with 80 metacercariae was expressed in the spleen as early as 10 days post-infection (dpi) and gradually increased until 90 dpi. The iNOS expression in the mice infected with 40 metacercariae was detected only at 45 and 90 dpi, but not in the mice infected with 20 metacercariae. The level of interferon (IFN)-γ messenger RNA (mRNA) transcription in splenocytes significantly increased at 10 and 20 dpi (P < 0.05) in response to mild/moderate infection but gradually decreased to normal levels after 45 dpi. The level of IL-12p35 mRNA transcription did not change at 10 and 20 dpi but significantly decreased after 45 dpi under moderate/severe infection (P < 0.05/0.01/0.001). The level of IL-18 mRNA transcription significantly increased at 10 dpi (P < 0.05/0.01) but significantly decreased after 20 dpi (P < 0.05/0.01/0.001). These results suggest that spleen is an important organ for iNOS/NO responses, which correspond to the severity of C. sinensis infection, but cannot be attributed to the expression of the Th1 cytokines.
Collapse
Affiliation(s)
- Ji-Qing Shen
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 People’s Republic of China
| | - Qing-Li Yang
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025 People’s Republic of China
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, 530028 People’s Republic of China
| | - Yan Xue
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 People’s Republic of China
| | - Xiao-Bing Cheng
- Department of Parasitology, Guangxi Medical University, Nanning, 530021 People’s Republic of China
| | - Zhi-Hua Jiang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, 530028 People’s Republic of China
| | - Yi-Chao Yang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, 530028 People’s Republic of China
| | - Ying-Dan Chen
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025 People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Disease, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025 People’s Republic of China
| |
Collapse
|