1
|
Real-time quaking-induced conversion assay is accurate for Lewy body diseases: a meta-analysis. Neurol Sci 2022; 43:4125-4132. [DOI: 10.1007/s10072-022-06014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
|
2
|
Wu X, Huai C, Shen L, Li M, Yang C, Zhang J, Chen L, Zhu W, Fan L, Zhou W, Xing Q, He L, Wan C, Qin S. Genome-wide study of copy number variation implicates multiple novel loci for schizophrenia risk in Han Chinese family trios. iScience 2021; 24:102894. [PMID: 34401673 PMCID: PMC8358640 DOI: 10.1016/j.isci.2021.102894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder that affects 1% of the global population. Copy number variations (CNVs) have been shown to play a critical role in its pathophysiology; however, only case-control studies on SCZ susceptibility CNVs have been conducted in Han Chinese. Here, we performed an array comparative genomic hybridization-based genome-wide CNV analysis in 100 Chinese family trios with SCZ. Burden test suggested that the SCZ probands carried more duplications than their healthy parents and unrelated healthy controls. Besides, five CNV loci were firstly reported to be associated with SCZ here, including both unbalanced transmitted CNVs and enriched de novo CNVs. Moreover, two genes (CTDSPL and MGAM) in these CNVs showed significant SCZ relevance in the expression level. Our findings support the crucial role of CNVs in the etiology of SCZ and provide new insights into the underlying mechanism of SCZ pathogenesis.
Collapse
Affiliation(s)
- Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, Anhui, 241000, China
| | - Lingzi Fan
- Zhumadian Psychiatric Hospital, Zhumadian, Henan, 463000, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinghe Xing
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Corresponding author
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Corresponding author
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Corresponding author
| |
Collapse
|
3
|
Paduano F, Colao E, Loddo S, Orlando V, Trapasso F, Novelli A, Perrotti N, Iuliano R. 7q35 Microdeletion and 15q13.3 and Xp22.33 Microduplications in a Patient with Severe Myoclonic Epilepsy, Microcephaly, Dysmorphisms, Severe Psychomotor Delay and Intellectual Disability. Genes (Basel) 2020; 11:genes11050525. [PMID: 32397165 PMCID: PMC7288449 DOI: 10.3390/genes11050525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Copy number variations (CNVs) play a key role in the pathogenesis of several diseases, including a wide range of neurodevelopmental disorders. Here, we describe the detection of three CNVs simultaneously in a female patient with evidence of severe myoclonic epilepsy, microcephaly, hypertelorism, dimorphisms as well as severe psychomotor delay and intellectual disability. Array-CGH analysis revealed a ~240 kb microdeletion at the 7q35 inherited from her father, a ∼538 kb microduplication at the 15q13.3 region and a ∼178 kb microduplication at Xp22.33 region, both transmitted from her mother. The microdeletion in 7q35 was included within an intragenic region of the contactin associated protein-like 2 (CNTNAP2) gene, whereas the microduplications at 15q13.3 and Xp22.33 involved the cholinergic receptor nicotinic α 7 subunit (CHRNA7) and the cytokine receptor-like factor 2 (CRLF2) genes, respectively. Here, we describe a female patient harbouring three CNVs whose additive contribution could be responsible for her clinical phenotypes.
Collapse
MESH Headings
- Adult
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/ultrastructure
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/ultrastructure
- Consanguinity
- DNA Copy Number Variations
- Epilepsies, Myoclonic/genetics
- Female
- Gene Duplication
- Genetic Association Studies
- Humans
- Membrane Proteins/genetics
- Microcephaly/genetics
- Nerve Tissue Proteins/genetics
- Neurodevelopmental Disorders/genetics
- Pedigree
- Receptors, Cytokine/genetics
- Sequence Deletion
- Tissue Array Analysis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Tecnologica Research Institute and Marrelli Health, Biomedical Section, Stem Cells Unit, 88900 Crotone, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus S. Venuta, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
| | - Sara Loddo
- Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, 00165 Rome, Italy; (S.L.); (V.O.); (A.N.)
| | - Valeria Orlando
- Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, 00165 Rome, Italy; (S.L.); (V.O.); (A.N.)
| | - Francesco Trapasso
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus S. Venuta, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Antonio Novelli
- Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, 00165 Rome, Italy; (S.L.); (V.O.); (A.N.)
| | - Nicola Perrotti
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
4
|
Xiang C, Han S, Nao J, Cong S. MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy. Front Neurosci 2019; 13:1103. [PMID: 31680837 PMCID: PMC6811505 DOI: 10.3389/fnins.2019.01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn accumulation, synaptic transmission, oxidative stress, and apoptosis. In this review, the metabolism of miRNAs and their functional roles in the pathogenesis of MSA are discussed, thereby highlighting miRNAs as potential new biomarkers for the diagnosis of MSA and in increasing our understanding of the disease process.
Collapse
Affiliation(s)
- Chunchen Xiang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shunchang Han
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci 2019; 13:352. [PMID: 31417368 PMCID: PMC6685065 DOI: 10.3389/fncel.2019.00352] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the human cerebral cortex is a complex and dynamic process, in which neural stem cell proliferation, neuronal migration, and post-migratory neuronal organization need to occur in a well-organized fashion. Alterations at any of these crucial stages can result in malformations of cortical development (MCDs), a group of genetically heterogeneous neurodevelopmental disorders that present with developmental delay, intellectual disability and epilepsy. Recent progress in genetic technologies, such as next generation sequencing, most often focusing on all protein-coding exons (e.g., whole exome sequencing), allowed the discovery of more than a 100 genes associated with various types of MCDs. Although this has considerably increased the diagnostic yield, most MCD cases remain unexplained. As Whole Exome Sequencing investigates only a minor part of the human genome (1-2%), it is likely that patients, in which no disease-causing mutation has been identified, could harbor mutations in genomic regions beyond the exome. Even though functional annotation of non-coding regions is still lagging behind that of protein-coding genes, tremendous progress has been made in the field of gene regulation. One group of non-coding regulatory regions are enhancers, which can be distantly located upstream or downstream of genes and which can mediate temporal and tissue-specific transcriptional control via long-distance interactions with promoter regions. Although some examples exist in literature that link alterations of enhancers to genetic disorders, a widespread appreciation of the putative roles of these sequences in MCDs is still lacking. Here, we summarize the current state of knowledge on cis-regulatory regions and discuss novel technologies such as massively-parallel reporter assay systems, CRISPR-Cas9-based screens and computational approaches that help to further elucidate the emerging role of the non-coding genome in disease. Moreover, we discuss existing literature on mutations or copy number alterations of regulatory regions involved in brain development. We foresee that the future implementation of the knowledge obtained through ongoing gene regulation studies will benefit patients and will provide an explanation to part of the missing heritability of MCDs and other genetic disorders.
Collapse
Affiliation(s)
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC – University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Katzeff JS, Phan K, Purushothuman S, Halliday GM, Kim WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019; 7:117. [PMID: 31340844 PMCID: PMC6651992 DOI: 10.1186/s40478-019-0769-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple system atrophy (MSA) is a devastating neurodegenerative disease characterized by the clinical triad of parkinsonism, cerebellar ataxia and autonomic failure, impacting on striatonigral, olivopontocerebellar and autonomic systems. At early stage of the disease, the clinical symptoms of MSA can overlap with those of Parkinson's disease (PD). The key pathological hallmark of MSA is the presence of glial cytoplasmic inclusions (GCI) in oligodendrocytes. GCI comprise insoluble proteinaceous filaments composed chiefly of α-synuclein aggregates, and therefore MSA is regarded as an α-synucleinopathy along with PD and dementia with Lewy bodies. The etiology of MSA is unknown, and the pathogenesis of MSA is still largely speculative. Much data suggests that MSA is a sporadic disease, although some emerging evidence suggests rare genetic variants increase susceptibility. Currently, there is no general consensus on the susceptibility genes as there have been differences due to geographical distribution or ethnicity. Furthermore, many of the reported studies have been conducted on patients that were only clinically diagnosed without pathological verification. The purpose of this review is to bring together available evidence to cross-examine the susceptibility genes and genetic pathomechanisms implicated in MSA. We explore the possible involvement of the SNCA, COQ2, MAPT, GBA1, LRRK2 and C9orf72 genes in MSA pathogenesis, highlight the under-explored areas of MSA genetics, and discuss future directions of research in MSA.
Collapse
Affiliation(s)
- Jared S Katzeff
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|