1
|
Tkaczyk-Wlizło A, Kowal K, Śmiech A, Ślaska B. Whole Mitochondrial Genome Sequencing Analysis of Canine Testicular Tumours. Int J Mol Sci 2024; 25:9944. [PMID: 39337432 PMCID: PMC11432695 DOI: 10.3390/ijms25189944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Currently, the molecular background based on mitochondrial DNA (mtDNA) analysis of canine testicular tumours is underestimated. The available data mostly focus on histopathological evaluations, with a few reports of nuclear genome (nDNA) studies. Tumourigenesis represents a highly complex and diverse genetic disorder, which can also encompass defects in mtDNA. The aim of this study was to identify molecular changes in whole mitochondrial genome sequences obtained from dogs affected by testicular tumours. Samples of blood, tumour, and healthy tissue were collected from each animal, and mtDNA (ultimately 45 samples) was subsequently sequenced. Thereafter, protein analyses were performed to assess the impact of the identified molecular alterations on the amino acid level. The total number of observed changes included 722 SNPs, 12 mutations, 62 indels, 5 indel mutations, and 35 heteroplasmic sites. The highest number of mtDNA variants in protein-coding genes COX1, COX3, ATP6, ND1, ND4, and ND5 was observed. Interestingly, SNPs were found in 10 out of 22 tRNA genes. Most of the identified mtDNA defects were synonymous changes at the amino acid level. Also, polymorphisms and heteroplasmy were frequently observed in the variable number of tandem repeat (VNTR) regions, especially in its fragment spanning 16,138-16,358 bp. Based on the obtained results, it was possible to select 11 polymorphisms that occurred in all the tested samples (benign, malignant) and an additional five SNPs identified only in benign neoplasms. The comprehensive analysis of malignant testicular tumours demonstrated a significant diversity in their molecular profiles, with changes ranging from 17 to 101 per sample.
Collapse
Affiliation(s)
- Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (A.T.-W.); (K.K.)
| | - Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (A.T.-W.); (K.K.)
| | - Anna Śmiech
- Department of Pathomorphology and Forensic Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30 St., 20-612 Lublin, Poland;
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (A.T.-W.); (K.K.)
| |
Collapse
|
2
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
3
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
4
|
Mitochondrial DNA alterations in the domestic dog (Canis lupus familiaris) and their association with development of diseases: a review. Mitochondrion 2022; 63:72-84. [DOI: 10.1016/j.mito.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/06/2022]
|
5
|
Kowal K, Tkaczyk-Wlizło A, Pierzchała M, Gawor J, Ślaska B. Molecular differences in mitochondrial DNA genomes of dogs with malignant mammary tumours. Vet Comp Oncol 2021; 20:256-264. [PMID: 34554638 DOI: 10.1111/vco.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine molecular defects in mitochondrial DNA (mtDNA) with the use of large-scale genome analysis in malignant canine mammary gland tumours and indicate whether these changes were linked with the carcinogenesis process. With the use of the NGS technology, we sequenced 27 samples of mtDNA isolated from blood and tumours obtained from 13 dogs with mammary gland tumours. The total number of mutations and polymorphisms in the analysed mitochondrial genomes was 557. We identified 383 single nucleotide polymorphisms (SNP), 32 indels (or length polymorphisms), 4 mutations, 137 heteroplasmic positions and 1 indel mutation. The highest variability (132 changes) was observed in the variable number of tandem repeats (VNTR) region. The heteroplasmy rate in VNTR varied among individuals and even between two tumours in one organism. Our previous study resulted in determination of a probable CpG island in this region, thus it is not excluded that these changes might alter mtDNA methylation. Only the ATP8 gene was not affected by any polymorphisms or mutations, whereas the COX1 gene had the highest number of polymorphisms from all protein-coding genes. One change m.13594G>A was detected in a region spanning two genes: ND5 and ND6, from which a deleterious effect was observed for the ND5 protein. Molecular changes were frequently observed in the TΨC loop, which is thought to interact with ribosomal RNA.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
6
|
Defect in Mitochondrial NADH-Dehydrogenase Genes in Canine Mast Cell Tumours. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Recent studies have demonstrated a significant role of mitochondrial DNA (mtDNA) defects in the pathogenesis of many human and some canine tumours. The aim of this study was to identify mutations in the ND2 and ND4 mitochondrial genes in canine mast cell tumours and determine their association with the process of neoplastic transformation and the phenotypic traits of dogs. In total, 136 gene sequences from 68 biological samples, including blood and neoplastic tissue samples from 34 dogs with diagnosed MCTs, were analysed. The study consisted in DNA sequencing of the ND2 and ND4 genes as well as bioinformatics and statistical analyses. For the first time, mutations in NADH-dehydrogenase genes were detected in dogs with MCTs. In total, 22 polymorphic loci and 19 mutations in the ND2 and ND4 genes were identified. The majority of the identified mutations were homoplasmic, and tumour heteroplasmy was detected in eight nucleotide positions in three dogs. Seven of the ND2 mutations and two of the ND4 mutations caused an amino acid change. The changes in non-synonymous protein-coding SNPs did not exert an adverse effect on proteins. A statistically significant correlation of the presence of mutations/polymorphisms with the sex, age, and size of the dogs and the tumour location was demonstrated. Polymorphisms and mutations in NADH-dehydrogenase genes, including mastocyte-specific changes, in canine mast cell tumours that had not been reported earlier in the literature were identified. Some of these changes may imply that these are the hotspot mutations in canine mast cell tumours. It cannot be excluded that the molecular changes are directly associated with the development of mast cell tumours, and further investigations are needed to verify whether they can become molecular markers of MCTs in the future.
Collapse
|
7
|
Analysis of Mitochondrial Genome from Labrador (Canis lupus familiaris) with Mammary Gland Tumour Reveals Novel Mutations and Polymorphisms. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to find associations between the process of neoplastic transformation and mtDNA mutations/polymorphisms, i.e. factors with potential prognostic significance, and to determine their impact on the biochemical properties, as well as structural, and functional properties of proteins. Blood and neoplastic tissue samples were collected from a 9-year-old Labrador dog with a diagnosed malignant mammary tumour. Next-generation genome sequencing (NGS) of the entire mitochondrial genome was performed using Illumina technology, and bioinformatics analyses were carried out. This is the first report demonstrating the application of NGS in the analysis of the canine mtDNA genome in neoplastic disease. The proposed strategy is innovative and promising. For the first time in the literature, the sequence of 29 genes was analysed to determine their association with the prevalence of tumour. In total, 32 polymorphic loci and 15 mutations were identified. For the first time, as many as 24 polymorphisms and all the mutations have been described to be associated with the neoplastic process in dogs. Most polymorphisms/mutations were found in the D-loop (31% of the polymorphisms and 93% of the mutations) and the COX1 gene sequence (16% of the polymorphisms). Blood or cancer heteroplasmy was noted in 93% of the mutations. Four of the 18 polymorphisms detected in the protein-coding genes were non-synonymous polymorphisms that have not been described in the literature so far (m.T7593C in COX2, m.G8807A in COX3, m.A9911G in ND4L, and m.T13299A in ND5) but resulted in changes in amino acids in proteins. These mutations and polymorphisms can affect mitochondrial functions and may be a result of cell adaptation to the changes in the environment occurring during carcinogenesis. The replacement of “wild type” mtDNA by a mutated molecule may be an important phenomenon accompanying carcinogenesis.
Collapse
|
8
|
Occurrence and Distribution of Canine Cutaneous Mast Cell Tumour Characteristics Among Predisposed Breeds. J Vet Res 2019; 63:141-148. [PMID: 30989146 PMCID: PMC6458547 DOI: 10.2478/jvetres-2019-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction Breed predisposition to cutaneous mast cell tumours (MCT) in a population of dogs in Poland affected by various skin tumours was assessed, and the distribution of MCT characteristics such as histological grading, sex, age, and location, in predisposed breeds was evaluated. Material and Methods The retrospective epidemiological study included 550 dogs affected by cutaneous MCTs with a reference group of 2,557 dogs diagnosed with other skin tumours. Results A univariable logistic regression analysis was performed to determine the odds ratios (ORs) with 95% confidence intervals. The risk of high-grade MCTs was the highest for Shar-Peis (OR: 26.394) and American Staffordshire Terriers (OR: 2.897). Boxers (OR: 6.619), Labrador Retrievers (OR: 2.630), French Bulldogs (OR: 2.050), Golden Retrievers (OR: 1.949), and American Staffordshire Terriers (OR: 2.592) were mainly affected by low-grade MCTs. The high risk of MCT was calculated to be at the age of 4–6 years for Labrador Retrievers (OR: 2.686) and 7–10 years for Boxers (OR: 2.956) and French Bulldogs (OR: 9.429). MCTs were significantly more often located on the trunk in French Bulldogs (OR: 4.680), American Staffordshire Terriers (OR: 2.520), and Labrador Retrievers (OR: 1.948). There was no statistically significant correlation between gender and the occurrence of MCTs in the breeds. Conclusions The breed-predicated differences in the clinical course of MCTs suggest a genetic background for the tumours.
Collapse
|
9
|
Śmiech A, Ślaska B, Bownik A, Grzybowska-Szatkowska L, Dudka J, Łopuszyński W. Heteroplasmic Mutations and Polymorphisms in the Cyb Gene of Mitochondrial DNA in Canine Mast Cell Tumours. In Vivo 2018; 33:57-63. [PMID: 30587603 DOI: 10.21873/invivo.11439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022]
Abstract
AIM Identification of mutations and polymorphisms in the cytochrome b gene (Cyb) of mitochondrial DNA (mtDNA) in canine mast cell tumours and determinatiion of their association with the process of neoplastic transformation. MATERIALS AND METHODS The samples comprised tumour tissues and blood obtained from 34 dogs of various breeds. Mutations and polymorphisms in the Cyb gene were detected using amplification and sequencing methods. RESULTS Heteroplasmic mutations were detected at seven positions of mtDNA in 86% of the individuals. Blood and tumour heteroplasmy were recorded at five nucleotide positions of the Cyb gene, whereas tumour heteroplasmy was detected at two positions. Polymorphisms were detected at 14 Cyb gene positions in in the blood of 91% of dogs with mast cell tumours. CONCLUSION The presence of numerous mutations and polymorphisms of Cyb in the blood and tumour tissues and the high frequency of heteroplasmy indicate their involvement in the process of neoplastic transformation in dogs.
Collapse
Affiliation(s)
- Anna Śmiech
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Internal Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Brygida Ślaska
- Department of Biological Bases of Animal Production, Faculty of Animal Breeding and Biology, University of Life Sciences in Lublin, Lublin, Poland
| | - Adam Bownik
- Department of Biological Bases of Animal Production, Faculty of Animal Breeding and Biology, University of Life Sciences in Lublin, Lublin, Poland
| | | | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Łopuszyński
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Internal Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
10
|
Epidemiological assessment of the risk of canine mast cell tumours based on the Kiupel two-grade malignancy classification. Acta Vet Scand 2018; 60:70. [PMID: 30390687 PMCID: PMC6215678 DOI: 10.1186/s13028-018-0424-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
Background The degree of differentiation of mast cell tumours (MCTs) is the most important feature and reflects the morphological characteristics and metastatic potential of the tumour and its likely response to treatment and the prognosis. The aim of this study was to epidemiologically analyse the risk of MCT development in dogs according to breed, age, sex, size and anatomical location of the tumour using the Kiupel grading system. The analysis involved 492 dogs selected based on a histopathological assessment of 2763 canine skin tumours. A logistic regression analysis was performed to determine the odds ratios (ORs) with 95% confidence intervals. Results Mast cell tumours accounted for 17.8% of all diagnosed canine skin tumours. The highest risk of high-grade MCTs was noted in the Shar-Pei (OR 28.18, P < 0.001) and Weimaraner (OR 6.45, P = 0.023). The highest risk of low-grade MCTs was determined in the Boxer (OR 6.72, P < 0.001), and Pug (OR 6.13, P = 0.027). The scrotum (OR 31.72, P < 0.001), inguinal area (OR 17.69, P < 0.001) and axilla (OR 6.30, P < 0.001) had the highest risk of high-grade MCTs. The risk of high-grade MCTs increased with age and peaked in the oldest dogs, aged 11–16 years (OR 9.55, P < 0.001). A higher risk of low-grade tumours was noted in younger dogs (aged 4–6 years) (OR 8.54, P < 0.001) and females (OR 1.43, P = 0.001). Statistical analysis further revealed a higher risk of both low (OR 3.47, P < 0.001) and high-grade MCTs (OR 1.71, P = 0.006) in medium-sized dogs. Conclusions This study demonstrated relationships between Kiupel grading system and phenotypic traits, age and location of canine MCTs confirming the complex biological nature of this tumour. Electronic supplementary material The online version of this article (10.1186/s13028-018-0424-2) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Śmiech A, Ślaska B, Łopuszyński W, Jasik A, Szczepanik M, Wilkołek P. Epidemiological Study of Canine Mast Cell Tumours According to the Histological Malignancy Grade. Pol J Vet Sci 2017; 20:455-465. [DOI: 10.1515/pjvs-2017-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of the study was to identify significant relationships between the tumour malignancy grade and dogs’ age, breed, sex, size, and location of mast cell tumours (MCTs). MCTs accounted for 13.27% of all diagnosed canine skin tumours. The highest incidence was recorded among Boxers, Labrador Retrievers, American Staffordshire Terriers, and Golden Retrievers. Statistical analysis revealed significantly higher probability of occurrence of the grade I mast cell tumour in the French Bulldog in the head, neck, torso, and limb regions, the grade-II mast cell tumour in Boxer, Doberman, Dachshund, shepherds, and setters in the scrotal region, and the grade III mast cell tumour in Shar-Pei in the axilla region. In the group of the oldest dogs aged 11-16, there was higher risk of development of MCTs grade II and III. Young dogs (aged 2-3 and 4-6) were found to be more prone to development of MCTs grade I. There was no correlation between MCTs grade and dogs’ sex and size. To the authors’ knowledge this is the first report on statistical relationships between the degree of mast cell tumour malignancy and dogs’ phenotypic traits, age and tumour location. This analysis indicate predilections for development of the particular mast cell tumour malignancy degrees in certain dog breeds, age, and anatomical location
Collapse
|