1
|
Liao Z, Li J, Ni W, Zhan R, Xu X. Co-delivery of antimicrobial peptide and Prussian blue nanoparticles by chitosan/polyvinyl alcohol hydrogels. Carbohydr Polym 2025; 348:122873. [PMID: 39562133 DOI: 10.1016/j.carbpol.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/21/2024]
Abstract
Altered skin integrity increases the chance of infection, and bacterial infections often lead to a persistent inflammatory response that prolongs healing time. Functional artificial hydrogels are receiving increasing attention as suitable wound dressing barrier. However, the antimicrobial effect of the new dressing still needs to be explored in depth. In this work, the antimicrobial peptide MSI-1 was covalently attached to chitosan-modified poly (vinyl alcohol) hydrogels mixed with Prussian blue nanoparticles (PBNPs) via a primary amine group coupled to a carboxyl group. The synthesized hydrogel has a long-lasting antimicrobial surface and is able to maintain its bactericidal effect on Staphylococcus aureus and Escherichia coli for 24 h. Due to the presence of PBNPs, the hydrogel was able to rise to 48.3 °C within 10 min under near infrared (NIR) light irradiation at a wavelength of 808 nm and maintain this mild temperature to avoid bacterial biofilms. The hydrogel showed >90 % survival in co-culture with cells for 3 d and did not damage major organs in animal experiments. Thus, the photothermal dual-mode antimicrobial hydrogel synthesized in this study increases the selectivity as a safe and efficient wound dressing for the treatment of infected skin defects.
Collapse
Affiliation(s)
- Zhiyi Liao
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Jiayi Li
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Wenqiang Ni
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, the Third Military Medical University, Army Medical University, Chongqing 400038, China.
| | - Xisheng Xu
- Department of Burn and Plastic Surgery, the First People's Hospital of Chenzhou, University of South China, Chenzhou 423000, China.
| |
Collapse
|
2
|
Wang S, Gao D, Li M, Wang Q, Du X, Yuan S. Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute. Biomedicines 2024; 12:2844. [PMID: 39767750 PMCID: PMC11673073 DOI: 10.3390/biomedicines12122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support. METHODS This study explored the combined use of gene transfection and dermal substitutes to improve wound healing. We used the DGTM (genes: DNP63A, GRHL2, TFAP2A, and MYC) factors to transfect adipose-derived stem cells (ADSCs), inducing their differentiation into keratinocytes. These transfected ADSCs were then incorporated into Pelnac® dermal substitutes to enhance vascularization and cellular proliferation for better healing outcomes. RESULTS Gene transfer using DGTM factors successfully induced keratinocyte differentiation in ADSCs. The application of these differentiated cells with Pelnac® dermal substitute to dermal wounds in mice resulted in the formation of skin tissue with a normal epidermal layer and proper collagen organization. This method alleviates the tediousness of the multiple transfection steps in previous protocols and the safety issues caused by using viral transfection reagents directly on the wound. Additionally, the inclusion of dermal substitutes addressed the lack of collagen and elastic fibers, promoting the formation of tissue resembling healthy skin rather than scar tissue. CONCLUSION Integrating DGTM factor-transfected ADSCs with dermal substitutes represents a novel strategy for enhancing the healing of full-thickness wounds. Further research and clinical trials are warranted to optimize and validate this innovative approach for broader clinical applications.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing 210002, China;
| | - Dinghui Gao
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
| | - Mingyu Li
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
| | - Qian Wang
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing 210002, China;
| | - Xuanyu Du
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China;
| | - Siming Yuan
- Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; (S.W.); (D.G.); (M.L.)
- Department of Plastic Surgery, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, Nanjing 210002, China;
| |
Collapse
|
3
|
Huang X, Niu X, Ma Y, Wang X, Su T, He Y, Lu F, Gao J, Chang Q. Hierarchical double-layer microneedles accomplish multicenter skin regeneration in diabetic full-thickness wounds. J Adv Res 2024; 66:237-249. [PMID: 38218581 PMCID: PMC11674785 DOI: 10.1016/j.jare.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.
Collapse
Affiliation(s)
| | | | | | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
4
|
Park HJ, Lee SW, Kim TC, Park YH, Kim KS, Van Kaer L, Hong S, Hong S. Topical Application of Nano-Sized Graphene Oxide Cream Ameliorates Acute Skin Inflammation in Mice. J Invest Dermatol 2024:S0022-202X(24)02877-X. [PMID: 39522943 DOI: 10.1016/j.jid.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024]
Abstract
We have previously shown that nano-sized graphene oxide (NGO) displays anti-inflammatory activities against NKT cell-mediated sepsis. To address whether NGO could be applied to treat acute skin inflammation, we developed a conventional skin Cetaphil cream containing NGO (denoted as NGO cream) for topical application to skin lesions and investigated its therapeutic efficacy by employing the tape-stripping-induced acute skin inflammation model. Topical application of NGO cream to the wounded area significantly reduced skin lesions compared with application of the control cream. Moreover, NGO cream treatment prevented the tape-stripping-elicited infiltration of, and IL-1β production by, skin neutrophils and dendritic cells. Furthermore, such anti-inflammatory effects of NGO cream were attributed to decreased infiltration of IL-12-producing dendritic cells and IFNγ-producing cells (eg, CD4+ T, CD8+ T, γδ T, NK, and NKT cells) into the skin. In addition, topical NGO cream administration enhanced the expression of suppressive molecules such as FR4 on skin regulatory T cells. Through RNA-sequencing analysis, we found that the preventive effect of NGO cream on acute skin inflammation may be correlated with the activation of keratinocytes located in the epidermis. Our results support NGO cream as a therapeutic option to control acute skin inflammation.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Keun Soo Kim
- Department of Physics, Sejong University, Seoul, Republic of Korea; Graphene Research Institute, Sejong University, Seoul, Republic of Korea; Korea-US-Uzbekistan Quantum Materials·Devices International Research Center, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suklyun Hong
- Department of Physics, Sejong University, Seoul, Republic of Korea; Graphene Research Institute, Sejong University, Seoul, Republic of Korea; Korea-US-Uzbekistan Quantum Materials·Devices International Research Center, Sejong University, Seoul, Republic of Korea.
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics (Basel) 2024; 13:794. [PMID: 39334969 PMCID: PMC11429172 DOI: 10.3390/antibiotics13090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of drug resistance genes and the detrimental health effects caused by the overuse of antibiotics are increasingly prominent problems. There is an urgent need for effective strategies to antibiotics or antimicrobial resistance in the fields of biomedicine and therapeutics. The pathogen-killing ability of antimicrobial peptides (AMPs) is linked to their structure and physicochemical properties, including their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs are a form of innate immune protection found in all life forms. A key aspect of the application of AMPs involves their potential to combat emerging antibiotic resistance; certain AMPs are effective against resistant microbial strains and can be modified through peptide engineering. This review summarizes the various strategies used to tackle antibiotic resistance, with a particular focus on the role of AMPs as effective antibiotic agents that enhance the host's immunological functions. Most of the recent studies on the properties and impregnation methods of AMPs, along with their biomedical applications, are discussed. This review provides researchers with insights into the latest advancements in AMP research, highlighting compelling evidence for the effectiveness of AMPs as antimicrobial agents.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
6
|
Ren D, Zhang Y, Du B, Wang L, Gong M, Zhu W. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing. Int J Nanomedicine 2024; 19:4495-4513. [PMID: 38799696 PMCID: PMC11123069 DOI: 10.2147/ijn.s460700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Du
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lina Wang
- Department of Pediatric Respiration, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Meiheng Gong
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
7
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
8
|
Hasnain M, Kanwal T, Rehman K, Rehman SRU, Aslam S, Roome T, Perveen S, Zaidi MB, Saifullah S, Yasmeen S, Hasan A, Shah MR. Microarray needles comprised of arginine-modified chitosan/PVA hydrogel for enhanced antibacterial and wound healing potential of curcumin. Int J Biol Macromol 2023; 253:126697. [PMID: 37673138 DOI: 10.1016/j.ijbiomac.2023.126697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Wound healing is a multifaceted and complex process that includes inflammation, hemostasis, remodeling, and granulation. Failures in any link may cause the healing process to be delayed. As a result, wound healing has always been a main research focus across the entire medical field, posing significant challenges and financial burdens. Hence, the current investigation focused on the design and development of arginine-modified chitosan/PVA hydrogel-based microneedles (MNs) as a curcumin (CUR) delivery system for improved wound healing and antibacterial activity. The substrate possesses exceptional swelling capabilities that allow tissue fluid from the wound to be absorbed, speeding up wound closure. The antibacterial activity of MNs was investigated against S. aureus and E. coli. The results revealed that the developed CUR-loaded MNs had increased antioxidant activity and sustained drug release behavior. Furthermore, after being loaded in the developed MNs, it revealed improved antibacterial activity of CUR. Wound healing potential was assessed by histopathological analysis and wound closure%. The observed results suggest that the CUR-loaded MNs greatly improved wound healing potential via tissue regeneration and collagen deposition, demonstrating the potential of developed MNs patches to be used as an effective carrier for wound healing in healthcare settings.
Collapse
Affiliation(s)
- Muhammad Hasnain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khadija Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Raza Ur Rehman
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
| | - Shazmeen Aslam
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Talat Roome
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan; Molecular Pathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Midhat Batool Zaidi
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Forest Institute Peshawar, Pakistan
| | - Saira Yasmeen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Anwarul Hasan
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
9
|
Liang C, Wang H, Lin Z, Zhang C, Liu G, Hu Y. Augmented wound healing potential of photosensitive GelMA hydrogel incorporating antimicrobial peptides and MXene nanoparticles. Front Bioeng Biotechnol 2023; 11:1310349. [PMID: 38179129 PMCID: PMC10764632 DOI: 10.3389/fbioe.2023.1310349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction: Wound healing is a delicate and complex process influenced by many factors. The treatment of skin wounds commonly involves the use of wound dressings, which remain a routine approach. An ideal dressing can provide protection and a suitable environment for wound surfaces by maintaining moisture and exhibiting good biocompatibility, mechanical strength, and antibacterial properties to promote healing and prevent infection. Methods: We encapsulated tick-derived antibacterial polypeptides (Os) as a model drug within a methylacrylyl gelatin (GelMA) hydrogel containing MXene nanoparticles. The prepared composite hydrogels were evaluated for their wound dressing potential by analyzing surface morphology, mechanical properties, swelling behavior, degradation properties, antibacterial activity, and cytocompatibility. Results: The results demonstrated excellent mechanical strength, swelling performance, degradation behavior, and antibacterial activity of the prepared composite hydrogels, effectively promoting cell growth, adhesion, and expression of antibacterial peptide activity. A full-thickness rat wound model then observed the wound healing process and surface interactions between the composite hydrogels and wounds. The composite hydrogel significantly accelerated wound closure, reduced inflammation, and sped epithelial formation and maturation. Discussion: Incorporating antibacterial peptides into GelMA provides a feasible strategy for developing excellent antibacterial wound dressings capable of tissue repair. In conclusion, this study presents a GelMA-based approach for designing antibacterial dressings with strong tissue regenerative ability.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Hongyu Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhihao Lin
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chengdong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoming Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanling Hu
- Department of Orthopaedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Chen Y, Xiang Y, Zhang H, Zhu T, Chen S, Li J, Du J, Yan X. A multifunctional chitosan composite aerogel based on high density amidation for chronic wound healing. Carbohydr Polym 2023; 321:121248. [PMID: 37739489 DOI: 10.1016/j.carbpol.2023.121248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 09/24/2023]
Abstract
The management of chronic wounds remains a challenging clinical problem worldwide, mainly because of secondary infections, excessive oxidative stress, and blocked angiogenesis. Aerogel is a novel material with high porosity and specific surface area that allows gas exchange and rapid absorption of a large amount of exudate as well as loading bioactive molecules. Therefore, functional aerogel can be an ideal material for chronic wound treatment. The multifunctional aerogel (CG-DA-VEGF) was prepared by a simple and eco-friendly freeze-drying process combined with harmless EDC/NHS as crosslinking agents using chitosan and dopamine-grafted gelatin as raw materials. The physicochemical characterization revealed that the CG-DA-VEGF aerogel had excellent water absorption, water retention, and mechanical properties, and could release VEGF continuously and stably. In vitro experiments demonstrated that the CG-DA-VEGF aerogel exhibited effective antioxidant and antibacterial properties, as well as superb cytocompatibility. In vivo experiments further confirmed that the CG-DA-VEGF aerogel could significantly improve angiogenesis and re-epithelialization, and promote collagen deposition, thus accelerating wound healing with excellent biosafety. These results suggest that the as-prepared CG-DA-VEGF aerogel may be adopted as a promising multifunctional graft for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Yao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Yu Xiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China.
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China; Department of Sports Medicine, Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Jun Li
- Department of Orthopedics, Tongji Hospital, School of medicine, Tongji University, 389 Xincun Rd., Shanghai 200065, PR China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China.
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China.
| |
Collapse
|
11
|
Liu Y, Huang S, Liang S, Lin P, Lai X, Lan X, Wang H, Tang Y, Gao B. Phase Change Material-Embedded Multifunctional Janus Nanofiber Dressing with Directional Moisture Transport, Controlled Release of Anti-Inflammatory Drugs, and Synergistic Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37909419 DOI: 10.1021/acsami.3c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Wound healing is a systematic and complex process that involves various intrinsic and extrinsic factors affecting different stages of wound repair. Therefore, multifunctional wound dressings that can modulate these factors to promote wound healing are in high demand. In this work, a multifunctional Janus electrospinning nanofiber dressing with antibacterial and anti-inflammatory properties, controlled release of drugs, and unidirectional water transport was prepared by depositing coaxial nanofibers on a hydrophilic poly(ε-caprolactone)@polydopamine-ε-polyl-lysine (PCL@PDA-ε-PL) nanofiber membrane. The coaxial nanofiber was loaded with the phase change material lauric acid (LA) in the shell layer and anti-inflammatory ibuprofen (IBU) in the core layer. Among them, LA with a melting point of 43 °C served as a phase change material to control the release of IBU. The phase transition of LA was induced by near-infrared (NIR) irradiation that triggered the photothermal properties of PDA. Moreover, the Janus nanofiber dressing exhibited synergistic antimicrobial properties for Escherichia coli and Staphylococcus aureus due to the photothermal properties of PDA and antibacterial ε-PL. The prepared Janus nanofiber dressing also exhibited anti-inflammatory activity and biocompatibility. In addition, the Janus nanofiber dressing had asymmetric wettability that enabled directional water transport, thereby draining excessive wound exudate. The water vapor transmission test indicated that the Janus nanofiber dressing had good air permeability. Finally, skin wound healing evaluation in rats confirmed its efficacy in promoting wound healing. Therefore, this strategy of designing and manufacturing a multifunctional Janus nanofiber dressing had great potential in wound healing applications.
Collapse
Affiliation(s)
- Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| |
Collapse
|
12
|
Wang Y, Kang H, Hu J, Chen H, Zhou H, Wang Y, Ke H. Preparation of metal-organic framework combined with Portulaca oleracea L. extract electrostatically spun nanofiber membranes delayed release wound dressing. RSC Adv 2023; 13:21633-21642. [PMID: 37476048 PMCID: PMC10354497 DOI: 10.1039/d3ra01777j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we prepared a polyacrylonitrile (PAN) composite nanofiber membrane comprising Portulaca oleracea L. extract (POE) and a zinc-based metal-organic framework (MOF) by an in situ growth method as a potentially new type of wound dressing with a slow drug-release effect, to solve the problem of the burst release of drugs in wound dressings. The effects of the MOF and POE doping on the nanofiber membranes were examined using scanning electron microscopy (SEM) and FTIR spectroscopy. SEM analysis revealed the dense and uniform attachment of MOF particles to the surface of the nanofiber membrane, while FTIR spectroscopy confirmed the successful fusion of MOF and POE. Furthermore, investigations into the water contact angle and swelling property demonstrated that the incorporation of the MOF and POE enhanced the hydrophilicity of the material. The results of the in vitro release test showed that the cumulative release rate for PAN/MOF/POE60 decreased from 66.5 ± 2.34% to 32.18 ± 1.31% in the initial 4 h and from 90.54 ± 0.79% to 65.92 ± 1.95% in 72 h compared to PAN/POE, indicating a slowing down of the drug release. In addition, the antimicrobial properties of the fiber membranes were evaluated by the disc diffusion method, and it was evident that the PAN/MOF/POE nanofibers exhibited strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antioxidant properties of the nanofiber membranes loaded with POE were further validated through the DPPH radical scavenging test. These findings highlight the potential application of the developed nanofiber membranes in wound dressings, offering controlled and sustained drug-release capabilities.
Collapse
Affiliation(s)
- Yize Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Hua Kang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Jao Hu
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Heming Chen
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Ying Wang
- College of Textile and Clothing, Xinjiang University No. 666, Shengli Road, Tianshan District Urumchi 830046 China
| | - Huizhen Ke
- Fujian Engineering Research Center for Textile and Clothing, Faculty of Clothing and Design, Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University Fuzhou 350108 Fujian China
| |
Collapse
|
13
|
Liang C, He J, Cao Y, Liu G, Zhang C, Qi Z, Fu C, Hu Y. Advances in the application of Mxene nanoparticles in wound healing. J Biol Eng 2023; 17:39. [PMID: 37291625 DOI: 10.1186/s13036-023-00355-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Skin is the largest organ of the human body. It plays a vital role as the body's first barrier: stopping chemical, radiological damage and microbial invasion. The importance of skin to the human body can never be overstated. Delayed wound healing after a skin injury has become a huge challenge in healthcare. In some situations, this can have very serious and even life-threatening effects on people's health. Various wound dressings have been developed to promote quicker wound healing, including hydrogels, gelatin sponges, films, and bandages, all work to prevent the invasion of microbial pathogens. Some of them are also packed with bioactive agents, such as antibiotics, nanoparticles, and growth factors, that help to improve the performance of the dressing it is added to. Recently, bioactive nanoparticles as the bioactive agent have become widely used in wound dressings. Among these, functional inorganic nanoparticles are favored due to their ability to effectively improve the tissue-repairing properties of biomaterials. MXene nanoparticles have attracted the interest of scholars due to their unique properties of electrical conductivity, hydrophilicity, antibacterial properties, and biocompatibility. The potential for its application is very promising as an effective functional component of wound dressings. In this paper, we will review MXene nanoparticles in skin injury repair, particularly its synthesis method, functional properties, biocompatibility, and application.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Jing He
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Yuan Cao
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Guoming Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Chengdong Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Chuangchun, 130041, China
| | - Chuan Fu
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Yanling Hu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, PR China.
| |
Collapse
|
14
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
15
|
Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed Pharmacother 2023; 158:114184. [PMID: 36587554 DOI: 10.1016/j.biopha.2022.114184] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amelia Seifalian
- Department of Urogynaecology and Surgery, Imperial College London, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Sethuram L, Thomas J. Therapeutic applications of electrospun nanofibers impregnated with various biological macromolecules for effective wound healing strategy - A review. Biomed Pharmacother 2023; 157:113996. [PMID: 36399827 DOI: 10.1016/j.biopha.2022.113996] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
A Non-healing infected wound is an ever-growing global epidemic, with increasing burden of mortality rates and management costs. The problems of chronic wound infections and their outcomes will continue as long as their underlying causes like diabetic wounds grow and spread. Commercial wound therapies employed have limited potential that inhibits pivotal functions and tissue re-epithelialization properties resulting in wound infections. Nanomaterial based drug delivery formulations involving biological macromolecules are developing areas of interest in wound healing applications which are utilized in the re-epithelialization of skin with cost-effective preparations. Research conducted on nanofibers has shown enhanced skin establishment with improved cell proliferation and growth and delivery of bioactive organic molecules at the wound site. However, drug targeted delivery with anti-scarring properties and tissue regeneration aspects have not been updated and discussed in the case of macromolecule impregnated nanofibrous mats. Hence, this review focuses on the brief concepts of wound healing and wound management, therapeutic commercialized wound dressings currently available in the field of wound care, effective electrospun nanofibers impregnated with different biological macromolecules and advancement of nanomaterials for tissue engineering have been discussed. These new findings will pave the way for producing anti-scarring high effective wound scaffolds for drug delivery.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
17
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
18
|
Shahzadi L, Ramzan A, Anjum A, Jabbar F, Khan AF, Manzoor F, Shahzad SA, Chaudhry AA, Rehman IU, Yar M. An efficient new method for electrospinning chitosan and heparin for the preparation of pro‐angiogenic nanofibrous membranes for wound healing applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Amna Ramzan
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Awais Anjum
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Faiza Jabbar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Faisal Manzoor
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | | | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| |
Collapse
|
19
|
A dZnONPs Enhanced Hybrid Injectable Photocrosslinked Hydrogel for Infected Wounds Treatment. Gels 2022; 8:gels8080463. [PMID: 35892722 PMCID: PMC9329969 DOI: 10.3390/gels8080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wounds caused by related diseases such as ischemia, diabetes, and venous stasis are often hard to manage, mainly because of their susceptibility to infection and the lack of healing-promoting growth factors. Functional hydrogel is a promising material for wound treatment due to its regulable swelling rate and its ability to absorb wound exudate, which can keep the wound isolated from the outside world to prevent infection. In this study, a photocrosslinked physicochemical double-network hydrogel with injectable, antibacterial, and excellent mechanical properties was prepared. The dZnONPs enhanced hybrid injectable photocrosslinked double-network hydrogel (Ebs@dZnONPs/HGT) was synthetized starting from acylated hyaluronic acid and tannic acid via free radical reaction and hydrogen bonding, following doped with ebselen (Ebs) loaded dendritic zinc oxide nanoparticles (dZnONPs) to prepare the Ebs@dZnONPs/HGT hydrogel. The physicochemical characterization confirmed that the Ebs@dZnONPs/HGT hydrogel had excellent mechanical properties, hydrophilicity, and injectable properties, and could fit irregular wounds well. In vitro experiments revealed that the Ebs@dZnONPs/HGT hydrogel presented credible cytocompatibility and prominent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vivo experiments further demonstrated that the Ebs@dZnONPs/HGT hydrogel had excellent biosafety and could improve re-epithelialization in the wound area, thus significantly accelerating wound healing.
Collapse
|
20
|
Yang C, Liu G, Chen J, Zeng B, Shen T, Qiu D, Huang C, Li L, Chen D, Chen J, Mu Z, Deng H, Cai X. Chitosan and polyhexamethylene guanidine dual-functionalized cotton gauze as a versatile bandage for the management of chronic wounds. Carbohydr Polym 2022; 282:119130. [PMID: 35123752 DOI: 10.1016/j.carbpol.2022.119130] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
Abstract
Development of versatile medical dressing with good immediate and long-lasting antibacterial, hygroscopic and moisturizing abilities is of great significance for management of chronic wounds. Cotton gauze (CG) can protect wounds and promote scabbing, but can cause wound dehydration and loss of biologically active substances, thereby greatly delays wound healing. Herein, a bi-functional CG dressing (CPCG) was developed by chemically grafting polyhexamethylene guanidine (PHMG) and physically adsorbing chitosan (CS) onto the CG surface. Due to the powerful microbicidal activity of PHMG, CPCG exhibited excellent immediate and long-lasting antibacterial activity against gram-positive and gram-negative bacteria. Moreover, the abundant hydroxyl and amino groups in CS endowed CPCG with good biocompatibility, moisture absorption, moisturizing and cell scratch healing performances. Importantly, CPCG can be easily fabricated into a bandage to conveniently manage infected full-skin wounds. Together, this study suggests that CPCG is a versatile wound dressing, having enormous application potential for management chronic wounds.
Collapse
Affiliation(s)
- Chao Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guofang Liu
- Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, PR China
| | - Junpeng Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Bairui Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Tianxi Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Dongchao Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Chen Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Lin Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Dongfan Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiale Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhixiang Mu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, PR China.
| |
Collapse
|
21
|
Hyaluronic acid/lactose-modified chitosan electrospun wound dressings – Crosslinking and stability criticalities. Carbohydr Polym 2022; 288:119375. [DOI: 10.1016/j.carbpol.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
|
22
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Tewari M, Pareek P, Kumar S. Correlating Amino Acid Interaction with Graphene-Based Materials Regulating Cell Function. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Zhang H, Xu Z, Mao Y, Zhang Y, Li Y, Lao J, Wang L. Integrating Porphyrinic Metal-Organic Frameworks in Nanofibrous Carrier for Photodynamic Antimicrobial Application. Polymers (Basel) 2021; 13:polym13223942. [PMID: 34833240 PMCID: PMC8625335 DOI: 10.3390/polym13223942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023] Open
Abstract
The rise and spread of antimicrobial resistance is creating an ever greater challenge in wound management. Nanofibrous membranes (NFMs) incorporated with antibiotics have been widely used to remedy bacterial wound infections owing to their versatile features. However, misuse of antibiotics has resulted in drug resistance, and it remains a significant challenge to achieve both high antibacterial efficiency and without causing bacterial resistance. Here, the ‘MOF-first’ strategy was adopted, the porphyrinic metal-organic frameworks nanoparticles (PCN−224 NPs) were pre-synthesized first, and then the composite antibacterial PCN−224 NPs @ poly (ε-caprolactone) (PM) NFMs were fabricated via a facile co-electrospinning technology. This strategy allows large amounts of effective MOFs to be integrated into nanofibers to effectively eliminate bacteria without bacterial resistance and to realize a relatively fast production rate. Upon visible light (630 nm) irradiation for 30 min, the PM−25 NFMs have the best 1O2 generation performance, triggering remarkable photodynamic antibacterial effects against both S. aureus, MRSA, and E. coli bacteria with survival rates of 0.13%, 1.91%, and 2.06% respectively. Considering the photodynamic antibacterial performance of the composite nanofibrous membranes functionalized by porphyrinic MOFs, this simple approach may provide a feasible way to use MOF materials and biological materials to construct wound dressing with the versatility to serve as an antibacterial strategy in order to prevent bacterial resistance.
Collapse
Affiliation(s)
- Huiru Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Zhihao Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Ying Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yingjie Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
- Correspondence: ; Tel.: +86-21-6779-2634
| | - Jihong Lao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (H.Z.); (Z.X.); (Y.M.); (Y.Z.); (J.L.); (L.W.)
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|