1
|
Laseca N, Ziadi C, Perdomo-Gonzalez DI, Valera M, Demyda-Peyras S, Molina A. Reproductive traits in Pura Raza Española mares manifest inbreeding depression from low levels of homozygosity. J Anim Breed Genet 2024; 141:453-464. [PMID: 38299872 DOI: 10.1111/jbg.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Inbreeding depression is a genetic phenomenon associated with the loss of fitness and mean phenotypic performance due to mating between relatives. Historically, inbreeding coefficients have been estimated from pedigree information. However, the onset of genomic selection programs provides large datasets of individuals genotyped using SNP arrays, enabling more precise assessment of an individual's genomic-level inbreeding using genomic data. One of the traits most sensitive to issues stemming from increased inbreeding is reproduction. This is particularly important in equine, in which fertility is only moderate compared to other livestock species. To explore this further, we evaluated the effect of inbreeding on five reproductive traits (age at first foaling (AFF), average interval between foalings (AIF), total number of foalings (NF), productive life (PL) and reproductive efficiency (RE)) in Pura Raza Español mares using genomic data. Residual predicted phenotypes were obtained by purging these traits through the REML (wgResidual) and ssGREML (gResidual) approaches in reproductive data of 29,847 PRE mares using the BLUPF90+ program. Next, we used pedigree-based (Fped) and ROH-based genomic (FROH) inbreeding coefficients derived from 1018 animals genotyped with 61,271 SNPs to estimate the inbreeding depression (linear regression). Our results indicated significant levels of inbreeding depression for all reproductive traits, with the exception of the AIF trait when Fped was used. However, all traits were negatively affected by the increase in genomic inbreeding, and FROH was found to capture more inbreeding depression than Fped. Likewise, REML models (ssGREML) using genomic data for estimated predicted residual phenotypes resulted in higher variance explained by the model compared with the models not using genomics (REML). Finally, a segmented regression analysis was conducted to evaluate the effect of inbreeding depression, revealing that the levels of genealogical and genomic homozygosity do not manifest uniformly in reproductive traits. In contrast, the levels of inbreeding depression ranged from low to high as homozygosity increased. This analysis also showed that reproductive traits are very sensitive to inbreeding depression, even with relatively low levels of homozygosity.
Collapse
Affiliation(s)
- Nora Laseca
- Department of Genetics, University of Cordoba, Córdoba, Spain
| | - Chiraz Ziadi
- Department of Genetics, University of Cordoba, Córdoba, Spain
| | | | - Mercedes Valera
- Department of Agronomy, ETSIA, University of Seville, Seville, Spain
| | | | - Antonio Molina
- Department of Genetics, University of Cordoba, Córdoba, Spain
| |
Collapse
|
2
|
Lawson JM, Shilton CA, Lindsay-McGee V, Psifidi A, Wathes DC, Raudsepp T, de Mestre AM. Does inbreeding contribute to pregnancy loss in Thoroughbred horses? Equine Vet J 2024; 56:711-718. [PMID: 38221707 DOI: 10.1111/evj.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Excessive inbreeding increases the probability of uncovering homozygous recessive genotypes and has been associated with an increased risk of retained placenta and lower semen quality. No genomic analysis has investigated the association between inbreeding levels and pregnancy loss. OBJECTIVES To compare genetic inbreeding coefficients (F) of naturally occurring Thoroughbred Early Pregnancy Loss (EPLs), Mid and Late term Pregnancy Loss (MLPL) and Controls. The F value was hypothesised to be higher in cases of pregnancy loss (EPLs and MLPLs) than Controls. STUDY DESIGN Observational case-control study. METHODS Allantochorion and fetal DNA from EPL (n = 37, gestation age 14-65 days), MLPL (n = 94, gestational age 70 days-24 h post parturition) and Controls (n = 58) were genotyped on the Axiom Equine 670K SNP Genotyping Array. Inbreeding coefficients using Runs of Homozygosity (FROH) were calculated using PLINK software. ROHs were split into size categories to investigate the recency of inbreeding. RESULTS MLPLs had significantly higher median number of ROH (188 interquartile range [IQR], 180.8-197.3), length of ROH (3.10, IQR 2.93-3.33), and total number of ROH (590.8, IQR 537.3-632.3), and FROH (0.26, IQR 0.24-0.28) when compared with the Controls and the EPLs (p < 0.05). There was no significant difference in any of the inbreeding indices between the EPLs and Controls. The MLPLs had a significantly higher proportion of long (>10 Mb) ROH (2.5%, IQR 1.6-3.6) than the Controls (1.7%, IQR 0.6-2.5), p = 0.001. No unique ROHs were found in the EPL or MLPL populations. MAIN LIMITATIONS SNP-array data does not allow analysis of every base in the sequence. CONCLUSIONS This first study of the effect of genomic inbreeding levels on pregnancy loss showed that inbreeding is a contributor to MLPL, but not EPL in the UK Thoroughbred population. Mating choices remain critical, because inbreeding may predispose to MLPL by increasing the risk of homozygosity for specific lethal allele(s).
Collapse
Affiliation(s)
- Jessica M Lawson
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Victoria Lindsay-McGee
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| |
Collapse
|
3
|
Gonçalves AR, Telo da Gama L, Antunes L, Guimarães H, Bliebernicht M, Duarte JC, Cosinha C, Duarte Rego B, Ferro da Costa P, Guimarães T, Rocha A, Bettencourt E. Impact of inbreeding and genetic parameter estimates for seminal traits in Lusitano horses. Theriogenology 2023; 208:43-51. [PMID: 37295289 DOI: 10.1016/j.theriogenology.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
The objectives of this study were to establish baseline information for seminal traits in Lusitano stallions, to assess the impact of inbreeding, interval between collections and age on semen quality during the breeding and non-breeding seasons, and to estimate the corresponding genetic parameters. A total of 2129 ejaculates by 146 Lusitano stallions used for artificial insemination, obtained from four equine reproduction centers distributed throughout Portugal, over a period of 14 years (2008-2021), were included in the study. The seminal traits analyzed, and the corresponding means and standard deviations, were gel-free volume (56.95 ± 28.76 mL), concentration (186.48 ± 104.68 × 106), motility (64.1 ± 16.9%), total number of spermatozoa (TNS) (9.271 ± 4.956 × 109) and total number of motile spermatozoa per ejaculate (TNMS) (5.897 ± 3.587 × 109). These results are in the normal range of values described for other breeds. In the stallions analyzed, the mean value for the inbreeding coefficient was 7.93 ± 5.29%, and for age it was 12.70 ± 6.83 years. A significant decline in sperm concentration, motility, TNS, and TNMS was observed as inbreeding increased. The season also influenced sperm concentration, motility, TNS and TNMS, with the highest values observed during the breeding season. When considering the impact of age on Lusitano seminal parameters, results showed a nonlinear relationship, with a positive effect until 18 years of age for volume, motility, TNS and TNMS and a negative effect after this age, with a slow decrease. However, age had a markedly negative effect on sperm concentration. The interval between semen collections only affected (P < 0.05) sperm motility, with a regression coefficient of +1.89 ± 2.17% per additional day. Genetic parameters were estimated with an Animal Model, and the estimated heritability (repeatability) was 0.27 (0.35) for volume, 0.02 (0.38) for sperm concentration, 0.24 (0.44) for motility, 0.29 (0.39) for TNS and 0.41 (0.41) for TNMS. These results suggest that it is possible to improve semen quality by selection and that the properties of semen produced by a stallion tend to remain consistent throughout its lifetime. Furthermore, the impact of inbreeding should be taken into consideration when selecting Lusitano stallions for fertility.
Collapse
Affiliation(s)
- Ana Rita Gonçalves
- MED Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Luis Telo da Gama
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS). Universidade de Lisboa, 1300-477, Lisbon, Portugal; Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| | - Luis Antunes
- Multivet, Serviços veterinários de Equinos e espécies pecuárias, Lda. Rua Professor Alfredo Reis n.º51, 7005-585, Évora, Portugal
| | - Helena Guimarães
- MED Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | | | | | - Cristina Cosinha
- LusoPecus, Rua da Fábrica 58C, 2135-144, Samora Correia, Portugal
| | | | | | - Tiago Guimarães
- Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal; ICBAS, Laboratório Associado Universidade do Porto, Porto, Portugal
| | - António Rocha
- Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal; ICBAS, Laboratório Associado Universidade do Porto, Porto, Portugal
| | - Elisa Bettencourt
- MED Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
4
|
Cardinali I, Giontella A, Tommasi A, Silvestrelli M, Lancioni H. Unlocking Horse Y Chromosome Diversity. Genes (Basel) 2022; 13:genes13122272. [PMID: 36553539 PMCID: PMC9777570 DOI: 10.3390/genes13122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Anna Tommasi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
6
|
Perdomo-González DI, Molina A, Sánchez-Guerrero MJ, Bartolomé E, Varona L, Valera M. Genetic inbreeding depression load for fertility traits in Pura Raza Española mares. J Anim Sci 2021; 99:6414403. [PMID: 34718615 PMCID: PMC8645228 DOI: 10.1093/jas/skab316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 01/12/2023] Open
Abstract
Fertility is a key factor in the economic success of horse farms. However, it has received little attention due to the difficulty of measuring fertility objectively. Since its studbook creation (1912), the Pura Raza Española (PRE) breed has been a closed population and become high in-bred resulting in inbreeding depression (poor phenotypic values). Nevertheless, heterogeneous effects of inbreeding depression have been detected among founders and nonfounders. The aims of this study were (1) to analyze the genetic parameters for reproductive traits in mares of the PRE horse breed and (2) to estimate, for the first time, the inbreeding depression load associated with common ancestors of the breed. A total of 22,799 mares were analyzed. Heritability estimates ranged from 0.05 (interval between first and second foaling) to 0.16 (age at first foaling), whereas inbreeding depression load ratios ranged from 0.06 (parturition efficiency at 6th foaling) to 0.17 (age at first foaling), for a partial inbreeding coefficient of 10%. Although heritability is related to the variability expressed in the population, inbreeding depression load ratios measure the potential variability, whether expressed in the population or not. Most correlations between additive and inbreeding depression load genetic values were significant (P < 0.001) and of low to moderate magnitude. Our results confirm that individual inbreeding depression loads allow us to select horses that have a genetic value resistant to the deleterious effects of inbreeding.
Collapse
Affiliation(s)
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - María J Sánchez-Guerrero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Ester Bartolomé
- Departamento de Agronomía, ETSIA, Universidad de Sevilla, Sevilla, Spain
| | - Luis Varona
- Departamento de Anatomía Embriología y Genética Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Mercedes Valera
- Departamento de Agronomía, ETSIA, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Trachsel DS, Calloe K, Mykkänen AK, Raistakka P, Anttila M, Fredholm M, Tala M, Lamminpää K, Klaerke DA, Buhl R. Exercise-Associated Sudden Death in Finnish Standardbred and Coldblooded Trotters - A Case Series With Pedigree Analysis. J Equine Vet Sci 2021; 104:103694. [PMID: 34416991 DOI: 10.1016/j.jevs.2021.103694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Exercise-associated sudden deaths (EASDs) are deaths occurring unexpectedly during or immediately after exercise. Sudden cardiac death (SCD) is one cause of EASD. Cardiac arrhythmias caused by genetic variants have been linked to SCD in humans. We hypothesize that genetic variants may be associated with SCD in animals, including horses. Genetic variants are transmitted to offspring and their frequency might increase within a family. Therefore, the frequency of such variants might increase with the inbreeding factor. Higher inbreeding could have a negative impact on racing performance. Pedigree data and career earnings from racehorses diagnosed with SCD between 2002 and 2017 were compared using non-parametric tests with 1) control horses that died due to catastrophic musculoskeletal injuries and 2) horses that raced during the same period without reported problems. Diagnosis of SCD was based on necropsy reports, including macroscopic and microscopic examinations. Death was registered in the study period for 61 horses. Eleven of these horses were excluded due to missing autopsy reports. In 25 cases, the diagnosis remained unknown and death was possibly caused by cardiac arrhythmia, in two cases cardiac disease was identified, in seven cases a rupture of a major vessel had occurred. In addition, 16 horses died or were euthanized due to severe musculoskeletal injuries. No significant differences in inbreeding coefficients or in career earnings were found between the groups or between horses with EASD compared with other horses racing during the same period. The study provides no evidence for increased inbreeding factor in Finnish racehorses with SCD.
Collapse
Affiliation(s)
- Dagmar S Trachsel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark; Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anna K Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Raistakka
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marjukka Anttila
- Veterinary Bacteriology and Pathology Research Unit, Finnish Food Authority, Helsinki
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Martti Tala
- Suomen Hippos, the Finnish Trotting and Breeding Association
| | | | - Dan A Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
8
|
How Depressing Is Inbreeding? A Meta-Analysis of 30 Years of Research on the Effects of Inbreeding in Livestock. Genes (Basel) 2021; 12:genes12060926. [PMID: 34207101 PMCID: PMC8234567 DOI: 10.3390/genes12060926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Inbreeding depression has been widely documented for livestock and other animal and plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020 on seven livestock species, and compared the degree of inbreeding depression (1) across different trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease in phenotypic value of 0.13% of a trait’s mean, or 0.59% of a trait’s standard deviation. Inbreeding had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based measures. There were no consistent differences in p-values for percentage of homozygous SNPs, inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship matrix. The number of studies that directly compares these different measures, however, is limited and comparisons are furthermore complicated by differences in scale and arbitrary definitions of particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide the dataset with inbreeding depression estimates of 154 studies and stress the importance of always reporting detailed information (on traits, inbreeding coefficients, and models used) along with inbreeding depression estimates.
Collapse
|
9
|
Vostry L, Vostra-Vydrova H, Citek J, Gorjanc G, Curik I. Association of inbreeding and regional equine leucocyte antigen homozygosity with the prevalence of insect bite hypersensitivity in Old Kladruber horse. Anim Genet 2021; 52:422-430. [PMID: 33970495 PMCID: PMC8360196 DOI: 10.1111/age.13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Inbreeding depression is the reduction of performance caused by mating of close relatives. In livestock populations, inbreeding depression has been traditionally estimated by regression of phenotypes on pedigree inbreeding coefficients. This estimation can be improved by utilising genomic inbreeding coefficients. Here we estimate inbreeding depression for insect bite hypersensitivity (IBH) prevalence, the most common allergic horse disease worldwide, in Old Kladruber horse. In a deep pedigree with 3214 horses (187 genotyped), we used a generalised linear mixed model with IBH phenotype from 558 horses examined between 1996 and 2009 (1368 records). In addition to the classical pedigree information, we used the single-step approach that enabled joint use of pedigree and genomic information to estimate inbreeding depression overall genome and equine leucocyte antigen (ELA) class II region. Significant inbreeding depression was observed in all models fitting overall inbreeding coefficients (odds ratio between 1.018 and 1.074, P < 0.05) with the exception of Kalinowski's new inbreeding (P = 0.0516). The increase of ELA class II inbreeding was significantly associated with increased prevalence of IBH (odds ratio 1.018; P = 0.027). However, when fitted jointly with the overall inbreeding coefficient, the effect of ELA class II inbreeding was not significant (odds ratio 1.016; P = 0.062). Overall, the higher ELA class II and/or overall inbreeding (pedigree or genomic) was associated with increased prevalence of IBH in Old Kladruber horses. The single-step approach provides an efficient use of all the available pedigree, genomic, and phenotype information for estimation of overall and regional inbreeding effects.
Collapse
Affiliation(s)
- L Vostry
- Czech University of Life Sciences, Kamycka 129, Prague, 16500, Czech Republic
| | - H Vostra-Vydrova
- Czech University of Life Sciences, Kamycka 129, Prague, 16500, Czech Republic.,Institute of Animal Science, Pratelstvi 815, Prague, 10400, Czech Republic
| | - J Citek
- South Bohemia University, Branisovska 31a, Ceske Budejovice, 370 05, Czech Republic.,Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - G Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH259RG, UK
| | - I Curik
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, 10000, Croatia
| |
Collapse
|
10
|
Próchniak T, Kasperek K, Knaga S, Rozempolska-Rucińska I, Batkowska J, Drabik K, Ziȩba G. Pedigree Analysis of Warmblood Horses Participating in Competitions for Young Horses. Front Genet 2021; 12:658403. [PMID: 33936176 PMCID: PMC8082513 DOI: 10.3389/fgene.2021.658403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to characterize the population structure and assess the genetic diversity of warmblood horses used in the show jumping discipline. Pedigree data of 1,048 horses participating in the Polish Championships for Young Horses were analyzed. The pedigree of these animals included 12 863 individuals. The study consisted in analysis of the pedigree structure of the horses and characterization of the homozygosity and genetic diversity in the population. It was found that pedigree completeness and depth were sufficient for reliable assessment of the genetic diversity in the analyzed population. Although the average inbreeding coefficient exhibited at an acceptable level (approx. 1.01%), the increasing percentage of inbred animals seems disturbing. The results have shown that modern sport horses are derived from a small number of high-quality sires whose offspring were intensively used for breeding—bottleneck effect. In consequence, a greater part of the genetic variation reduction was observed in the non-founder generations. Given the changes in the studied population, the level of inbreeding in modern sport horses should be monitored, and pedigree data should be effectively used in selection for mating.
Collapse
Affiliation(s)
- Tomasz Próchniak
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Kornel Kasperek
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Sebastian Knaga
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Iwona Rozempolska-Rucińska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Justyna Batkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Kamil Drabik
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Grzegorz Ziȩba
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
11
|
Perdomo-González DI, Sánchez-Guerrero MJ, Molina A, Valera M. Genetic Structure Analysis of the Pura Raza Español Horse Population through Partial Inbreeding Coefficient Estimation. Animals (Basel) 2020; 10:E1360. [PMID: 32781594 PMCID: PMC7459874 DOI: 10.3390/ani10081360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to analyze genetic parameters such as the inbreeding coefficient (F), relatedness coefficient (AR) and partial inbreeding coefficient (Fij) of the whole PRE population, and the ancestors which account for 50% of the total genetic variability of the current population, from genealogical information. The average F of the whole PRE population (328,706 animals) has decreased from 8.45% to 7.51% in the least 20 years. The Fij was estimated for the whole PRE population, resulting in a database of 58,772,533 records containing one record for each Fij that each animal receives from a certain common ancestor (CA). A total of 10,244 CAs contributed to the Fij with an average of 5370 descendants, with each descendant having an average of 170 CAs. Over the generations, the number of CAs has increased, while the proportion of Fij by each one has decreased. In addition, the contributions of the more influential ancestors have changed. The increased census, the limited use of artificial insemination and our increased knowledge about inbreeding depression and the animals' breeding values allow breeders to select horses more for their functionality and conformation than for their pedigree reputation, which is the cause of all these changes.
Collapse
Affiliation(s)
- Davinia I. Perdomo-González
- Departamento de Ciencias Agro-forestales, ETSIA, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Sevilla, Spain; (M.J.S.-G.); (M.V.)
| | - María J. Sánchez-Guerrero
- Departamento de Ciencias Agro-forestales, ETSIA, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Sevilla, Spain; (M.J.S.-G.); (M.V.)
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Gregor J. Mendel, Planta baja, Carretera Madrid-Cádiz km 396ª, 14071 Córdoba, Spain;
| | - Mercedes Valera
- Departamento de Ciencias Agro-forestales, ETSIA, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Sevilla, Spain; (M.J.S.-G.); (M.V.)
| |
Collapse
|
12
|
Dini P, Bartels T, Revah I, Claes AN, Stout TAE, Daels P. A retrospective study on semen quality parameters from four different Dutch horse breeds with different levels of inbreeding. Theriogenology 2020; 157:18-23. [PMID: 32768723 DOI: 10.1016/j.theriogenology.2020.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023]
Abstract
A high degree of inbreeding has been reported to negatively impact semen quality in Friesian horses and Shetland ponies. Both breeds are characterized by a closed studbook, small population size, and high incidence of inbreeding. The Dutch Warmblood studbook (KWPN: Koninklijk Warmblood Paardenstamboek Nederland) is a much larger studbook with two distinct populations: the KWPN-Riding horses, managed as an 'open' studbook, and the KWPN-Harness horses, representing a much smaller subpopulation within the KWPN breed and managed as an 'almost closed' studbook. It was recently reported that the degree of inbreeding in KWPN-Harness horses has increased in recent decades due to the small gene pool; however, the degree of inbreeding is still lower than that of Friesian horses and Shetland ponies. We hypothesized that a high or rising degree of inbreeding might negatively impact semen quality. In the present study, we retrospectively compared semen quality parameters of stallions from four different breeds or types (Friesian Horses, Shetland Ponies, KWPN-Riding horses, and KWPN-Harness horses), each reported with different degrees of inbreeding. Semen concentration, and percentages of motile, morphologically normal and live spermatozoa, and the total number of morphologically normal, progressive motile spermatozoa per ejaculate (TNM) were analyzed for 2832 semen evaluations performed over a 15-year period. KWPN-Harness horses had a significantly lower sperm concentration, % motile spermatozoa and % live spermatozoa than KWPN-Riding horses but the % motile and % morphologically normal spermatozoa and TNM in both KWPN-Harness and KWPN-Riding horses were significantly higher than in Friesian horses and Shetland ponies. These results suggest a lower semen quality in KWPN-Harness than KWPN-Riding horses, potentially as a result of a higher coefficient of inbreeding. The negative trend observed in the KWPN-Harness horses may be a warning sign, and breeders or stud books should monitor the degree of inbreeding carefully to avoid a further reduction in semen quality, to the levels observed in Friesian horses and Shetland ponies.
Collapse
Affiliation(s)
- Pouya Dini
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Tara Bartels
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Irma Revah
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Anthony N Claes
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM, Utrecht, the Netherlands
| | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM, Utrecht, the Netherlands
| | - Peter Daels
- Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
13
|
Todd ET, Hamilton NA, Velie BD, Thomson PC. The effects of inbreeding on covering success, gestation length and foal sex ratio in Australian thoroughbred horses. BMC Genet 2020; 21:41. [PMID: 32268877 PMCID: PMC7140579 DOI: 10.1186/s12863-020-00847-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Horses produce only one foal from an eleven-month gestation period, making the maintenance of high reproductive rates essential. Genetic bottlenecks and inbreeding can increase the frequency of deleterious variants, resulting in reduced reproductive levels in a population. In this study we examined the influence of inbreeding levels on foaling rate, gestation length and secondary sex ratio in Australian Thoroughbred mares. We also investigated the genetic change in these traits throughout the history of the breed. Phenotypic data were obtained from 27,262 breeding records of Thoroughbred mares provided by three Australian stud farms. Inbreeding was estimated using the pedigree of each individual dating back to the foundation of the breed in the eighteenth century. Results While both gestation length and foaling rate were heritable, no measurable effect of inbreeding on either trait was found. However, we did find that the genetic value for both traits had decreased within recent generations. A number of environmental factors also had significant effects on foaling rate and gestation length. Secondary sex ratio had only an extremely small paternal heritable effect and was not susceptible to environmental influences. Conclusions In contrast to racing performance, inbreeding had no measurable effect on foaling rate or gestation length in Australian Thoroughbred horses. This could be because the level of inbreeding in the population examined is not high enough to show a discernible effect on reproductive traits. Populations that experience higher levels of inbreeding due to use of artificial reproductive technologies or extremely small population sizes may show a more pronounced reduction in natural foaling rate or gestation length. It is also possible that the intensive management techniques used in the Thoroughbred population masks any negative effects of inbreeding. The decrease in the genetic value of foaling rate is likely to be because horses with unfavourable genetic potential have not yet been selected out of the population. The change in genetic value of gestation length may be due to selective breeding favouring horses with shorter pregnancies. We also found that prioritising the mating of older mares, and avoiding out of season mating could lead to an increased breeding success.
Collapse
Affiliation(s)
- Evelyn T Todd
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Natasha A Hamilton
- Racing Australia Equine Genetics Research Centre, Racing Australia, Sydney, NSW, 2000, Australia
| | - Brandon D Velie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter C Thomson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|