4
|
Abedi V, Goyal N, Tsivgoulis G, Hosseinichimeh N, Hontecillas R, Bassaganya-Riera J, Elijovich L, Metter JE, Alexandrov AW, Liebeskind DS, Alexandrov AV, Zand R. Novel Screening Tool for Stroke Using Artificial Neural Network. Stroke 2017; 48:1678-1681. [DOI: 10.1161/strokeaha.117.017033] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 02/18/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The timely diagnosis of stroke at the initial examination is extremely important given the disease morbidity and narrow time window for intervention. The goal of this study was to develop a supervised learning method to recognize acute cerebral ischemia (ACI) and differentiate that from stroke mimics in an emergency setting.
Methods—
Consecutive patients presenting to the emergency department with stroke-like symptoms, within 4.5 hours of symptoms onset, in 2 tertiary care stroke centers were randomized for inclusion in the model. We developed an artificial neural network (ANN) model. The learning algorithm was based on backpropagation. To validate the model, we used a 10-fold cross-validation method.
Results—
A total of 260 patients (equal number of stroke mimics and ACIs) were enrolled for the development and validation of our ANN model. Our analysis indicated that the average sensitivity and specificity of ANN for the diagnosis of ACI based on the 10-fold cross-validation analysis was 80.0% (95% confidence interval, 71.8–86.3) and 86.2% (95% confidence interval, 78.7–91.4), respectively. The median precision of ANN for the diagnosis of ACI was 92% (95% confidence interval, 88.7–95.3).
Conclusions—
Our results show that ANN can be an effective tool for the recognition of ACI and differentiation of ACI from stroke mimics at the initial examination.
Collapse
Affiliation(s)
- Vida Abedi
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Nitin Goyal
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Georgios Tsivgoulis
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Niyousha Hosseinichimeh
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Raquel Hontecillas
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Josep Bassaganya-Riera
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Lucas Elijovich
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Jeffrey E. Metter
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Anne W. Alexandrov
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - David S. Liebeskind
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Andrei V. Alexandrov
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| | - Ramin Zand
- From the Biocomplexity Institute (V.A., R.Z.), Department of Industrial and Systems Engineering (G.T.), and Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute (R.H., J.B.-R.), Virginia Tech, Blacksburg; Biomedical and Translational Informatics Institute (V.A.) and Department of Neurology (R.Z.), Geisinger Health System, Danville, PA; Department of Neurology, University of Tennessee Health Science Center, Memphis (N.G., G.T., L.E., J.E.M., A.W.A., A.V.A., R.Z.); Second
| |
Collapse
|
6
|
Zhang Y, Wong YS, Deng J, Anton C, Gabos S, Zhang W, Huang DY, Jin C. Machine learning algorithms for mode-of-action classification in toxicity assessment. BioData Min 2016; 9:19. [PMID: 27182283 PMCID: PMC4866020 DOI: 10.1186/s13040-016-0098-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/30/2016] [Indexed: 12/29/2022] Open
Abstract
Background Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. Results In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Conclusions Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening. Electronic supplementary material The online version of this article (doi:10.1186/s13040-016-0098-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yile Zhang
- Department of Mathematical and Statistical Science, University of Alberta, T6G 2G1, Edmonton, Canada
| | - Yau Shu Wong
- Department of Mathematical and Statistical Science, University of Alberta, T6G 2G1, Edmonton, Canada
| | - Jian Deng
- Department of Mathematical and Statistical Science, University of Alberta, T6G 2G1, Edmonton, Canada
| | - Cristina Anton
- Department of Mathematics and Statistics, Grant MacEwan University, T5P 2P7, Edmonton, Canada
| | - Stephan Gabos
- Department of Laboratory Medicine and Pathology, University of Alberta, T6G 2B7, Edmonton, Canada
| | | | - Dorothy Yu Huang
- Alberta Centre for Toxicology, University of Calgary, T2N 4N1, Calgary, Canada
| | - Can Jin
- AACEA Biosciences Inc, San Diego, 92121 USA
| |
Collapse
|
7
|
Verma M, Hontecillas R, Abedi V, Leber A, Tubau-Juni N, Philipson C, Carbo A, Bassaganya-Riera J. Modeling-Enabled Systems Nutritional Immunology. Front Nutr 2016; 3:5. [PMID: 26909350 PMCID: PMC4754447 DOI: 10.3389/fnut.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
This review highlights the fundamental role of nutrition in the maintenance of health, the immune response, and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition, and the immune system interact to delineate health and disease. The review sets an unconventional path to apply complex science methodologies to nutritional immunology research, discovery, and development through “use cases” centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, which include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|