1
|
Tu Q, Yu X, Xie W, Luo Y, Tang H, Chen K, Ruan Y, Li Y, Zhou J, Yin Y, Chen D, Song Z. Prokineticin 2 promotes macrophages-mediated antibacterial host defense against bacterial pneumonia. Int J Infect Dis 2022; 125:103-113. [PMID: 36241161 DOI: 10.1016/j.ijid.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Bacterial pneumonia is a common serious infectious disease with high morbidity and mortality. Prokineticin 2 (PK2) has recently been identified as a novel immunomodulator in a variety of diseases; however, its role in bacterial pneumonia remains unclear. METHODS The levels of PK2 were measured and analyzed in patients with pneumonia and healthy controls. The effects of PK2 on the host response to pneumonia were evaluated by in vivo animal experiments and in vitro cell experiments. RESULTS PK2 levels dramatically decreased in patients with pneumonia compared with healthy controls, and PK2 levels were lower in patients with severe pneumonia than in pneumonia. In a mouse model of bacterial pneumonia, transtracheal administration of recombinant PK2 significantly alleviated lung injury and improved the survival, which was associated with increased host's bacterial clearance capacity, as manifested by decreased pulmonary bacterial loads. PK2 enhanced the chemotaxis, phagocytosis, and killing ability of macrophages, whereas the protective efficacy of PK2 was abolished after macrophage depletion. CONCLUSION Impaired alveolar macrophage function caused by decreased PK2 is a new endogenous cause of the occurrence and development of bacterial pneumonia. The administration of recombinant PK2 may be a potential adjuvant therapy for bacterial pneumonia.
Collapse
Affiliation(s)
- Qianqian Tu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoyan Yu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Xie
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yetao Luo
- Department of Nosocomial Infection Control, Second affiliated Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Critical Care Medicine, Department of Surgical Intensive Care Unit, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Chen
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Yanting Ruan
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Li
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jie Zhou
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhixin Song
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University. Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Reynaud D, Sergent F, Abi Nahed R, Traboulsi W, Collet C, Marquette C, Hoffmann P, Balboni G, Zhou QY, Murthi P, Benharouga M, Alfaidy N. Evidence-Based View of Safety and Effectiveness of Prokineticin Receptors Antagonists during Pregnancy. Biomedicines 2021; 9:biomedicines9030309. [PMID: 33802771 PMCID: PMC8002561 DOI: 10.3390/biomedicines9030309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Endocrine gland derived vascular endothelial growth factor (EG-VEGF) is a canonical member of the prokineticin (PROKs) family. It acts via the two G-protein coupled receptors, namely PROKR1 and PROKR2. We have recently demonstrated that EG-VEGF is highly expressed in the human placenta; contributes to placental vascularization and growth and that its aberrant expression is associated with pregnancy pathologies including preeclampsia and fetal growth restriction. These findings strongly suggested that antagonization of its receptors may constitute a potential therapy for the pregnancy pathologies. Two specific antagonists of PROKR1 (PC7) and for PROKR2 (PKRA) were reported to reverse PROKs adverse effects in other systems. In the view of using these antagonists to treat pregnancy pathologies, a proof of concept study was designed to determine the biological significances of PC7 and PKRA in normal pregnancy outcome. PC7 and PKRA were tested independently or in combination in trophoblast cells and during early gestation in the gravid mouse. Both independent and combined treatments uncovered endogenous functions of EG-VEGF. The independent use of antagonists distinctively identified PROKR1 and PROKR2-mediated EG-VEGF signaling on trophoblast differentiation and invasion; thereby enhancing feto-placental growth and pregnancy outcome. Thus, our study provides evidence for the potential safe use of PC7 or PKRA to improve pregnancy outcome.
Collapse
Affiliation(s)
- Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Wael Traboulsi
- Lombardi Comprehensive Cancer Center, Laboratory for Immuno-Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Christel Marquette
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California, Irvine, CA 92697, USA;
| | - Padma Murthi
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
- Correspondence: (M.B.); (N.A.); Tel.: +4-3878-3501 (N.A.); Fax: +4-3878-5058 (N.A.)
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38000 Grenoble, France; (D.R.); (F.S.); (R.A.N.); (C.C.); (C.M.); (P.H.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
- Correspondence: (M.B.); (N.A.); Tel.: +4-3878-3501 (N.A.); Fax: +4-3878-5058 (N.A.)
| |
Collapse
|
3
|
Overexpression of Prokineticin 2 in Transgenic Mice Leads to Reduced Circadian Behavioral Rhythmicity and Altered Molecular Rhythms in the Suprachiasmatic Clock. J Circadian Rhythms 2018; 16:13. [PMID: 30473715 PMCID: PMC6234414 DOI: 10.5334/jcr.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals, the master pacemaker driving circadian rhythms is thought to reside in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. A clear view of molecular clock mechanisms within the SCN neurons has been elucidated. In contrast, much less is known about the output mechanism by which the SCN circadian pacemaker sends timing information for eventual control of physiological and behavioral rhythms. Two secreted molecules, prokineticin 2 (PK2) and vasopressin, that are encoded by respective clock-controlled genes, have been indicated as candidate SCN output molecules. Several lines of evidence have emerged that support the role of PK2 as an output signal for the SCN circadian clock, including the reduced circadian rhythms in mice that are deficient in PK2 or its receptor, PKR2. In the current study, transgenic mice with the overexpression of PK2 have been generated. These transgenic mice displayed reduced oscillation of the PK2 expression in the SCN and decreased amplitude of circadian locomotor rhythm, supporting the important signaling role of PK2 in the regulation of circadian rhythms. Altered molecular rhythms were also observed in the SCN in the transgenic mice, indicating that PK2 signaling also regulates the operation of core clockwork. This conclusion is consistent with recent reports showing the likely signaling role of PK2 from the intrinsically photosensitive retinal ganglion cells to SCN neurons. Thus, PK2 signaling plays roles in both the input and the output pathways of the SCN circadian clock.
Collapse
|
4
|
Zhao Y, Wu J, Wang X, Jia H, Chen DN, Li JD. Prokineticins and their G protein-coupled receptors in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:149-179. [PMID: 30711026 DOI: 10.1016/bs.pmbts.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prokineticins are two conserved small proteins (~8kDa), prokineticin 1 (PROK1; also called EG-VEGF) and prokineticin 2 (PROK2; also called Bv8), with an N-terminal AVITGA sequence and 10 cysteines forming 5 disulfide bridges. PROK1 and PROK2 bind to two highly related G protein-coupled receptors (GPCRs), prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). Prokineticins and their receptors are widely expressed. PROK1 is predominantly expressed in peripheral tissues, especially steroidogenic organs, whereas PROK2 is mainly expressed in the central nervous system and nonsteroidogenic cells of the testes. Prokineticins signaling has been implicated in several important physiological functions, including gastrointestinal smooth muscle contraction, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, mood regulation, and reproduction. Dysregulation of prokineticins signaling has been observed in a variety of diseases, such as cancer, ischemia, and neurodegeneration, in which prokineticins signaling seems to be a promising therapeutic target. Based on the phenotypes of knockout mice, PROKR2 and PROK2 have recently been identified as causative genes for idiopathic hypogonadotropic hypogonadism, a developmental disorder characterized by impaired development of gonadotropin-releasing hormone neurons and infertility. In vitro functional studies with these disease-associated PROKR2 mutations uncovered some novel features for this receptor, such as biased signaling, which may be used to understand GPCR signaling regulation in general.
Collapse
Affiliation(s)
- Yaguang Zhao
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jia
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China.
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
| |
Collapse
|