1
|
McCauley SR, Clark SD, Leach SB, Quest BW, Streeter RM. Evaluation of taurine and carnitine concentrations in whole blood, plasma, skeletal muscle and cardiac muscle in dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:999-1015. [PMID: 38432690 DOI: 10.1111/jpn.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Little is known about how plasma and whole blood taurine and plasma carnitine correlate to concentrations in skeletal and cardiac muscle and the effects of diet in dogs. The purpose of this study was to evaluate the correlation among plasma, skeletal and cardiac muscle carnitine and taurine and whole blood taurine and determine the effect of diet. The study protocol was approved by the Pet Food Solutions Institutional Animal Care and Use Committee. Thirty-three mixed-breed hounds and 32 beagles were evaluated at Day 0 then removed from their baseline diet and randomized to a test diet: high animal protein, grain-inclusive (HA-GI), low animal protein, grain-free (LA-GF), low animal protein, grain-inclusive (LA-GI), or high animal protein, grain-free (HA-GF). Blood was drawn every 30 days and endomyocardial (mixed breeds only) and skeletal muscle biopsies were collected at Days 0 and 180. The correlations between plasma and whole blood taurine, or plasma carnitine and skeletal and cardiac muscle concentrations were weak (p < 0.01-0.05). Mixed-breed hounds had increased (p = 0.029) whole blood taurine compared to beagles. Plasma taurine was lower with diet HA-GF, (p = 0.009) however, all diets had increased taurine from Day 0 and were, on average within the laboratory reference range. Dogs fed the HA-GI diet had increased cardiac muscle carnitine esters (p = 0.014). Increased carnitine esters were also appreciated in cardiac muscle in all diets from Day 0 to 180 (p = 0.0001). On Day 180 mixed-breed hounds had increased skeletal total carnitine (p < 0.001) compared to all time points and breeds. This study observed no correlation between plasma, whole blood, skeletal and cardiac muscle taurine concentrations but noted some effects between time, breed and diet.
Collapse
Affiliation(s)
| | | | - Stacey B Leach
- College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | | | |
Collapse
|
2
|
Jackson MI. Replacement of Dietary Carbohydrate with Protein versus Fat Differentially Alters Postprandial Circulating Hormones and Macronutrient Metabolism in Dogs. Metabolites 2024; 14:373. [PMID: 39057696 PMCID: PMC11279194 DOI: 10.3390/metabo14070373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The effect of dietary macronutrients on fasting and postprandial responses was examined. Thirty-six healthy dogs were fed a high-carbohydrate (HiCHO) food once daily for 5 weeks, followed by randomization to either a high-protein, low-carbohydrate (PROT_LoCHO) or high-fat, low-carbohydrate (FAT_LoCHO) food for 5 weeks, then crossed over to the other LoCHO food for 5 weeks. Plasma samples were obtained at the end of each feeding period at timepoints before (0 h) and 2 h post-feeding. Apparent total circulating energy availability was assessed as a summation of the energetic contributions of measured glucose, β-hydroxybutyrate, triglycerides (TGs), non-esterified fatty acids (NEFAs), and fatty acids not from TGs or NEFAs. In both the fed and fasted states, there were increases in circulating apparent total energy availability after feeding the FAT_LoCHO food compared with the HiCHO or PROT_LoCHO foods. Changes from the postabsorptive to postprandial points in catabolic, anabolic, and signaling lipids all exhibited food effects. Consumption of either LoCHO food led to lower leptin/ghrelin ratios in the fasted state relative to the HiCHO food. The FAT_LoCHO food led to the highest postprandial levels of the incretins gastric inhibitory peptide and glucagon-like peptide-1, yet the lowest increases in insulin relative to the other foods. These findings provide information on how macronutrients can influence dietary energy processing and metabolic health.
Collapse
|
3
|
Sun H, Zhang Q, Xu C, Mao A, Zhao H, Chen M, Sun W, Li G, Zhang T. Different Diet Energy Levels Alter Body Condition, Glucolipid Metabolism, Fecal Microbiota and Metabolites in Adult Beagle Dogs. Metabolites 2023; 13:metabo13040554. [PMID: 37110212 PMCID: PMC10143615 DOI: 10.3390/metabo13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diet energy is a key component of pet food, but it is usually ignored during pet food development and pet owners also have limited knowledge of its importance. This study aimed to explore the effect of diet energy on the body condition, glucolipid metabolism, fecal microbiota and metabolites of adult beagles and analyze the relation between diet and host and gut microbiota. Eighteen healthy adult neutered male beagles were selected and randomly divided into three groups. Diets were formulated with three metabolizable energy (ME) levels: the low-energy (Le) group consumed a diet of 13.88 MJ/kg ME; the medium-energy (Me) group consumed a diet of 15.04 MJ/kg ME; and the high-energy (He) group consumed a diet of 17.05 MJ/kg ME. Moreover, the protein content of all these three diets was 29%. The experiment lasted 10 weeks, with a two-week acclimation period and an eight-week test phase. Body weight, body condition score (BCS), muscle condition score (MCS) and body fat index (BFI) decreased in the Le group, and the changes in these factors in the Le group were significantly higher than in the other groups (p < 0.05). The serum glucose and lipid levels of the Le and He groups changed over time (p < 0.05), but those of the Me group were stable (p > 0.05). The fecal pH of the Le and He groups decreased at the end of the trial (p < 0.05) and we found that the profiles of short-chain fatty acids (SCFAs) and bile acids (BAs) changed greatly, especially secondary BAs (p < 0.05). As SCFAs and secondary BAs are metabolites of the gut microbiota, the fecal microbiota was also measured. Fecal 16S rRNA gene sequencing found that the Me group had higher α-diversity indices (p < 0.05). The Me group had notably higher levels of gut probiotics, such as Faecalibacterium prausnitzii, Bacteroides plebeius and Blautia producta (p < 0.05). The diet-host-fecal microbiota interactions were determined by network analysis, and fecal metabolites may help to determine the best physical condition of dogs, assisting pet food development. Overall, feeding dogs low- or high-energy diets was harmful for glucostasis and promoted the relative abundance of pathogenic bacteria in the gut, while a medium-energy diet maintained an ideal body condition. We concluded that dogs that are fed a low-energy diet for an extended period may become lean and lose muscle mass, but diets with low energy levels and 29% protein may not supply enough protein for dogs losing weight.
Collapse
Affiliation(s)
- Haoran Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qiaoru Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hui Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Miao Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Weili Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
4
|
Qu W, Chen Z, Hu X, Zou T, Huang Y, Zhang Y, Hu Y, Tian S, Wan J, Liao R, Bai L, Xue J, Ding Y, Hu M, Zhang XJ, Zhang X, Zhao J, Cheng X, She ZG, Li H. Profound Perturbation in the Metabolome of a Canine Obesity and Metabolic Disorder Model. Front Endocrinol (Lausanne) 2022; 13:849060. [PMID: 35620391 PMCID: PMC9128610 DOI: 10.3389/fendo.2022.849060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Canine models are increasingly being used in metabolic studies due to their physiological similarity with humans. The present study aimed to identify changes in metabolic pathways and biomarkers with potential clinical utility in a canine model of obesity and metabolic disorders induced by a high-fat diet (HFD). Eighteen male beagles were included in this study, 9 of which were fed a HFD for 24 weeks, and the remaining 9 were fed normal chow (NC) during the same period. Plasma and urine samples were collected at weeks 12 and 24 for untargeted metabolomic analysis. Dogs fed a HFD showed a gradual body weight increase during the feeding period and had hyperlipidemia, increased leukocyte counts, and impaired insulin sensitivity at week 24. Plasma and urine metabonomics analysis displayed clear separations between the HFD-fed and NC-fed dogs. A total of 263 plasma metabolites varied between the two groups, including stearidonic acid, linolenic acid, carnitine, long-chain ceramide, 3-methylxanthine, and theophylline, which are mainly engaged in fatty acid metabolism, sphingolipid metabolism, and caffeine metabolism. A total of 132 urine metabolites related to HFD-induced obesity and metabolic disorders were identified, including 3-methylxanthine, theophylline, pyridoxal 5'-phosphate, and harmine, which participate in pathways such as caffeine metabolism and vitamin digestion and absorption. Eight metabolites with increased abundance (e.g., 3-methylxanthine, theophylline, and harmine) and 4 metabolites with decreased abundance (e.g., trigonelline) in both the plasma and urine of the HFD-fed dogs were identified. In conclusion, the metabolomic analysis revealed molecular events underlying a canine HFD model and identified several metabolites as potential targets for the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ze Chen
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Hu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanyan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Hu
- Institute of Model Animal, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jinhua Xue
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Hu
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xin Zhang
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Jingjing Zhao
- Department of Cardiology, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| |
Collapse
|
5
|
Zhang Y, Fu Y, Jiang T, Liu B, Sun H, Zhang Y, Fan B, Li X, Qin X, Zheng Q. Enhancing Fatty Acids Oxidation via L-Carnitine Attenuates Obesity-Related Atrial Fibrillation and Structural Remodeling by Activating AMPK Signaling and Alleviating Cardiac Lipotoxicity. Front Pharmacol 2021; 12:771940. [PMID: 34899326 PMCID: PMC8662783 DOI: 10.3389/fphar.2021.771940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical setting. Its pathogenesis was associated with metabolic disorder, especially defective fatty acids oxidation (FAO). However, whether promoting FAO could prevent AF occurrence and development remains elusive. In this study, we established a mouse model of obesity-related AF through high-fat diet (HFD) feeding, and used l-carnitine (LCA, 150 mg/kg⋅BW/d), an endogenous cofactor of carnitine palmitoyl-transferase-1B (CPT1B; the rate-limiting enzyme of FAO) to investigate whether FAO promotion can attenuate the AF susceptibility in obesity. All mice underwent electrophysiological assessment for atrial vulnerability, and echocardiography, histology and molecular evaluation for AF substrates and underlying mechanisms, which were further validated by pharmacological experiments in vitro. HFD-induced obese mice increased AF vulnerability and exhibited apparent atrial structural remodeling, including left atrial dilation, cardiomyocyte hypertrophy, connexin-43 remodeling and fibrosis. Pathologically, HFD apparently leads to defective cardiac FAO and subsequent lipotoxicity, thereby evoking a set of pathological reactions including oxidative stress, DNA damage, inflammation, and insulin resistance. Enhancing FAO via LCA attenuated lipotoxicity and lipotoxicity-induced pathological changes in the atria of obese mice, resulting in restored structural remodeling and ameliorated AF susceptibility. Mechanistically, LCA activated AMPK/PGC1α signaling both in vivo and in vitro, and pharmacological inhibition of AMPK via Compound C attenuated LCA-induced cardio-protection in palmitate-treated primary atrial cardiomyocytes. Taken together, our results demonstrated that FAO promotion via LCA attenuated obesity-mediated AF and structural remodeling by activating AMPK signaling and alleviating atrial lipotoxicity. Thus, enhancing FAO may be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Yudi Zhang
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuping Fu
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiannan Jiang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Binghua Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hongke Sun
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Zhang
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boyuan Fan
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiangsun Zheng
- The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Effect of 6-Month Feeding with a Diet Enriched in EPA + DHA from Fish Meat on the Blood Metabolomic Profile of Dogs with Myxomatous Mitral Valve Disease. Animals (Basel) 2021; 11:ani11123360. [PMID: 34944135 PMCID: PMC8698023 DOI: 10.3390/ani11123360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Animal nutrition plays an important role in the therapy of many diseases, including heart failure. The aim of the research was to assess whether 6 months of feeding diet enriched in unsaturated fatty acids (from fish meat) in dogs suffering from heart failure due to mitral degeneration impacts the dogs’ metabolic profile and clinical status. Twenty small breed dogs in early stages of heart failure were randomly divided into two groups. One group receiving a standard diet, the second one a diet enriched in fish meat. All dogs continued to receive appropriate cardiac therapy throughout the study. Control examinations were performed at the start of the study, after 3 and 6 months of appropriate feeding. The results showed no differences in clinical, cardiological, haematological and biochemical parameters between the two study groups. The metabolomic changes was more pronounced with time. After 6 months of feeding the diete enriched in fish meat, there was a favorable reduction in glycerophosphocholine and xanthine levels, but an adverse increase in lactate and furvan and a decrease in alanine was not stopped. Abstract Animal nutrition plays an important role in the therapy of many diseases, including heart failure. The aim was to assess whether 6 months of feeding an AEP + ADH enriched diet (from fish meat) in dogs suffering from heart failure due to mitral degeneration impacts the dogs’ metabolic profile and clinical status. Twenty small breed dogs were included: 50% were in stage B2 of MMVD and 50%, in stage C according to ACVIM. Dogs were randomly divided into two groups. One group receiving a standard diet, the second one a diet enriched with EPA + DHA (from fish meat). All dogs continued to receive appropriate therapy throughout the study. Control examinations were performed at the start of the study, after 3 and 6 months of appropriate feeding. Examinations included ECG, ECHO, blood hemathology and biochemistry, morphometric measurements, body fat index and subcutaneous fat tissue thickness. Serum samples were analyzed with a high-performance liquid chromatography system. Data were analyzed using the Progenesis QI (PQI, Non-linear Dynamics). The results showed no differences in clinical, cardiological, haematological and biochemical parameters between the two study groups. An effect on the metabolomic profile following a continued diet enriched in DHA + EPA (from fish meat) was more pronounced with time. After 6 months of feeding the diete enriched with DHA + EPA (from fish meat), there was a favorable reduction in glycerophosphocholine and xanthine levels, but an adverse increase in lactate and furvan and a decrease in alanine was not stopped.
Collapse
|
7
|
Muñoz-Prieto A, Rubić I, Horvatić A, Rafaj RB, Cerón JJ, Tvarijonaviciute A, Mrljak V. Evaluation of Changes in Metabolites of Saliva in Canine Obesity Using a Targeted Metabolomic Approach. Animals (Basel) 2021; 11:ani11092501. [PMID: 34573467 PMCID: PMC8472812 DOI: 10.3390/ani11092501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity is a common problem in pet dogs, affecting half of the general population in some countries. Excess body weight causes several disorders and has a negative impact on dogs' quality of life. The use of metabolomics allows the identification of metabolite traces from the metabolic pathways involved in pathological processes. This study aimed to evaluate salivary metabolite variations in dogs with obesity. The salivary samples of 19 dogs were analyzed using a targeted metabolomic approach, through which 234 metabolites were quantified. Of these, multivariate analysis identified 27 different metabolites altered in dogs with obesity compared with control dogs. These metabolites were mainly classified as amino acids, glycerides, sphingolipids, glycerophospholipids, and acylcarnitines. Some of the changes in these metabolites reflect the insulin resistance status related to obesity in dogs. Overall, it can be concluded that the salivary metabolome of obese dogs reflects the metabolic changes occurring in obesity and could be a source of potential biomarkers for this complex condition.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (A.M.-P.); (I.R.); (V.M.)
| | - Ivana Rubić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (A.M.-P.); (I.R.); (V.M.)
| | - Anita Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - José Joaquín Cerón
- Interlab-UMU, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Asta Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
- Correspondence:
| | - Vladimir Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (A.M.-P.); (I.R.); (V.M.)
| |
Collapse
|
8
|
Banton S, Pezzali JG, Verbrugghe A, Bakovic M, Wood KM, Shoveller AK. Addition of dietary methionine but not dietary taurine or methyl donors/receivers to a grain-free diet increases postprandial homocysteine concentrations in adult dogs. J Anim Sci 2021; 99:6333283. [PMID: 34333630 DOI: 10.1093/jas/skab223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
Grain based ingredients are replaced in part by pulse ingredients in grain-free pet foods. Pulse ingredients are lower in methionine and cysteine, amino acid (AA) precursors to taurine synthesis in dogs. While recent work has investigated plasma and whole blood taurine concentrations when feeding grain-free diets, supplementation of a grain-free diet with various nutrients involved in the biosynthesis of taurine has not been evaluated. This study aimed to investigate the effects of supplementing a complete grain-free dry dog food with either methionine (MET), taurine (TAU), or methyl donors (choline) and methyl receivers (creatine and carnitine; CCC) on postprandial AA concentrations. Eight healthy Beagle dogs were fed 1 of 3 treatments or the control grain-free diet (CON) for 7 d in a 4 × 4 Latin square design. On d7, cephalic catheters were placed and one fasted sample (0 min) and a series of 9 post-meal blood samples were collected at 15, 30, 60, 90, 120, 180, 240, 300 and 360 min. Data were analyzed as repeated measures using the PROC GLIMMIX function in SAS (Version 9.4). Dogs fed MET had greater plasma and whole blood methionine concentrations from 30 - 360 min after a meal (P < 0.0001) and greater plasma homocysteine concentrations from 60 - 360 min after a meal (P < 0.0001) compared to dogs fed CON, TAU and CCC. Dogs fed TAU had greater plasma taurine concentrations over time compared to dogs fed CON (P = 0.02), but were not different than dogs fed MET and CCC (P > 0.05). In addition, most AA remained significantly elevated at 6 h post-meal compared to fasted samples across all treatments. Supplementation of creatine, carnitine and choline in grain-free diets may play a role in sparing the methionine requirement without increasing homocysteine concentrations. Supplementing these nutrients could also aid in the treatment of disease that causes metabolic or oxidative stress, including cardiac disease in dogs, but future research is required.
Collapse
Affiliation(s)
- Sydney Banton
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Júlia G Pezzali
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katie M Wood
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Effects of Weight Loss and Moderate-Protein, High-Fiber Diet Consumption on the Fasted Serum Metabolome of Cats. Metabolites 2021; 11:metabo11050324. [PMID: 34070109 PMCID: PMC8158395 DOI: 10.3390/metabo11050324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 01/06/2023] Open
Abstract
Feline obesity elicits a plethora of metabolic responses leading to comorbidities, with potential reversal during weight loss. The specific metabolic alterations and biomarkers of organ dysfunction are not entirely understood. Untargeted, high-throughput metabolomic technologies may allow the identification of biological components that change with weight status in cats, increasing our understanding of feline metabolism. The objective of this study was to utilize untargeted metabolomic techniques to identify biomarkers and gain mechanistic insight into the serum metabolite changes associated with reduced food intake and weight loss in overweight cats. During a four-wk baseline period, cats were fed to maintain body weight. For 18 wk following baseline, cats were fed to lose weight at a rate of ~1.5% body weight/wk. Blood serum metabolites were measured at wk 0, 1, 2, 4, 8, 12, and 16. A total of 535 named metabolites were identified, with up to 269 of them being altered (p- and q-values < 0.05) at any time point. A principal component analysis showed a continual shift in metabolite profile as weight loss progressed, with early changes being distinct from those over the long term. The majority of lipid metabolites decreased with weight loss; however, ketone bodies and small lipid particles increased with weight loss. The majority of carbohydrate metabolites decreased with weight loss. Protein metabolites had a variable result, with some increasing, but others decreasing with weight loss. Metabolic mediators of inflammation, oxidative stress, xenobiotics, and insulin resistance decreased with weight loss. In conclusion, global metabolomics identified biomarkers of reduced food intake and weight loss in cats, including decreased markers of inflammation and/or altered macronutrient metabolism.
Collapse
|
10
|
Metabolomics shows the Australian dingo has a unique plasma profile. Sci Rep 2021; 11:5245. [PMID: 33664285 PMCID: PMC7933249 DOI: 10.1038/s41598-021-84411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Dingoes occupy a wide range of the Australian mainland and play a crucial role as an apex predator with a generalist omnivorous feeding behaviour. Dingoes are ecologically, phenotypically and behaviourally distinct from modern breed dogs and have not undergone artificial selection since their arrival in Australia. In contrast, humans have selected breed dogs for novel and desirable traits. First, we examine whether the distinct evolutionary histories of dingoes and domestic dogs has lead to differences in plasma metabolomes. We study metabolite composition differences between dingoes (n = 15) and two domestic dog breeds (Basenji n = 9 and German Shepherd Dog (GSD) n = 10). Liquid chromatography mass spectrometry, type II and type III ANOVA with post-hoc tests and adjustments for multiple comparisons were used for data evaluation. After accounting for within group variation, 62 significant metabolite differences were detected between dingoes and domestic dogs, with the majority of differences in protein (n = 14) and lipid metabolites (n = 12), mostly lower in dingoes. Most differences were observed between dingoes and domestic dogs and fewest between the domestic dog breeds. Next, we collect a second set of data to investigate variation between pure dingoes (n = 10) and dingo-dog hybrids (n = 10) as hybridisation is common in regional Australia. We detected no significant metabolite differences between dingoes and dingo-dog hybrids after Bonferroni correction. However, power analysis showed that increasing the sample size to 15 could result in differences in uridine 5′-diphosphogalactose (UDPgal) levels related to galactose metabolism. We suggest this may be linked to an increase in Amylase 2B copy number in hybrids. Our study illustrates that the dingo metabolome is significantly different from domestic dog breeds and hybridisation is likely to influence carbohydrate metabolism.
Collapse
|
11
|
Vendramini THA, Macedo HT, Zafalon RVA, Macegoza MV, Pedrinelli V, Risolia LW, Ocampos FMM, Jeremias JT, Pontieri CFF, Ferriolli E, Colnago LA, Brunetto MA. Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition. Metabolomics 2021; 17:27. [PMID: 33594460 DOI: 10.1007/s11306-020-01753-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The study of metabolic profile can be an important tool to better understand, at a systemic level, metabolic alterations caused by different pathological conditions, such as obesity. Furthermore, it allows the discovery of metabolic biomarkers, which may help to diagnose alterations caused by obesity. OBJECTIVE To investigate the metabolic profile of blood serum of obese dogs, control dogs, and dogs that were subjected to a weight loss program. METHODS Ten obese adult spayed female dogs were included, and their body composition was determined by the deuterium isotope dilution method. The dogs were subjected to a weight loss program and formed a new experimental group after losing 20% of the initial body weight. A third experimental group was composed of ten lean adult spayed female dogs. The metabolic profile of blood serum was evaluated through nuclear magnetic resonance (NMR). Principal Component Analyses (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models were constructed using Pareto scaling pre-processing. Pathway analysis was also performed using the MetaboAnalist online tool. RESULTS The PCA shows that the control and after weight loss groups presented a trend to negative PC1, indicating similarities between these two groups. In contrast, obese animals presented a tendency to appear on negative PC2 indicating a different metabolic profile. The OPLS-DA analysis of the serum indicated that healthy groups presented higher content of glucose, while animals that lost weight had higher levels of cholesterol and lactate than the control group. On the other hand, the analysis showed that lipid content, cholesterol, and branched-chain amino acids were highest in obese animals. Variable Influence on Projection (VIP) analysis demonstrated that Lactate is the most important metabolite for the OPLS-DA model and Hierarchical Cluster Analysis (HCA) corroborated the similarity between the control group and the obese after weight loss groups. Moreover, the pathway analysis indicated the most important metabolic pathways related to this dataset. CONCLUSIONS The metabolomic assessment based on NMR of blood serum differed between obese dogs and animals in optimal body condition. Moreover, the weight loss resulted in metabolic profiles similar to those observed in lean animals.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Henrique T Macedo
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Matheus V Macegoza
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Larissa W Risolia
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Fernanda M M Ocampos
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | | | | | - Eduardo Ferriolli
- Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, 14049900, Brazil
| | - Luiz A Colnago
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | - Marcio A Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil.
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil.
| |
Collapse
|
12
|
What do Brazilian owners know about canine obesity and what risks does this knowledge generate? PLoS One 2020; 15:e0238771. [PMID: 32956414 PMCID: PMC7505417 DOI: 10.1371/journal.pone.0238771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Canine obesity is associated with genetic, environmental, and behavioural factors, with the latter including both the behaviour of the dog and the owner. Knowledge about owner perception of canine obesity and its treatment can inform the development of new strategies to help prevent and manage this disease. Therefore, the aim of this study was to evaluate the opinions of dog owners regarding canine obesity and weight management. Dog owners residing in the city of Sao Paulo (Brazil) completed a questionnaire, either at home or in the waiting rooms of 3 veterinary hospitals. Owners determined their dog's body condition score (BCS), and this was compared with BCS determined by a veterinarian. Questionnaire findings from dogs that were in overweight (BCS 6-7/9) or obese (BCS (8-9/9) condition were compared with those in ideal weight (4-5/9) using chi-square tests and odds ratios. A total of 926 dogs were included, of which 480 (52%), 317 (34%) and 129 (14%) were in ideal, overweight and obese condition, respectively. Many owners under-estimated their dog's weight status, with the proportion increasing as the dog's weight status increased (ideal 60/480, 13%; overweight 174/317, 55%; obese 88/129, 68%; P<0.001). Although most owners (890/926, 96%) believed that canine obesity could pose health risks, the proportion that disagreed increased as weight status increased (ideal 12/480, 2%; overweight 14/317, 4%; 10/129, 8%; P = 0.006). Finally, although most owners (880/926, 95%) stated that they would let their dog undergo weight management, only a minority (182/926; 20%) believed that a trained professional was needed, and they had various misperceptions including potential cost and what the strategies that would be effective. Based on the findings of this study, it would be advisable for veterinarians to spend time addressing these misperceptions, in the hope of both improving awareness of obesity and the outcomes of weight management.
Collapse
|
13
|
Wang J, Zhang C, Zhao Q, Li C, Jin S, Gu X. Metabolic Profiling of Plasma in Different Calving Body Condition Score Cows Using an Untargeted Liquid Chromatography-Mass Spectrometry Metabolomics Approach. Animals (Basel) 2020; 10:E1709. [PMID: 32967218 PMCID: PMC7552654 DOI: 10.3390/ani10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
This study was undertaken to identify metabolite differences in plasma of dairy cows with a normal or high calving body condition score (CBCS), using untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Sixteen multiparous dairy cows were assigned to one of two groups based on CBCS (0 to 5 scale): Normal group (NBCS, 3.25 ≤ BCS ≤ 3.5, n = 8), and high BCS group (HBCS, BCS ≥ 4, n = 8). Plasma samples were collected for metabolomics analysis and evaluation of biomarkers of lipid metabolism (nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB)), and cytokines (leptin, adiponectin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6)). A total of 23 differential metabolites were identified, and functional analyses were performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these metabolites, the concentrations of six lysophosphatidylcholines and one phosphatidylethanolamine, were lower in the HBCS group than in the NBCS group (p < 0.01). Furthermore, these metabolites were involved in these four pathways, among others: glycerophospholipid metabolism, retrograde endocannabinoid signaling, autophagy, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (p < 0.05). In addition, plasma concentrations of leptin (p = 0.06) and TNF-α (p = 0.08) tended to be greater while adiponectin (p = 0.09) lower in HBCS cows than in NBCS cows. The concentrations of NEFA, BHB, or IL-6 did not differ between NBCS and HBCS groups. More importantly, based on the results of the Spearman's correlation analysis, the seven important metabolites were negatively correlated with indices of lipid metabolisms, proinflammatory cytokines, and leptin, but positively correlated with adiponectin. These results demonstrate that CBCS has a measurable impact on the plasma metabolic profile, even when NEFA and BHB are not different. In addition, the identified differential metabolites were significantly correlated to lipid metabolism and inflammation in the over-conditioned fresh cows, which are expected to render a metabolic basis for the diseases associated with over-conditioned dry cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (C.Z.); (Q.Z.); (C.L.); (S.J.)
| |
Collapse
|
14
|
Patterson Rosa L, Mallicote MF, Long MT, Brooks SA. Metabogenomics reveals four candidate regions involved in the pathophysiology of Equine Metabolic Syndrome. Mol Cell Probes 2020; 53:101620. [PMID: 32659253 DOI: 10.1016/j.mcp.2020.101620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 02/02/2023]
Abstract
An analogous condition to human metabolic syndrome, Equine Metabolic Syndrome (EMS) is defined by several clinical signs including obesity, hyperinsulinemia, and peripheral insulin dysregulation (ID). Affected horses may also exhibit hypertension, hyperlipemia and systemic inflammation. Measures of ID typically comprise the gold-standard for diagnosis in veterinary care. Yet, the dynamic nature of insulin homeostasis and complex procedures of typical assays make accurate quantification of ID and EMS challenging. This work aimed to investigate new strategies for identification of biochemical markers and correlated genes in EMS. To quantify EMS risk within this population, we utilized a composite score derived from nine common diagnostic variables. We applied a global liquid chromatography/mass spectroscopy approach (HPLC/MS) to whole plasma collected from 49 Arabian horses, resulting in 3392 high-confidence features and identification of putative metabolites in public databases. We performed a genome wide association analysis with genotypes from the 670k Affymetrix Equine SNP array utilizing EMS-correlated metabolites as phenotypes. We discovered four metabolite features significantly correlated with EMS score (P < 1.474 × 10-5). GWAs for these features results (P = 6.787 × 10-7, Bonferroni) identified four unique candidate regions (r2 > 0.4) containing 63 genes. Significant genomic markers capture 43.52% of the variation in the original EMS score phenotype. The identified genomic loci provide insight into the pathways controlling variation in EMS and the origin of genetic predisposition to the condition. Rapid, feasible and accurate diagnostic tools derived from metabogenomics can be translated into measurable benefits in the timeline and quality of preventative management practices to preserve health in horses.
Collapse
Affiliation(s)
- Laura Patterson Rosa
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA
| | - Martha F Mallicote
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - Maureen T Long
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, PO Box 100123, Gainesville, FL, 32610, USA
| | - Samantha A Brooks
- Department of Animal Sciences and UF Genetics Institute, University of Florida, Gainesville, FL, United States of America, PO Box 110910, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Tryptophan metabolism is differently regulated between large and small dogs. GeroScience 2019; 42:881-896. [PMID: 31784886 PMCID: PMC7286990 DOI: 10.1007/s11357-019-00114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Companion dogs have recently been promoted as an animal model for the study of aging due to their similar disease profile to humans, the sophistication of health assessment and disease diagnosis, and the shared environments with their owners. In addition, dogs show an interesting life history trait pattern where smaller individuals are up to two-fold longer lived than their larger counterparts. While some of the mechanisms underlying this size and longevity trade-off are strongly suspected (i.e., growth hormone/IGF-I), there are likely a number of undiscovered mechanisms as well. Accordingly, we have completed a large-scale global metabolomic profiling of dogs encompassing a range of sizes and ages from three cities across the USA. We found a surprisingly strong location signal in the metabolome, stronger in fact than any signal related to age, breed, or sex. However, after controlling for the effects of location, tryptophan metabolism emerged as significantly associated with weight of the dogs, with small dogs having significantly higher levels of tryptophan pathway metabolites. Overall, our results point toward novel, testable hypotheses about the underlying physiological mechanisms that influence size and longevity in the companion dog and suggest that dogs may be useful in sorting out the complexities of the tryptophan metabolic network.
Collapse
|