1
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Jokelainen P, Virtala AMK, Raulo S, Kantele A, Vapalahti O, Kinnunen PM. Veterinarians and zoonotic pathogens, infections and diseases - questionnaire study and case series, Finland. Infect Dis (Lond) 2024; 56:384-392. [PMID: 38344824 DOI: 10.1080/23744235.2024.2313662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Veterinarians are at risk for numerous zoonotic infections. In this paper, we summarise descriptions of zoonotic infections from a questionnaire study and a series of work-related zoonotic cases, aiming to add to the knowledge on occupational zoonotic risks of veterinarians. METHODS We collected data on zoonotic infections contracted by veterinarians in Finland in two studies:1) using a questionnaire in 2009, and 2) inviting veterinarians who had encountered an occupational zoonosis to report it in structured interviews in 2019. RESULTS AND CONCLUSIONS In the questionnaire study in 2009, of 306 veterinarians several reported zoonotic bacterial skin infections (12%), dermatophytosis (ringworm; 4.2%), virus infections (3.9%), bacterial gastroenteritis (3.3%), other bacterial zoonoses (2.3%), and parasitic infections/infestations (2.3%). In the 2019 interviews, 16 occupational zoonosis cases were reported. Of them, seven were selected to the case series. The selected cases included Capnocytophaga canimorsus sepsis following a dog bite, cryptosporidiosis after a contact with calves, cutaneous listeriosis following calving assistance, Salmonella gastroenteritis contracted at laboratory, Trichophyton dermatophytosis after equine contact, Bacillus anthracis exposure at necropsy, and exposure to rabies through a horse bite. In four of the seven cases, the veterinarian disagreed or strongly disagreed with having had good knowledge of the zoonosis before the incident. The results from the questionnaire study and the case series illustrate the variety of zoonotic pathogens that veterinarians may encounter. There is a need to improve the occupational health of veterinarians and to increase awareness in the occupational health sector. We encourage addressing this need using a One Health approach.
Collapse
Affiliation(s)
- Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Saara Raulo
- Zoonosis Centre, Finnish Food Authority, Helsinki, Finland
| | - Anu Kantele
- Meilahti Infectious Diseases and Vaccine Research Center MeIVac, Department of Infectious Diseases, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Paula M Kinnunen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Häkkänen T, Rimhanen-Finne R, Antikainen J, Ruotsalainen E, Vainio A. Molecular characteristics of Cryptosporidium spp. in human cases in five Finnish hospital districts during 2021: first findings of Cryptosporidium mortiferum (Cryptosporidium chipmunk genotype I) in Finland. Int J Parasitol 2024; 54:225-231. [PMID: 38242277 DOI: 10.1016/j.ijpara.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The aims of the study were to characterise the distribution of Cryptosporidium spp. and subtypes causing infections in Finland during 2021. This was carried out with 60 clinical samples from the hospital districts of Helsinki and Uusimaa, Vaasa, Kymenlaakso, South Karelia, and Central Finland, as well as with Finnish Infectious Diseases Register (FIDR) data. Additionally, the study aimed to explore the potential exposures related to Cryptosporidium mortiferum (Cryptosporidium chipmunk genotype I) infections via interview. Species identification was carried out with quantitative real-time PCR (qPCR) and 18S sequencing. Further typing was performed with gp60 subtyping. Over 70% of the samples were identified as Cryptosporidium parvum and 20% as C. mortiferum, which had not been identified in Finland before. Two cases of Cryptosporidium hominis were identified from patients reported to have travelled outside Europe. The C. parvum subtype IIaA15G2R1 and the C. mortiferum subtype XIVaA20G2T1 were the most common subtypes identified. The interviewed C. mortiferum cases did not report shared exposures such as contact with wild rodents. In conclusion, C. parvum and C. mortiferum were the major causes of cryptosporidiosis in the five studied Finnish hospital districts.
Collapse
Affiliation(s)
- Tessa Häkkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland.
| | - Ruska Rimhanen-Finne
- Infectious Disease Control and Vaccinations Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland
| | - Jenni Antikainen
- Diagnostic Center, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Eeva Ruotsalainen
- Division of Infectious Diseases, Inflammation Center, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Anni Vainio
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00271 Helsinki, Finland
| |
Collapse
|