1
|
Mayo S, Gómez-Manjón I, Atencia G, Moreno-Izquierdo A, Escribano D, Fernández-Martínez FJ. Noninvasive prenatal testing: How far can we reach detecting fetal copy number variations. Eur J Obstet Gynecol Reprod Biol 2022; 272:150-155. [PMID: 35313136 DOI: 10.1016/j.ejogrb.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/27/2022]
Abstract
Non-invasive prenatal testing (NIPT) is currently the best screening test for fetal chromosome abnormalities with the highest sensitivity and specificity and can be done from 10 weeks gestation. We report a detection of 44.7 Mb duplication at 11p15.5-p11.2 by NIPT with a fetal fraction (FF) of only 3%. This chromosome abnormality was confirmed after amniocentesis by karyotyping and array comparative genomic hybridization (aCGH) on cultured fetal cells. Further parental investigation showed that the fetal chromosome abnormality was inherited from the mother who was a carrier of a balanced translocation 46,XX,t(11;X)(p11.2;q28). This case highlights the importance of expanded NIPT in the detection of fetal segmental aneuploidy. NIPT together with complementary studies can lead to the detection of parental chromosome rearrangement despite a low FF, which can impact the couple's reproductive plans. We also reviewed other cases with chromosome rearrangement, detected by NIPT, derived from a parental reciprocal translocation.
Collapse
Affiliation(s)
- Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Gómez-Manjón
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; Department of Genetics, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain
| | - Gabriela Atencia
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Ana Moreno-Izquierdo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; Department of Genetics, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain
| | - David Escribano
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain
| | - Fco Javier Fernández-Martínez
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain; Department of Genetics, Hospital Universitario, 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
2
|
Ali TM, Mateu-Brull E, Balaguer N, Dantas C, Borges HR, de Oliveira MQG, Rodrigo L, Campos-Galindo I, Navarro R, Milán M. Inherited unbalanced reciprocal translocation with 3q duplication and 5p deletion in a foetus revealed by cell-free foetal DNA (cffDNA) testing: a case report. Eur J Med Res 2021; 26:64. [PMID: 34187576 PMCID: PMC8243479 DOI: 10.1186/s40001-021-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background Since 2011, screening maternal blood for cell-free foetal DNA (cffDNA) fragments has offered a robust clinical tool to classify pregnancy as low or high-risk for Down, Edwards, and Patau syndromes. With recent advances in molecular biology and improvements in data analysis algorithms, the screening’s scope of analysis continues to expand. Indeed, screening now encompassess additional conditions, including aneuploidies for sex chromosomes, microdeletions and microduplications, rare autosomal trisomies, and, more recently, segmental deletions and duplications called copy number variations (CNVs). Yet, the ability to detect CNVs creates a new challenge for cffDNA analysis in couples in which one member carries a structural rearrangement such as a translocation or inversion. Case presentation We report a segmental duplication of the long arm of chromosome 3 and a segmental deletion of the short arm of chromosome 5 detected by cffDNA analysis in a 25-year-old pregnant woman. The blood sample was sequenced on a NextSeq 550 (Illumina) using the VeriSeq NIPT Solution v1 assay. G-band karyotyping in amniotic fluid only detected an abnormality in chromosome 5. Next-generation sequencing in amniocytes confirmed both abnormalities and identified breakpoints in 3q26.32q29 and 5p13.3p15. The foetus died at 21 weeks of gestation due to multiple abnormalities, and later G-band karyotyping in the parents revealed that the father was a carrier of a balanced reciprocal translocation [46,XY,t(3;5)(q26.2;p13)]. Maternal karyotype appeared normal. Conclusion This case provides evidence that extended cffDNA can detect, in addition to aneuploidies for whole chromosomes, large segmental aneuploidies. In some cases, this may indicate the presence of chromosomal rearrangements in a parent. Such abnormalities are outside the scope of standard cffDNA analysis targeting chromosomes 13, 18, 21, X, and Y, potentially leading to undiagnosed congenital conditions.
Collapse
Affiliation(s)
- Taccyanna M Ali
- Laboratório Igenomix, Laboratório de Genética E Medicina Reprodutiva, Sao Paulo, Sao Paulo, Brazil
| | - Emilia Mateu-Brull
- IGENOMIX Lab S.L.U., Parque tecnológico, Ronda Narciso Monturiol, 11B, Edificios Europark, 46980, Paterna, Valencia, Spain
| | - Nuria Balaguer
- IGENOMIX Lab S.L.U., Parque tecnológico, Ronda Narciso Monturiol, 11B, Edificios Europark, 46980, Paterna, Valencia, Spain
| | - Camila Dantas
- Laboratório Igenomix, Laboratório de Genética E Medicina Reprodutiva, Sao Paulo, Sao Paulo, Brazil
| | | | | | - Lorena Rodrigo
- IGENOMIX Lab S.L.U., Parque tecnológico, Ronda Narciso Monturiol, 11B, Edificios Europark, 46980, Paterna, Valencia, Spain
| | - Inmaculada Campos-Galindo
- IGENOMIX Lab S.L.U., Parque tecnológico, Ronda Narciso Monturiol, 11B, Edificios Europark, 46980, Paterna, Valencia, Spain
| | - Roser Navarro
- IGENOMIX Lab S.L.U., Parque tecnológico, Ronda Narciso Monturiol, 11B, Edificios Europark, 46980, Paterna, Valencia, Spain
| | - Miguel Milán
- IGENOMIX Lab S.L.U., Parque tecnológico, Ronda Narciso Monturiol, 11B, Edificios Europark, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
3
|
Yuan S, Cheng D, Luo K, Li X, Hu L, Hu H, Wu X, Xie P, Lu C, Lu G, Lin G, Gong F, Tan YQ. Reproductive risks and preimplantation genetic testing intervention for X-autosome translocation carriers. Reprod Biomed Online 2021; 43:73-80. [PMID: 33931368 DOI: 10.1016/j.rbmo.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION What is the genetic cause of multiple congenital disabilities in a girl with a maternal balanced X-autosome translocation [t(X-A)]? Is preimplantation genetic testing (PGT), to distinguish non-carrier from euploid/balanced embryos and prioritize transfer, an effective and applicable strategy for couples with t(X-A)? DESIGN Karyotype analysis, whole-exome sequencing and X inactivation analysis were performed for a girl with congenital cardiac anomalies, language impairment and mild neurodevelopmental delay. PGT based on next-generation sequencing after microdissecting junction region (MicroSeq) to distinguish non-carrier and carrier embryos was used in three couples with a female t(X-A) carrier (cases 1-3). RESULTS The girl carried a maternal balanced translocation 46,X,t(X;1)(q28;p31.1). Whole-exome sequencing revealed no monogenic mutation related to her phenotype, but she carried a rare skewed inactivation of the translocated X chromosome that spread to the adjacent interstitial 1p segment, contrary to her mother. All translocation breakpoints in cases 1-3 were successfully identified and each couple underwent one PGT cycle. Thirty oocytes were retrieved, and 13 blastocysts were eligible for biopsy, of which six embryos had a balanced translocation and only four were non-carriers. Three cryopreserved embryo transfers with non-carrier status embryos resulted in the birth of two healthy children (one girl and one boy), who were subsequently confirmed to have normal karyotypes. CONCLUSIONS This study reported a girl with multiple congenital disabilities associated with a maternal balanced t(X-A) and verified that the distinction between non-carrier and carrier embryos is an effective and applicable strategy to avoid transferring genetic and reproductive risks to the offspring of t(X-A) carriers.
Collapse
Affiliation(s)
- Shimin Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Dehua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Keli Luo
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Xiurong Li
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Liang Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Hao Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China
| | - Xianhong Wu
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China
| | - Pingyuan Xie
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China
| | - Changfu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China.
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha Hunan, China; Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha Hunan, China; Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, China; HC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha Hunan, China.
| |
Collapse
|
4
|
Cheng D, Yuan S, Hu L, Yi D, Luo K, Gong F, Lu C, Lu G, Lin G, Tan YQ. The genetic cause of intellectual deficiency and/or congenital malformations in two parental reciprocal translocation carriers and implications for assisted reproduction. J Assist Reprod Genet 2020; 38:243-250. [PMID: 33094427 DOI: 10.1007/s10815-020-01986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To elucidate the genetic cause of intellectual deficiency and/or congenital malformations in two parental reciprocal translocation carriers and provide appropriate strategies of assisted reproductive therapy (ART). MATERIALS AND METHODS Two similar couples having a child with global developmental delay/intellectual disability symptoms attended the Reproductive and Genetic Hospital of CITIC-Xiangya (Changsha, China) in 2017 and 2019, respectively, in order to determine the cause(s) of the conditions affecting their child and to seek ART to have a healthy baby. Both of the healthy couples were not of consanguineous marriage, denied exposure to toxicants, and had no adverse life history. This study was approved by the Institutional Ethics Committee of the Reproductive & Genetic Hospital of CITIC-Xiangya, and written informed consent was obtained from the parents. Genetic diagnoses were performed by karyotype analysis, breakpoint mapping analysis of chromosomal translocation(s), single-nucleotide polymorphism (SNP) microarray analysis, and whole-exome sequencing (WES) for the two children and different appropriate reproductive strategies were performed in the two families. RESULTS Karyotype analysis revealed that both patients carried parental reciprocal translocations [46,XY,t(7;16)(p13;q24)pat and 46,XY,t(13;17)(q12.3;p11.2)pat, respectively]. Follow-up breakpoint mapping analysis showed no interruption of associated genes, and SNP microarray analysis identified no significant copy number variations (CNVs) in the two patients. Moreover, WES results revealed that patients 1 and 2 harbored candidate compound heterozygous mutations of MCOLN1 [c.195G>C (p.K65N) and c.1061G>A (p.W354*)] and MCPH1 [c.877A>G (p.S293G) and c.1869_1870delAT (p.C624*)], respectively, that were inherited from their parents and not previously reported. Furthermore, the parents of patient 1 obtained 10 embryos during ART cycle, and an embryo of normal karyotype and non-carrier of observed MCOLN1 mutations according to preimplantation genetic testing for structural rearrangement and monogenic defect was successfully transferred, resulting in the birth of a healthy boy. The parents of patient 2 chose to undergo ART with donor sperm to reduce the risk of recurrence. CONCLUSIONS Systematic genetic diagnosis of two carriers of inherited chromosomal translocations accompanied by clinical phenotypes revealed their cause of disease, which was critical for genetic counseling and further ART for these families.
Collapse
Affiliation(s)
- Dehua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
| | - Shimin Yuan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
| | - Liang Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, China
| | - Duo Yi
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
| | - Keli Luo
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, China
| | - Changfu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, China
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410013, China
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410013, Hunan, People's Republic of China.
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Liu T, Xie H, Zhang J, Wang X, Sha J, Zhai J. Fetus of 8q22.2q24.3 duplication and 13q33.2q34 deletion derived from a maternal balanced translocation. J Obstet Gynaecol Res 2020; 46:1900-1906. [PMID: 32643293 PMCID: PMC7496467 DOI: 10.1111/jog.14386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023]
Abstract
The concomitant occurrence of 8q duplication and 13q deletion is the first to be detected by noninvasive prenatal testing (NIPT) to date. Through case analysis, we could provide a clinical approach to pregnant women with chromosomal abnormalities revealed by NIPT. The combination of traditional karyotype and copy number variation sequencing (CNV-seq) could better locate the abnormal chromosomal region and further identify the source of fetal chromosomal abnormalities. Simultaneously, we evaluated the fetal morphology by ultrasound examination. The karyotype of the fetus was 46,XY,der(13)t(8;13)(q22;q32)mat and CNV-seq results showed that there was an approximately 45.26-Mb duplication in 8q22.2-q24.3 (101040001-146 300 000) and an approximately 9.54-Mb deletion in 13q33.2-q34 (105560001-115 100 000). Prenatal ultrasound revealed the fetal structural abnormalities presented with hypoplasia of the cerebellar vermis, a flat nose, echogenic bowel and absent gallbladder. Herein, we consider that combination detection of traditional karyotyping, CNV-seq and ultrasonography provides a valuable method for pregnant women with abnormal NIPT.
Collapse
Affiliation(s)
- Tong Liu
- Department of Prenatal Diagnosis Medical Center, XuZhou Central HospitalXuZhou Clinical School of Xuzhou Medical UniversityJiangsuChina
| | - Huihui Xie
- Department of Prenatal Diagnosis Medical Center, XuZhou Central HospitalXuZhou Clinical School of Xuzhou Medical UniversityJiangsuChina
| | - Jingbo Zhang
- Department of Prenatal Diagnosis Medical Center, XuZhou Central HospitalXuZhou Clinical School of Xuzhou Medical UniversityJiangsuChina
| | - Xia Wang
- Department of Prenatal Diagnosis Medical Center, XuZhou Central HospitalXuZhou Clinical School of Xuzhou Medical UniversityJiangsuChina
| | - Jing Sha
- Department of Prenatal Diagnosis Medical Center, XuZhou Central HospitalXuZhou Clinical School of Xuzhou Medical UniversityJiangsuChina
| | - Jingfang Zhai
- Department of Prenatal Diagnosis Medical Center, XuZhou Central HospitalXuZhou Clinical School of Xuzhou Medical UniversityJiangsuChina
| |
Collapse
|
6
|
Zheng Y, Wang G, Li J, Wan S, Dang Y, Tang M, Zhang J, Yang H. Non-invasive prenatal testing detects duplication abnormalities of fetal chromosome 12. Eur J Obstet Gynecol Reprod Biol 2020; 253:278-284. [PMID: 32898774 DOI: 10.1016/j.ejogrb.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE The 12q terminal duplication is a chromosomal structural abnormality that has been rarely reported. The common clinical manifestations include intellectual disability and speech delay. We report two cases of patients with a duplication of chromosome 12q which was discovered incidentally during non-invasive prenatal genetic testing (NIPT). METHODS Next generation sequencing-based NIPT and karyotype analysis confirmed the type and inheritance of the rearrangement, and chromosomal microarray-based analysis also confirmed the end replication. RESULTS One patient had a 18Mb 12q24.21q24.33 duplication. The other patient had a12.04Mb12.q24.31q24.33 duplication and a 9.56Mb deletion in 18p11.32p11.22. The duplicated regions on chromosome 12 and the deletion on chromosome 18 in the patients were pathogenic, and the fetuses may have clinical characteristics, such as mental retardation, facial deformities, and psychomotor retardation. Ultimately, both pregnant women chose to terminate their pregnancy. CONCLUSION The cases we reported show that NIPT cannot only detect conventional chromosomes, but can also detect microdeletions and microduplications, which broadens the scope of clinical application for NIPT and provides genetic information for high-risk pregnant women as early as possible.
Collapse
Affiliation(s)
- Yunyun Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Guihu Wang
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Shanning Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Yinghui Dang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Miaomiao Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFMU (Air Force Medical University), Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
7
|
Pritchard AB, Grand K, Hopkins M, Schindewolf E, Dugoff L, Bhoj E. What not to expect when you're expecting: Unusual cases of placental mosaicism detected on non-invasive prenatal screening. Eur J Med Genet 2020; 63:103895. [PMID: 32084610 DOI: 10.1016/j.ejmg.2020.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Amanda Barone Pritchard
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Katheryn Grand
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maeve Hopkins
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lorraine Dugoff
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Division of Reproductive Genetics, Department of Obstetrics and Gynecology, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
8
|
Zheng Y, Chen B, Wan S, Xu H, Dang Y, Song T, Li Y, Zhang J. Detection of 21q11.2-q22.11 deletions in a fetus by NIPT. J Clin Lab Anal 2019; 33:e22711. [PMID: 30666717 PMCID: PMC6818560 DOI: 10.1002/jcla.22711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/29/2023] Open
Abstract
Background Non‐invasive prenatal testing (NIPT) is extensively used in the detection of fetal trisomies 21, 18, and 13, which is promptly becoming a common clinical practice. Concerned about the clinical application of non‐invasive detection of the fetal autosomal duplications or deletion. Case Presentation A 34‐year‐old, healthy pregnant woman was referred to the First Affiliated Hospital of the Air Force Medical University. The ultrasound examination indicates that low‐lying placenta, the fetus has a left ventricular bright spot and small amount of pericardial effusion. NIPT was chosen to further screen for fetal chromosomal abnormalities. NIPT results indicated an approximately 18 Mb deletion, which was verified by prenatal diagnosis. The chromosome microarray analysis (CMA) result showed about 19.2 Mb deletions in 21q11.2‐q22.11. The karyotype analysis result showed 46,XN,del(21)(q11.2q22.1). Prenatal diagnosis was consistent with NIPT results, and the paternal karyotype revealed no obvious abnormalities. Conclusion In this study, we successfully detected and diagnosed deletions of large fragments in chromosome 21 in a fetus using NIPT. This indicates that NIPT can provide effective genetic information for detecting fetal subchromosomal deletions/duplications.
Collapse
Affiliation(s)
- Yunyun Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shanning Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yinghui Dang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital Of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|