1
|
Luo HH, Ren WY, Ye AH, Liu L, Jiang Y, Ye FL, He BC, Chen ZH. DDIT3 switches osteogenic potential of BMP9 to lipogenic by attenuating Wnt/β-catenin signaling via up-regulating DKK1 in mesenchymal stem cells. Aging (Albany NY) 2024; 16:12543-12558. [PMID: 39331002 PMCID: PMC11466488 DOI: 10.18632/aging.206091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024]
Abstract
Bone morphogenetic protein 9 (BMP9) functions as a potent inducer of osteogenic differentiation in mesenchymal stem cells (MSCs), holding promise for bone tissue engineering. However, BMP9 also concurrently triggers lipogenic differentiation in MSCs, potentially compromising its osteogenic potential. In this study, we explored the role of DNA damage inducible transcript 3 (DDIT3) in regulating the balance between BMP9-induced osteogenic and lipogenic differentiation in MSCs. Utilizing techniques such as PCR, Western blot, histochemical staining, and in vivo experiments, we analyzed the osteogenic and lipogenic markers induced by BMP9 and delved into the underlying molecular mechanism. We found a significant upregulation of DDIT3 in C3H10T1/2 cells treated with BMP9. This upregulation led to a reduction in BMP9-induced osteogenic markers but an enhancement in lipogenic markers. Conversely, knocking down DDIT3 produced the opposite effects. Furthermore, BMP9-induced bone formation was decreased in the presence of DDIT3, but adipocyte formation was increased. Further investigations demonstrated that BMP9 increased the phosphorylation level of GSK-3β and promoted nuclear translocation of β-catenin, both of which were suppressed by DDIT3. Moreover, DDIT3 decreased the total β-catenin protein level while BMP9 increased the DKK1 protein level, which was further enhanced by DDIT3. Notably, knocking down DKK1 partially reversed the effect of DDIT3 on reducing BMP9-induced osteogenic markers and increasing lipogenic markers. Our findings indicated that DDIT3 enhances lipogenic differentiation by diminishing BMP9's osteogenic potential, possibly through inhibiting Wnt/β-catenin signaling via DKK1 upregulation in MSCs.
Collapse
Affiliation(s)
- Hong-Hong Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yan Ren
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical University, Sichuan 637100, China
- Department of Pharmacy, Nanchong Key Laboratory of Individualized Drug Therapy, North Sichuan Medical University, Sichuan 637100, China
| | - Ai-Hua Ye
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lu Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yue Jiang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fang-Lin Ye
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Bai-Cheng He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhen-Hua Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Department of Basic Medicine, Chongqing Nursing Vocational College, Chongqing 402763, China
| |
Collapse
|
2
|
Tian R, Su S, Yu Y, Liang S, Ma C, Jiao Y, Xing W, Tian Z, Jiang T, Wang J. Revolutionizing osteoarthritis treatment: How mesenchymal stem cells hold the key. Biomed Pharmacother 2024; 173:116458. [PMID: 38503241 DOI: 10.1016/j.biopha.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Osteoarthritis (OA) is a multifaceted disease characterized by imbalances in extracellular matrix metabolism, chondrocyte and synoviocyte senescence, as well as inflammatory responses mediated by macrophages. Although there have been notable advancements in pharmacological and surgical interventions, achieving complete remission of OA remains a formidable challenge, oftentimes accompanied by significant side effects. Mesenchymal stem cells (MSCs) have emerged as a promising avenue for OA treatment, given their ability to differentiate into chondrocytes and facilitate cartilage repair, thereby mitigating the impact of an inflammatory microenvironment induced by macrophages. This comprehensive review aims to provide a concise overview of the diverse roles played by MSCs in the treatment of OA, while elucidating the underlying mechanisms behind these contributions. Specifically, the roles include: (a) Promotion of chondrocyte and synoviocyte regeneration; (b) Inhibition of extracellular matrix degradation; (c) Attenuating the macrophage-induced inflammatory microenvironment; (d) Alleviation of pain. Understanding the multifaceted roles played by MSCs in OA treatment is paramount for developing novel therapeutic strategies. By harnessing the regenerative potential and immunomodulatory properties of MSCs, it may be possible to devise more effective and safer approaches for managing OA. Further research and clinical studies are warranted to optimize the utilization of MSCs and realize their full potential in the field of OA therapeutics.
Collapse
Affiliation(s)
- Ruijiao Tian
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Shibo Su
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Yang Yu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Siqiang Liang
- Zhongke Comprehensive Medical Transformation Center Research Institute (Hainan) Co., Ltd, Haikou 571199, China
| | - Chuqing Ma
- The Second Clinical College, Hainan Medical University, Haikou 571199, China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Weihong Xing
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Jining 272002, China
| | - Tongmeng Jiang
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Juan Wang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
3
|
Uzieliene I, Bironaite D, Bagdonas E, Pachaleva J, Sobolev A, Tsai WB, Kvederas G, Bernotiene E. The Effects of Mechanical Load on Chondrogenic Responses of Bone Marrow Mesenchymal Stem Cells and Chondrocytes Encapsulated in Chondroitin Sulfate-Based Hydrogel. Int J Mol Sci 2023; 24:ijms24032915. [PMID: 36769232 PMCID: PMC9918200 DOI: 10.3390/ijms24032915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Articular cartilage is vulnerable to mechanical overload and has limited ability to restore lesions, which leads to the development of chronic diseases such as osteoarthritis (OA). In this study, the chondrogenic responses of human bone marrow mesenchymal stem cells (BMMSCs) and OA cartilage-derived chondrocytes in 3D chondroitin sulfate-tyramine/gelatin (CS-Tyr)/Gel) hydrogels with or without experimental mechanical load have been investigated. Chondrocytes were smaller in size, had slower proliferation rate and higher level of intracellular calcium (iCa2+) compared to BMMSCs. Under 3D chondrogenic conditions in CS-Tyr/Gel with or without TGF-β3, chondrocytes more intensively secreted cartilage oligomeric matrix protein (COMP) and expressed collagen type II (COL2A1) and aggrecan (ACAN) genes but were more susceptible to mechanical load compared to BMMSCs. ICa2+ was more stably controlled in CS-Tyr/Gel/BMMSCs than in CS-Tyr/Gel/chondrocytes ones, through the expression of L-type channel subunit CaV1.2 (CACNA1C) and Serca2 pump (ATP2A2) genes, and their balance was kept more stable. Due to the lower susceptibility to mechanical load, BMMSCs in CS-Tyr/Gel hydrogel may have an advantage over chondrocytes in application for cartilage regeneration purposes. The mechanical overload related cartilage damage in vivo and the vague regenerative processes of OA chondrocytes might be associated to the inefficient control of iCa2+ regulating channels.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 104, Taiwan
| | - Giedrius Kvederas
- The Clinic of Rheumatology, Orthopaedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-6837-7130
| |
Collapse
|
4
|
Liu C, Li TY, Chen Y, Yang HH, Sun YL. Tendon microstructural disruption promotes tendon-derived stem cells to express chondrogenic genes by activating endoplasmic reticulum stress. J Orthop Res 2023; 41:290-299. [PMID: 35535383 DOI: 10.1002/jor.25362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
The erroneous differentiation of tendon-derived stem cells (TDSCs) into adipocytes, chondrocytes, and osteoblasts is believed to play an important role in the development of tendinopathy. However, the regulatory mechanisms of TDSC differentiation remain unclear. The aim of this study is to investigate the contribution and mechanism of the tendon microstructural disruption to the differentiation of TDSCs. Bovine Achilles tendons were sliced. The tendon slices were stretched with different tensile strains to mimic the tendon structure alteration at various scales. The TDSCs were cultured on the tendon slices. The differentiation of TDSCs and endoplasmic reticulum (ER) stress in the TDSCs were investigated with quantitative reverse transcription polymerase chain reaction, immunostaining and western blot. The effect of ER stress inhibition on chondrogenic differentiation of the TDSCs was further investigated. The structural alteration did not affect the viability of TDSCs. However, the structural alteration of tendon slices with 6.4% strain promoted TDSCs to express the chondrogenic genes. ER stress-related markers, ATF-4 and PERK, were also upregulated. With the inhibition of ER stress, the expression of ATF-4 and the chondrogenic gene SOX9 of TDSCs were inhibited. The study indicated that tendon microdamage could induce the chondrogenic differentiation of TDSCs through triggering ER stress to activate ATF-4 and SOX9 subsequently.
Collapse
Affiliation(s)
- Chang Liu
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China.,Dalian Municipal Central Hospital, Dalian, China
| | - Tian-Yu Li
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Yong Chen
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Huan-Huan Yang
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Yu-Long Sun
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
5
|
mTOR is involved in LRP5-induced osteogenic differentiation of normal and aged periodontal ligament stem cells in vitro. J Mol Histol 2022; 53:793-804. [PMID: 36002678 DOI: 10.1007/s10735-022-10097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) plays an important role in tissue engineering. As the age increased, the cell viability and osteogenic differentiation of PDLSCs all decreased. Low density lipoprotein receptor related protein 5 (LRP5) was found to promote bone marrow mesenchymal stem cells osteogenic differentiation. Therefore, our study explored the effect of LRP5 on normal and aged PDLSCs and relative mechanism. Here, we found that the expression of LRP5 in PDLSCs of 24 week-old mice was decreased compared with PDLSCs of 5 week-old mice (n = 5). . LRP5 overexpression in PDLSCs increased the intensity of alkaline phosphatase and alizarin red staining, accompanied with upregulated the levels of RUNX family transcription factor 2, collagen type I, and β-Catenin. LRP5 knockdown displayed the opposite results in PDLSCs in vitro. LRP5 overexpression in aged PDLSCs restored part ability of osteogenic differentiation. Meantime, LRP5 increased the protein expression of phosphorylation of mammalian target of rapamycin (p-mTOR) in normal and aged PDLSCs. Immunofluorescence showed that LRP5 increased the accumulation of p-mTOR nucleus. The effect of LRP5 in promoting osteogenic differentiation of PDLSCs can be antagonized by mTOR inhibitor rapamycin. These findings suggest that LRP5 positively regulate osteogenic differentiation of normal and aged PDLSCs and may be a potential target for enlarging the application of PDLSCs in tissue regeneration.
Collapse
|
6
|
Kim HR, Choi H, Park SY, Song YC, Kim JH, Shim S, Jun W, Kim KJ, Han J, Chi SW, Leem SH, Chung JW. Endoplasmin regulates differentiation of tonsil-derived mesenchymal stem cells into chondrocytes through ERK signaling. BMB Rep 2022. [PMID: 35168699 PMCID: PMC9152576 DOI: 10.5483/bmbrep.2022.55.5.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well-known that some species of lizard have an exceptional ability known as caudal autotomy (voluntary self-amputation of the tail) as an anti-predation mechanism. After amputation occurs, they can regenerate their new tails in a few days. The new tail section is generally shorter than the original one and is composed of cartilage rather than vertebrae bone. In addition, the skin of the regenerated tail distinctly differs from its original appearance. We performed a proteomics analysis for extracts derived from regenerating lizard tail tissues after amputation and found that endoplasmin (ENPL) was the main factor among proteins up-regulated in expression during regeneration. Thus, we performed further experiments to determine whether ENPL could induce chondrogenesis of tonsil-derived mesenchymal stem cells (T-MSCs). In this study, we found that chondrogenic differentiation was associated with an increase of ENPL expression by ER stress. We also found that ENPL was involved in chondrogenic differentiation of T-MSCs by suppressing extracellular signal-regulated kinase (ERK) phosphorylation.
Collapse
Affiliation(s)
- Hye Ryeong Kim
- Department of Biological Science, Dong-A University, Busan 49315, Korea
| | - Hyeongrok Choi
- Department of Biological Science, Dong-A University, Busan 49315, Korea
| | - Soon Yong Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
| | - Young-Chul Song
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Jae-Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sangin Shim
- Department of Agronomy, Gyeongsang National University, Jinju 52828, Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Kyung-Jin Kim
- Department of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Korea
| | - Sun-Hee Leem
- Department of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan 49315, Korea
| |
Collapse
|
7
|
Buote NJ. Laparoscopic adipose-derived stem cell harvest technique with bipolar sealing device: Outcome in 12 dogs. Vet Med Sci 2022; 8:1421-1428. [PMID: 35537084 PMCID: PMC9297765 DOI: 10.1002/vms3.816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to describe the technique and clinical outcomes in dogs undergoing Laparoscopic Adipose‐Derived Stem Cell Harvest via bipolar sealing device (LADSCHB) for degenerative orthopaedic and neurologic disease. Study Design Descriptive retrospective case series. Animals Eleven dogs with orthopaedic disease and one dog with degenerative spinal disease were enrolled in the study. Methods Medical records of dogs undergoing LADSCHB were reviewed for signalment, weight, reason for the procedure, anaesthesia time, surgery time, other procedures performed, post‐operative pain protocols, incision size, amount of adipose tissue collected, number of viable cells collected, days to discharge, short‐term complications, and owner satisfaction. Results The median weight of the population was 34.2 kg (range 9.2–62 kg), the median surgery time was 39 min (range 15–45 min), mean incision length was 2.5 cm, the median amount of adipose collected was 60 g, and the median number of viable stem cells was 21 million cells. Conversion to open laparotomy was not needed. The most common reason for the harvest was osteoarthritis of the elbow (8/12 cases). Nine cases had other procedures performed at the same time as the harvest. No complications were noted during the procedure or within the post‐operative period. All owners surveyed were satisfied with the laparoscopic harvest procedure. Conclusions LADSCHB was technically feasible, productive, and not associated with any complications. This procedure was performed rapidly and was paired with other surgical procedures. Clinical Significance LADSCHB allows for stem cell harvest with commonly utilized laparoscopic equipment. This surgical technique could lead to the increased ability to treat patients with diseases that benefit from stem cell therapy.
Collapse
Affiliation(s)
- Nicole J Buote
- VCA West Los Angeles Animal Hospital, Los Angeles, California, USA
| |
Collapse
|
8
|
Tan YZ, Xu XY, Dai JM, Yin Y, He XT, Zhang YL, Zhu TX, An Y, Tian BM, Chen FM. Melatonin induces the rejuvenation of long-term ex vivo expanded periodontal ligament stem cells by modulating the autophagic process. Stem Cell Res Ther 2021; 12:254. [PMID: 33926537 PMCID: PMC8082824 DOI: 10.1186/s13287-021-02322-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Stem cells that have undergone long-term ex vivo expansion are most likely functionally compromised (namely cellular senescence) in terms of their stem cell properties and therapeutic potential. Due to its ability to attenuate cellular senescence, melatonin (MLT) has been proposed as an adjuvant in long-term cell expansion protocols, but the mechanism underlying MLT-induced cell rejuvenation remains largely unknown. Methods Human periodontal ligament stem cells (PDLSCs) were isolated and cultured ex vivo for up to 15 passages, and cells from passages 2, 7, and 15 (P2, P7, and P15) were used to investigate cellular senescence and autophagy change in response to long-term expansion and indeed the following MLT treatment. Next, we examined whether MLT could induce cell rejuvenation by restoring the autophagic processes of damaged cells and explored the underlying signaling pathways. In this context, cellular senescence was indicated by senescence-associated β-galactosidase (SA-β-gal) activity and by the expression of senescence-related proteins, including p53, p21, p16, and γ-H2AX. In parallel, cell autophagic processes were evaluated by examining autophagic vesicles (by transmission electronic microscopy), autophagic flux (by assessing mRFP-GFP-LC3-transfected cells), and autophagy-associated proteins (by Western blot assay of Atg7, Beclin-1, LC3-II, and p62). Results We found that long-term in vitro passaging led to cell senescence along with impaired autophagy. As expected, MLT supplementation not only restored cells to a younger state but also restored autophagy in senescent cells. Additionally, we demonstrated that autophagy inhibitors could block MLT-induced cell rejuvenation. When the underlying signaling pathways involved were investigated, we found that the MLT receptor (MT) mediated MLT-related autophagy restoration by regulating the PI3K/AKT/mTOR signaling pathway. Conclusions The present study suggests that MLT may attenuate long-term expansion-caused cellular senescence by restoring autophagy, most likely via the PI3K/AKT/mTOR signaling pathway in an MT-dependent manner. This is the first report identifying the involvement of MT-dependent PI3K/AKT/mTOR signaling in MLT-induced autophagy alteration, indicating a potential of autophagy-restoring agents such as MLT to be used in the development of optimized clinical-scale cell production protocols. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02322-9.
Collapse
Affiliation(s)
- Yi-Zhou Tan
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xin-Yue Xu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ji-Min Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yuan Yin
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiao-Tao He
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yi-Lin Zhang
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Tian-Xiao Zhu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Ying An
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Bei-Min Tian
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, 145th West Changle Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Ma K, Zhu B, Wang Z, Cai P, He M, Ye D, Yan G, Zheng L, Yang L, Zhao J. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J Nanobiotechnology 2020; 18:163. [PMID: 33167997 PMCID: PMC7653755 DOI: 10.1186/s12951-020-00708-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/09/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Umbilical cord mesenchymal stem cell (HUCMSC)-based therapies were previously utilised for cartilage regeneration because of the chondrogenic potential of MSCs. However, chondrogenic differentiation of HUCMSCs is limited by the administration of growth factors like TGF-β that may cause cartilage hypertrophy. It has been reported that extracellular vesicles (EVs) could modulate the phenotypic expression of stem cells. However, the role of human chondrogenic-derived EVs (C-EVs) in chondrogenic differentiation of HUCMSCs has not been reported. RESULTS We successfully isolated C-EVs from human multi-finger cartilage and found that C-EVs efficiently promoted the proliferation and chondrogenic differentiation of HUCMSCs, evidenced by highly expressed aggrecan (ACAN), COL2A, and SOX-9. Moreover, the expression of the fibrotic marker COL1A and hypertrophic marker COL10 was significantly lower than that induced by TGF-β. In vivo, C-EVs induced HUCMSCs accelerated the repair of the rabbit model of knee cartilage defect. Furthermore, C-EVs led to an increase in autophagosomes during the process of chondrogenic differentiation, indicating that C-EVs promote cartilage regeneration through the activation of autophagy. CONCLUSIONS C-EVs play an essential role in fostering chondrogenic differentiation and proliferation of HUCMSCs, which may be beneficial for articular cartilage repair.
Collapse
Affiliation(s)
- Ke Ma
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zetao Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Peian Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingwei He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danyan Ye
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Research Centre for Translational Medicine, Shantou University Medical College, Shantou, China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lujun Yang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Research Centre for Translational Medicine, Shantou University Medical College, Shantou, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Farhang N, Davis B, Weston J, Ginley-Hidinger M, Gertz J, Bowles RD. Synergistic CRISPRa-Regulated Chondrogenic Extracellular Matrix Deposition Without Exogenous Growth Factors. Tissue Eng Part A 2020; 26:1169-1179. [PMID: 32460686 DOI: 10.1089/ten.tea.2020.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell therapies have shown promise for regenerative treatment for musculoskeletal conditions, but their success is mixed. To enhance regenerative effects, growth factors are utilized to induce differentiation into native cell types, but uncontrollable in vivo conditions inhibit differentiation, and precise control of expressed matrix proteins is difficult to achieve. To address these issues, we investigated a novel method of enhancing regenerative phenotype through direct upregulation of major cartilaginous tissue proteins, aggrecan (ACAN), and collagen II (COL2A1) using dCas9-VPR CRISPR gene activation systems. We demonstrated increased expression and deposition of targeted proteins independent of exogenous growth factors in pellet culture. Singular upregulation of COL2A1/ACAN interestingly indicates that COL2A1 upregulation mediates the highest sulfated glycosaminoglycan (sGAG) deposition, in addition to collagen II deposition. Through RNA-seq analysis, this was shown to occur by COL2A1 upregulation mediating broader chondrogenic gene expression changes. Multiplex upregulation of COL2A1 and ACAN together resulted in the highest sGAG, and collagen II deposition, with levels comparable to those in chondrogenic growth factor-differentiated pellets. Overall, this work indicates dCas9-VPR systems can robustly upregulate COL2A1 and ACAN deposition without growth factors, to provide a novel, precise method of controlling stem cell phenotype for cartilage and intervertebral disc cell therapies and tissue engineering. Impact statement Stem cell therapies have come about as a potential regenerative treatment for musculoskeletal disease, but clinically, they have mixed results. To improve stem cell therapies, growth factors are used to aid a regenerative cell phenotype, but their effects are inhibited by in vivo musculoskeletal disease environments. This article describes CRISPR gene activation-based cell engineering methods that provide a growth factor-free method of inducing chondrogenic extracellular matrix deposition. This method is demonstrated to be as/more potent as growth factors in inducing a chondrogenic phenotype in pellet culture, indicating potential utility as a method of enhancing stem cell therapies for musculoskeletal disease.
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Bryton Davis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jacob Weston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Jason Gertz
- Department of Oncological Sciences, and University of Utah, Salt Lake City, Utah, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Wang YZ, Li QX, Zhang DM, Chen LB, Wang H. Ryanodine receptor 1 mediated dexamethasone-induced chondrodysplasia in fetal rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118791. [PMID: 32619649 DOI: 10.1016/j.bbamcr.2020.118791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Osteoarthritis is caused by cartilage dysplasia and has fetal origin. Prenatal dexamethasone exposure (PDE) induced chondrodysplasia in fetal rats by inhibiting transforming growth factor β (TGFβ) signaling. This study aimed to determine the effect of dexamethasone on fetal cartilage development and illustrate the underlying molecular mechanism. METHODS Dexamethasone (0.2 mg/kg.d) was injected subcutaneously every morning in pregnant rats from gestational day (GD) 9 to GD21. Harvested fetal femurs and tibias at GD21 for immunofluorescence and gene expression analysis. Fetal chondrocytes were treated with dexamethasone (100, 250 and 500 nM), endoplasmic reticulum stress (ERS) inhibitor, and ryanodine receptor 1 (RYR1) antagonist for subsequent analyses. RESULTS In vivo, prenatal dexamethasone exposure (PDE) decreased the total length of the fetal cartilage, the proportion of the proliferation area and the cell density and matrix content in fetal articular cartilage. Moreover, PDE increased RYR1 expression and intracellular calcium levels and elevated the expression of ERS-related genes, while downregulated the TGFβ signaling pathway and extracellular matrix (ECM) synthesis in fetal chondrocytes. In vitro, we verified dexamethasone significantly decreased ECM synthesis through activating RYR 1 mediated-ERS. CONCLUSIONS PDE inhibited TGFβ signaling pathway and matrix synthesis through RYR1 / intracellular calcium mediated ERS, which ultimately led to fetal dysplasia. This study confirmed the molecular mechanism of ERS involved in the developmental toxicity of dexamethasone and suggested that RYR1 may be an early intervention target for fetal-derived adult osteoarthritis.
Collapse
Affiliation(s)
- Yi-Zhong Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Qing-Xian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ding-Mei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Liao-Bin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
12
|
Sasaki A, Mizuno M, Mochizuki M, Sekiya I. Mesenchymal stem cells for cartilage regeneration in dogs. World J Stem Cells 2019; 11:254-269. [PMID: 31171954 PMCID: PMC6545524 DOI: 10.4252/wjsc.v11.i5.254] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA; therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs; cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies.
Collapse
Affiliation(s)
- Akari Sasaki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|