1
|
Tahir AH, Ding Y, Wan J, Shah MK, Janyaro H, Li XJ, Ding MX. Impact of electro-acupuncture on EAAT2 and NMDAR-2B expression in goats with visceral hypersensitivity. Heliyon 2024; 10:e40700. [PMID: 39717594 PMCID: PMC11665384 DOI: 10.1016/j.heliyon.2024.e40700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Objective This study evaluates the effect of electro-acupuncture (EA) on visceral hypersensitivity (VH) and the expression of N-methyl-D-aspartate receptor-2B (NMDAR-2B) and glutamate transporter EAAT2 in goats. Methods Twenty-four goats were divided into four groups: saline, 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS), TNBS + EA, and sham EA. EA was administered at Zusanli (ST36) with 60 Hz and 1-3 mA on specified days. Electromyography (EMG) recorded visceromotor response to colorectal distention (CRD). Spinal cords were collected for immunohistochemistry, western blotting, and RT-PCR. The ileum was examined histologically. Results The repeated EA administration significantly attenuated VH (P < 0.05) in TNBS-treated goats without similar effects in the sham group. NMDAR-2B expression increased (P < 0.01), and EAAT2 expression decreased (P < 0.01) in the TNBS group compared to saline. EA increased the EAAT2 and decreased the NMDAR-2B expression (P < 0.01) compared to TNBS, with no change in the sham-EA group. Conclusion EA may alleviate VH by upregulating EAAT2 and downregulating NMDAR-2B in the spinal cord of TNBS-treated goats, indicating its potential for treating chronic visceral pain in gastrointestinal disorders.
Collapse
Affiliation(s)
- Adnan Hassan Tahir
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Gannan Innovation and Transformation Medical Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Manoj Kumar Shah
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Pharmacology and Surgery, Institute of Agriculture and Animal Science, Rampur Chitwan, Nepal
| | - Habibullah Janyaro
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Xiao-Jing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Guo P, Zhang Q, Nan S, Wang H, Ma N, Kiani FA, Ding M, Chen J. Electroacupuncture Relieves Visceral Hypersensitivity via Balancing PAR2 and PAR4 in the Descending Pain Modulatory System of Goats. Brain Sci 2023; 13:922. [PMID: 37371401 DOI: 10.3390/brainsci13060922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Electroacupuncture (EA) is an efficient treatment for visceral hypersensitivity (VH). However, the mechanism underlying VH remains obscure. This study aimed to examine the effect of EA at Housanli acupoint on PAR2 and PAR4 expression in the periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and spinal cord dorsal horn (SCDH) axes, as well as on expression of the proinflammatory cytokines IL-1β and TNF-α, COX-2 enzyme, c-Fos, and the neuropeptides CGRP and SP in the same areas of the descending pain modulatory system. To induce VH in male goats, a 2,4,6-trinitrobenzene-sulfonic acid (TNBS)-ethanol solution was administered to the ileal wall. The visceromotor response (VMR) and nociceptive response at different colorectal distension pressures were measured to evaluate VH. Goats in the TNBS group displayed significantly increased VMR and nociceptive response scores, and elevated protein and mRNA levels of PAR2 and PAR4 in the descending pain modulatory system compared to those in the control group. EA alleviated VMR and nociceptive responses, decreased the protein and mRNA expression levels of PAR2, and elevated those of PAR4 in the descending pain modulatory system. EA may relieve VH by reducing PAR2 expression and increasing PAR4 expression in the descending pain modulatory system.
Collapse
Affiliation(s)
- Panpan Guo
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Qiulin Zhang
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Haolong Wang
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan 60000, Pakistan
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
3
|
Nan S, Wan J, Lei Q, Wang X, Ma N, Yin R, Zhu J, Ding M, Ding Y. The involvement of the primo vascular system in local enteritis and its modification by electroacupuncture. Front Immunol 2023; 13:1072996. [PMID: 36713388 PMCID: PMC9874324 DOI: 10.3389/fimmu.2022.1072996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The primo vascular system (PVS), an intensive network structure, has been claimed to be representative of the acupuncture meridian. Here, we explored the role of the PVS in local enteritis and its modification by acupuncture. Methods Chronic cecitis in rabbits was induced by 2,4,6-trinitro-benzene-sulfonic acid (TNBS). The PVS on the cecum was visualized with trypan blue staining, and collected with the help of microsurgical forceps under an optical stereomicroscope. Results The increased primo vessels (PVs) and primo nodes (PNs) of the PVS on the surface of the cecum were induced by local inflammation, which was positively correlated with the inflammatory cells in the cecal mucosa. Tandem mass tag (TMT) based proteomic analysis revealed that 110 differentiated proteins of the PVS existed between TNBS-treated and control rabbits; 65 proteins were upregulated, while 45 proteins were downregulated. These proteins were mainly enriched in inflammation- and immunity-related processes, such as inflammatory cell proliferation, antigen presentation, and cell adhesion in the proliferated PVS (data are available via ProteomeXchange with the identifiers PXD034280). Importantly, TNBS-induced cecitis, the proliferated PVS and inflammation response-related proteins (CD40, CD45, HLA-DRA1, LAMP1, JAGN1 and FGL1) in the PVS were alleviated or reversed by repetitive electroacupuncture (EA) stimulations. Conclusion These results suggest that the proliferated PVS and its active inclusions were related to the inflammatory process, which was modified by EA. Our study provides a new avenue for further exploration of the mechanism by which EA exerts anti-inflammatory effects.
Collapse
Affiliation(s)
- Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Gannan Innovation and Transformation Medical Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Qianghui Lei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinya Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruiling Yin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiandi Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,*Correspondence: Yi Ding,
| |
Collapse
|
4
|
Ma N, Li X, Li Q, Yang D, Zhuang S, Nan S, Liu A, Ding M, Ding Y. Electroacupuncture relieves visceral hypersensitivity through modulation of the endogenous cannabinoid system. Acupunct Med 2022:9645284221107699. [PMID: 35957508 DOI: 10.1177/09645284221107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Electroacupuncture (EA) can effectively relieve visceral hypersensitivity (VH). However, its mechanisms are still unclear. OBJECTIVE To investigate the impact of EA on VH caused by ileitis, and whether EA relieves VH by modulating the endogenous cannabinoid system (ECS). METHODS Thirty male native goats were randomly divided into a saline-treated control group (Saline, n = 9) and three 2,4,6-trinitro-benzenesulfonic acid (TNBS)-treated VH model groups that underwent injection of TNBS into the ileal wall to induce VH and remained untreated (TNBS, n = 9) or received six sessions of EA (for 30 min every 3 days) (TNBS + EA, n = 6) or sham acupuncture (TNBS + Sham, n = 6). The visceromotor response (VMR) to colorectal distention (CRD) was measured after each EA treatment. Three goats in the Saline/TNBS groups were euthanized after 7 days for histopathological examination; the remaining 24 (n = 6/group) underwent sampling of the ileal wall, T11 spinal cord and brain nuclei/areas related to visceral regulation and ascending pain modulation system on day 22. Expression of cannabinoid receptor 1 (CB1R), fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) was detected by immunohistochemistry. RESULTS VMR to CRD was greater in TNBS-treated goats than in saline-treated goats (p < 0.01) from day 7 to 22. After day 7, EA-treated goats showed a decreased (p < 0.05) VMR compared with untreated TNBS-exposed goats. TNBS treatment decreased CB1R and increased FAAH and MAGL expression in the ileum and related nuclei/areas; this was reversed by EA. CONCLUSION EA ameliorates VH, probably by regulating the ECS in the intestine and nuclei/areas related to visceral regulation and descending pain modulation systems.
Collapse
Affiliation(s)
- Ning Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiaojing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Qiuhua Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Diqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shen Zhuang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Tahir AH, Li JJ, Tang Y. Peripheral and Spinal Mechanisms Involved in Electro-Acupuncture Therapy for Visceral Hypersensitivity. Front Neurosci 2021; 15:696843. [PMID: 34658755 PMCID: PMC8511820 DOI: 10.3389/fnins.2021.696843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
One of the important characteristic features of clinically significant gastrointestinal disorders is visceral hypersensitivity (VH). Pain sensitization or VH is a big challenge for clinicians and becomes a very thorny work in clinical practices; the therapeutic efficacy for VH results in limited success. A popular second therapy that is being approved for the induction of analgesia and attenuates VH with fewer side effects includes electro-acupuncture (EA). Different peripheral and spinal neurological chemicals, including neurotransmitters, neuropeptides, and cytokines, and different signaling pathways were associated with EA treatment in VH. Despite the higher acceptance of EA, the underlying mechanism still needs to be further explored. In this paper, we review the available literature to find the peripheral and spinal mechanisms involved in EA to relieve VH.
Collapse
Affiliation(s)
- Adnan Hassan Tahir
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jia-Jia Li
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Regmi B, Shah MK. Possible implications of animal models for the assessment of visceral pain. Animal Model Exp Med 2020; 3:215-228. [PMID: 33024943 PMCID: PMC7529330 DOI: 10.1002/ame2.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Acute pain, provoked generally after the activation of peripheral nociceptors, is an adaptive sensory function that alerts the individual to avoid noxious stimuli. However, uncontrolled acute pain has a maladaptive role in sensory activity leading to development of a chronic pain state which persists even after the damage is resolved, or in some cases, in the absence of an initial local acute injury. Huge numbers of people suffer from visceral pain at least once during their life span, leading to substantial health care costs. Although studies reporting on the mechanism of visceral pain are accumulating, it is still not precisely understood. Therefore, this review aims to elucidate the mechanism of visceral pain through an evaluation of different animal models and their application to develop novel therapeutic approaches for treating visceral pain. To assess the nociceptive responses in viscera, several visceral pain models such as inflammatory, traction, stress and genetic models utilizing different methods of measurement have been devised. Among them, the inflammatory and traction models are widely used for studying the visceral pain mechanism of different disease conditions and post-operative surgery in humans and animals. A hapten, 2,4,6-trinitrobenzene sulfonic acid (TNBS), has been extensively used as an inflammatory agent to induce visceral pain. The traction model seems to cause a strong pain stimulation and autonomic reaction and could thus be the most appropriate model for studying the underlying visceral pain mechanism and for probing the therapeutic efficacies of various anesthetic and analgesics for the treatment of visceral pain and hyperalgesia.
Collapse
Affiliation(s)
- Bharata Regmi
- Department of Surgery and Pharmacology Agriculture and Forestry University (AFU) Rampur Chitwan Nepal
| | - Manoj K Shah
- Department of Surgery and Pharmacology Agriculture and Forestry University (AFU) Rampur Chitwan Nepal
| |
Collapse
|
7
|
Wan J, Ding Y, Tahir AH, Shah MK, Janyaro H, Li X, Zhong J, Vodyanoy V, Ding M. Electroacupuncture Attenuates Visceral Hypersensitivity by Inhibiting JAK2/STAT3 Signaling Pathway in the Descending Pain Modulation System. Front Neurosci 2017; 11:644. [PMID: 29209161 PMCID: PMC5701938 DOI: 10.3389/fnins.2017.00644] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) has been used for treating visceral hypersensitivity (VH). However, the underlying molecular mechanism remains unclear. This study was aim to testify the effect of EA on ileitis-provoked VH, and to confirm whether EA attenuates VH through Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway in the periaqueductal gray (PAG)-the rostral ventromedial medulla (RVM)-the spinal cord dorsal horn (SCDH) axis. Methods: Goats were anesthetized and laparotomized for injecting 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-ethanol solution (30mg TNBS dissolved in 40% ethanol) into the ileal wall to induce VH. EA was treated for 30min from day 7, then every 3 days for six times. VH was assessed by visceromotor response (VMR) and pain behavior response to 20, 40, 60, 80, and 100 mmHg colorectal distension pressures at day 7, 10, 13, 16, 19, and 22. The spinal cord in the eleventh thoracic vertebra and the brain were collected at day 22. The protein and mRNA levels of IL-6, JAK2, and STAT3 in the SCDH were detected with western blot and qPCR, respectively. The distribution of these substances was observed with immunohistochemistry in the ventrolateral PAG (vlPAG), RVM (mainly the nucleus raphe magnus, NRM), SCDH, the nucleus tractus solitaries (NTS) and the dorsal motor nucleus of vagi (DMV). Results: Goats administered with TNBS-ethanol solution showed diarrhea, enhanced VMR and pain behavior response, and increased IL-6, phosphorylated JAK2 and STAT3 (pJAK2 and pSTAT3) in the vlPAG, NRM, NTS and DMV, and their protein and mRNA levels in the SCDH. EA relieved diarrhea, VMR and pain behavior response, decreased IL-6, pJAK2 and pSTAT3 levels in the vlPAG, NRM, SCDH, NTS, and DMV except for pSTAT3 in the DMV, but did not affect mRNA level of these three substances in the SCDH. Conclusion: EA attenuates VH probably through inhibiting JAK2/STAT3 signaling pathway in the PAG-RVM-SCDH axis.
Collapse
Affiliation(s)
- Juan Wan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Adnan H Tahir
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manoj K Shah
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Habibullah Janyaro
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Mingxing Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|