1
|
Liu J, Zhang H, Xu Y, Meng H, Zeng AP. Turn air-captured CO 2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system. Nat Commun 2023; 14:2772. [PMID: 37188719 DOI: 10.1038/s41467-023-38490-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The use of gaseous and air-captured CO2 for technical biosynthesis is highly desired, but elusive so far due to several obstacles including high energy (ATP, NADPH) demand, low thermodynamic driving force and limited biosynthesis rate. Here, we present an ATP and NAD(P)H-free chemoenzymatic system for amino acid and pyruvate biosynthesis by coupling methanol with CO2. It relies on a re-engineered glycine cleavage system with the NAD(P)H-dependent L protein replaced by biocompatible chemical reduction of protein H with dithiothreitol. The latter provides a higher thermodynamic driving force, determines the reaction direction, and avoids protein polymerization of the rate-limiting enzyme carboxylase. Engineering of H protein to effectively release the lipoamide arm from a protected state further enhanced the system performance, achieving the synthesis of glycine, serine and pyruvate at g/L level from methanol and air-captured CO2. This work opens up the door for biosynthesis of amino acids and derived products from air.
Collapse
Affiliation(s)
- Jianming Liu
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Han Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Hao Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - An-Ping Zeng
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang F, Qiu Y, Teng S, Cui X, Wang X, Sun H, Ali S, Guo Z, Wang J, Fu S. Design and Test of Tread-Pattern Structure of Biomimetic Goat-Sole Tires. Biomimetics (Basel) 2022; 7:236. [PMID: 36546936 PMCID: PMC9775398 DOI: 10.3390/biomimetics7040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
To solve the technical problem that wheeled vehicles are prone to skidding on complex ground, due to poor adhesion performance, a tire-tread-structure design method based on the bionic principle is proposed in this paper. The 3D model of a goat's foot was obtained using reverse engineering technology, and the curve equation was fitted by extracting the contour data of its outer-hoof flap edge, which was applied to the tire-tread-structure design. The bionic and herringbone-pattern rubber samples were manufactured, and a soil-tank test was carried out using an electronic universal tensile-testing machine, in order to verify the simulation results. The results showed that the overall adhesion of the bionic tread-pattern was greater than that of the normal tread-pattern with the same load applied and the same height and angle of the tread-pattern structure, and the maximum adhesion was increased by 14.23%. This research will provide a reference for optimizing the pattern structure and thus improving the passing performance of wheeled vehicles.
Collapse
Affiliation(s)
- Fu Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Henan University of Science and Technology, Luoyang 471003, China
| | - Yubo Qiu
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Shuai Teng
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Luoyang Polytechnic, Luoyang 471000, China
| | - Xiahua Cui
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Xinyue Wang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Haoxun Sun
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Shaukat Ali
- Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan
| | - Zhijun Guo
- College of Vehicle &Transportation Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Jiajia Wang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Sanling Fu
- College of Physical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
3
|
Li L, Tian Y, Zhang S, Feng Y, Wang H, Cheng X, Ma Y, Zhang R, Wang C. Regulatory Effect of Mung Bean Peptide on Prediabetic Mice Induced by High-Fat Diet. Front Nutr 2022; 9:913016. [PMID: 35757244 PMCID: PMC9218720 DOI: 10.3389/fnut.2022.913016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Dietary supplementation with mung bean peptides (MBPs) has several health benefits. However, the effect of MBPs on prediabetes and gut microbiota imbalance caused by a high-fat diet (HFD) has not been thoroughly studied. In this study, dietary supplementation with MBPs for 5 weeks significantly reduced HFD-induced body weight gain, hyperglycaemia, hyperlipidaemia, insulin resistance, inflammation, and oxidative stress and alleviated liver and kidney damage in mice. In addition, it significantly reversed the HFD-induced gut microbiota imbalance, increased the gut microbial diversity, and decreased the abundance of Firmicutes and Bacteroidetes in prediabetic mice. Furthermore, we identified Lachnospiraceae_NK4A136 and Lactobacillus as important eubacteria with the potential to alleviate the clinical symptoms of prediabetes. According to PICRUSt2 analysis, the changes in intestinal microflora induced by MBPs diet intervention may be related to the downregulation of expression of genes such as rocR, lysX1, and grdA and regulation of seven pathways, including pyruvate, succinic acid, and butyric acid. Moreover, 17 genera with significantly altered levels in the intestine of HFD-fed mice, including Akkermansia, Roseburia, and Ruminiclostridium, were significantly correlated with 26 important differential metabolites, such as D-glutathione, anti-oleic acid, and cucurbitacin. Overall, these results show that MBPs diet intervention plays a key role in the management of HFD-induced prediabetes.
Collapse
Affiliation(s)
- Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China.,Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Cheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Zhang
- Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Peng MZ, Shao YX, Li XZ, Zhang KD, Cai YN, Lin YT, Jiang MY, Liu ZC, Su XY, Zhang W, Jiang XL, Liu L. Mitochondrial FAD shortage in SLC25A32 deficiency affects folate-mediated one-carbon metabolism. Cell Mol Life Sci 2022; 79:375. [PMID: 35727412 PMCID: PMC11072207 DOI: 10.1007/s00018-022-04404-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
The SLC25A32 dysfunction is associated with neural tube defects (NTDs) and exercise intolerance, but very little is known about disease-specific mechanisms due to a paucity of animal models. Here, we generated homozygous (Slc25a32Y174C/Y174C and Slc25a32K235R/K235R) and compound heterozygous (Slc25a32Y174C/K235R) knock-in mice by mimicking the missense mutations identified from our patient. A homozygous knock-out (Slc25a32-/-) mouse was also generated. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice presented with mild motor impairment and recapitulated the biochemical disturbances of the patient. While Slc25a32-/- mice die in utero with NTDs. None of the Slc25a32 mutations hindered the mitochondrial uptake of folate. Instead, the mitochondrial uptake of flavin adenine dinucleotide (FAD) was specifically blocked by Slc25a32Y174C/K235R, Slc25a32K235R/K235R, and Slc25a32-/- mutations. A positive correlation between SLC25A32 dysfunction and flavoenzyme deficiency was observed. Besides the flavoenzymes involved in fatty acid β-oxidation and amino acid metabolism being impaired, Slc25a32-/- embryos also had a subunit of glycine cleavage system-dihydrolipoamide dehydrogenase damaged, resulting in glycine accumulation and glycine derived-formate reduction, which further disturbed folate-mediated one-carbon metabolism, leading to 5-methyltetrahydrofolate shortage and other folate intermediates accumulation. Maternal formate supplementation increased the 5-methyltetrahydrofolate levels and ameliorated the NTDs in Slc25a32-/- embryos. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice had no glycine accumulation, but had another formate donor-dimethylglycine accumulated and formate deficiency. Meanwhile, they suffered from the absence of all folate intermediates in mitochondria. Formate supplementation increased the folate amounts, but this effect was not restricted to the Slc25a32 mutant mice only. In summary, we established novel animal models, which enabled us to understand the function of SLC25A32 better and to elucidate the role of SLC25A32 dysfunction in human disease development and progression.
Collapse
Affiliation(s)
- Min-Zhi Peng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Yong-Xian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Xiu-Zhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Kang-Di Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Yan-Na Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Yun-Ting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Min-Yan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Zong-Cai Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Xue-Ying Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| | - Xiao-Ling Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, the Affiliated Hospital of Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
5
|
Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:299-350. [DOI: 10.1007/10_2021_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Xu Y, Ren J, Wang W, Zeng A. Improvement of glycine biosynthesis from one-carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro. Eng Life Sci 2022; 22:40-53. [PMID: 35024026 PMCID: PMC8727733 DOI: 10.1002/elsc.202100047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Glycine cleavage system (GCS) plays a central role in one-carbon (C1) metabolism and receives increasing interest as a core part of the recently proposed reductive glycine pathway (rGlyP) for assimilation of CO2 and formate. Despite decades of research, GCS has not yet been well understood and kinetic data are barely available. This is to a large degree because of the complexity of GCS, which is composed of four proteins (H, T, P, and L) and catalyzes reactions involving different substrates and cofactors. In vitro kinetics of reconstructed microbial multi-enzyme glycine cleavage/synthase system is desired to better implement rGlyP in microorganisms like Escherichia coli for the use of C1 resources. Here, we examined in vitro several factors that may affect the rate of glycine synthesis via the reverse GCS reaction. We found that the ratio of GCS component proteins has a direct influence on the rate of glycine synthesis, namely higher ratios of P protein and especially H protein to T and L proteins are favorable, and the carboxylation reaction catalyzed by P protein is a key step determining the glycine synthesis rate, whereas increasing the ratio of L protein to other GCS proteins does not have significant effect and the ratio of T protein to other GCS proteins should be kept low. The effect of substrate concentrations on glycine synthesis is quite complex, showing interdependence with the ratios of GCS component proteins. Furthermore, adding the reducing agent dithiothreitol to the reaction mixture not only results in great tolerance to high concentration of formaldehyde, but also increases the rate of glycine synthesis, probably due to its functions in activating P protein and taking up the role of L protein in the non-enzymatic reduction of Hox to Hred. Moreover, the presence of some monovalent and divalent metal ions can have either positive or negative effect on the rate of glycine synthesis, depending on their type and their concentration.
Collapse
Affiliation(s)
- Yingying Xu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri‐product Quality and SafetyMinistry of AgricultureInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of TechnologyHamburgGermany
| |
Collapse
|
7
|
Understanding and Engineering Glycine Cleavage System and Related Metabolic Pathways for C1-Based Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:273-298. [DOI: 10.1007/10_2021_186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:cancers13122955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
|
9
|
Zhang H, Li Y, Nie J, Ren J, Zeng AP. Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 2020; 3:756. [PMID: 33311647 PMCID: PMC7733448 DOI: 10.1038/s42003-020-01401-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Molecular shuttles play decisive roles in many multi-enzyme systems such as the glycine cleavage system (GCS) for one-carbon (C1) metabolism. In GCS, a lipoate swinging arm containing an aminomethyl moiety is attached to protein H and serves as a molecular shuttle among different proteins. Protection of the aminomethyl moiety in a cavity of protein H and its release induced by protein T are key processes but barely understood. Here, we present a detailed structure-based dynamic analysis of the induced release of the lipoate arm of protein H. Based on molecular dynamics simulations of interactions between proteins H and T, four major steps of the release process showing significantly different energy barriers and time scales can be distinguished. Mutations of a key residue, Ser-67 in protein H, led to a bidirectional tuning of the release process. This work opens ways to target C1 metabolism in biomedicine and the utilization of formate and CO2 for biosynthesis.
Collapse
Affiliation(s)
- Han Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Yuchen Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China. .,Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
10
|
Zhang X, Nie J, Zheng Y, Ren J, Zeng AP. Activation and competition of lipoylation of H protein and its hydrolysis in a reaction cascade catalyzed by the multifunctional enzyme lipoate-protein ligase A. Biotechnol Bioeng 2020; 117:3677-3687. [PMID: 32749694 DOI: 10.1002/bit.27526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/14/2020] [Accepted: 08/02/2020] [Indexed: 11/10/2022]
Abstract
Protein lipoylation is essential for the function of many key enzymes but barely studied kinetically. Here, the two-step reaction cascade of H protein lipoylation catalyzed by the multifunctional enzyme lipoate-protein ligase A (LplA) was quantitatively and differentially studied. We discovered new phenomena and unusual kinetics of the cascade: (a) the speed of the first reaction is faster than the second one by two orders of magnitude, leading to high accumulation of the intermediate lipoyl-AMP (Lip-AMP); (b) Lip-AMP is hydrolyzed, but only significantly at the presence of H protein and in competition with the lipoylation; (c) both the lipoylation of H protein and its hydrolysis is enhanced by the apo and lipoylated forms of H protein and a mutant without the lipoylation site. A conceptual mechanistic model is proposed to explain these experimental observations in which conformational change of LplA upon interaction with H protein and competitive nucleophilic attacks play key roles.
Collapse
Affiliation(s)
- Xinyi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yuanmin Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
11
|
Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-prodanediol. J Biol Eng 2020; 14:15. [PMID: 32467727 PMCID: PMC7227101 DOI: 10.1186/s13036-020-00237-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023] Open
Abstract
Glycine cleavage system (GCS) occupies a key position in one-carbon (C1) metabolic pathway and receives great attention for the use of C1 carbons like formate and CO2 via synthetic biology. In this work, we demonstrate that formaldehyde exists as a substantial byproduct of the GCS reaction cycle. Three causes are identified for its formation. First, the principal one is the decomposition of N5,N10-methylene-tetrahydrofolate (5,10-CH2-THF) to form formaldehyde and THF. Increasing the rate of glycine cleavage promotes the formation of 5,10-CH2-THF, thereby increasing the formaldehyde release rate. Next, formaldehyde can be produced in the GCS even in the absence of THF. The reason is that T-protein of the GCS can degrade methylamine-loaded H-protein (Hint) to formaldehyde and ammonia, accompanied with the formation of dihydrolipoyl H-protein (Hred), but the reaction rate is less than 0.16% of that in the presence of THF. Increasing T-protein concentration can speed up the release rate of formaldehyde by Hint. Finally, a certain amount of formaldehyde can be formed in the GCS due to oxidative degradation of THF. Based on a formaldehyde-dependent aldolase, we elaborated a glycine-based one carbon metabolic pathway for the biosynthesis of 1,3-propanediol (1,3-PDO) in vitro. This work provides quantitative data and mechanistic understanding of formaldehyde formation in the GCS and a new biosynthetic pathway of 1,3-PDO.
Collapse
|
12
|
Hong Y, Ren J, Zhang X, Wang W, Zeng AP. Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr Opin Biotechnol 2019; 64:70-78. [PMID: 31715494 DOI: 10.1016/j.copbio.2019.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Glycine is an essential one-carbon (C1) metabolite nested in a complex network of cellular metabolism. Glycine and its related metabolic pathways have important biochemical and biomedical implications and have thus been studied for a long time. However, quantitative and systems level knowledge about the interactions and regulations of the pathways are severely limited, especially for the purpose of reengineering the relevant pathways for C1-based biotechnological processes using synthetic biology and metabolic engineering approaches. In fact, quantitative analytic methods are missing for some of the key players of the glycine-related pathways, prominently the glycine cleavage system and folate cycle, particularly for intracellular processes under physiological conditions. Here, we pinpoint the existing gaps and highlight the need and challenges for future development.
Collapse
Affiliation(s)
- Yaeseong Hong
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| | - Xinyi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China; Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany.
| |
Collapse
|