1
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Izquierdo-Altarejos P, Arenas YM, Martínez-García M, Vázquez L, Mincheva G, Doverskog M, Blackburn TP, Bohnen NI, Llansola M, Felipo V. Golexanolone reduces glial activation in the striatum and improves non-motor and some motor alterations in a rat model of Parkinson's disease. Front Aging Neurosci 2024; 16:1417938. [PMID: 38974902 PMCID: PMC11224447 DOI: 10.3389/fnagi.2024.1417938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Background Parkinson's disease (PD) affects more than 6 million people worldwide. Along with motor impairments, patients and animal models exhibiting PD symptoms also experience cognitive impairment, fatigue, anxiety, and depression. Currently, there are no drugs available for PD that alter the progression of the disease. A body of evidence suggests that increased GABA levels contribute to the reduced expression of tyrosine hydroxylase (TH) and accompanying behavioral deficits. TH expression may be restored by blocking GABAA receptors. We hypothesized that golexanolone (GR3027), a well-tolerated GABAA receptor-modulating steroid antagonist (GAMSA), may improve Parkinson's symptoms in a rat model of PD. Objectives The aims of this study were to assess whether golexanolone can ameliorate motor and non-motor symptoms in a rat model of PD and to identify some underlying mechanisms. Methods We used the unilateral 6-OHDA rat model of PD. The golexanolone treatment started 4 weeks after surgery. Motor symptoms were assessed using Motorater and CatWalk tests. We also analyzed fatigue (using a treadmill test), anhedonia (via the sucrose preference test), anxiety (with an open field test), and short-term memory (using a Y maze). Glial activation and key proteins involved in PD pathogenesis were analyzed using immunohistochemistry and Western blot. Results Rats with PD showed motor incoordination and impaired locomotor gait, increased fatigue, anxiety, depression, and impaired short-term memory. Golexanolone treatment led to improvements in motor incoordination, certain aspects of locomotor gait, fatigue, anxiety, depression, and short-term memory. Notably, golexanolone reduced the activation of microglia and astrocytes, mitigated TH loss at 5 weeks after surgery, and prevented the increase of α-synuclein levels at 10 weeks. Conclusions Golexanolone may be useful in improving both motor and non-motor symptoms that adversely affect the quality of life in PD patients, such as anxiety, depression, fatigue, motor coordination, locomotor gait, and certain cognitive alterations.
Collapse
Affiliation(s)
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mar Martínez-García
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lola Vázquez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
- Parkinson's Foundation Center of Excellence, University of Michigan, Ann Arbor, MI, United States
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
3
|
Lee EJ, Aguirre-Padilla DH, Fomenko A, Pawar G, Kapadia M, George J, Lozano AM, Hamani C, Kalia LV, Kalia SK. Reduction of alpha-synuclein oligomers in preclinical models of Parkinson's disease by electrical stimulation in vitro and deep brain stimulation in vivo. Brain Stimul 2024; 17:166-175. [PMID: 38342364 DOI: 10.1016/j.brs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has been widely used to manage debilitating neurological symptoms in movement disorders such as Parkinson's disease (PD). Despite its well-established symptomatic benefits, our understanding of the mechanisms underlying DBS and its possible effect on the accumulation of pathological proteins in neurodegeneration remains limited. Accumulation and oligomerization of the protein alpha-synuclein (α-Syn) are implicated in the loss of dopaminergic neurons in the substantia nigra in PD, making α-Syn a potential therapeutic target for disease modification. OBJECTIVE We examined the effects of high frequency electrical stimulation on α-Syn levels and oligomerization in cell and rodent models. METHODS High frequency stimulation, mimicking DBS parameters used for PD, was combined with viral-mediated overexpression of α-Syn in cultured rat primary cortical neurons or in substantia nigra of rats. Bimolecular protein complementation with split fluorescent protein reporters was used to detect and quantify α-Syn oligomers. RESULTS High frequency electrical stimulation reduced the expression of PD-associated mutant α-Syn and mitigated α-Syn oligomerization in cultured neurons. Furthermore, DBS in the substantia nigra, but not the subthalamic nucleus, decreased overall levels of α-Syn, including oligomer levels, in the substantia nigra. CONCLUSIONS Taken together, our results demonstrate that direct high frequency stimulation can reduce accumulation and pathological forms of α-Syn in cultured neurons in vitro and in substantia nigra in vivo. Thus, DBS therapy could have a role beyond symptomatic treatment, with potential disease-modifying properties that can be exploited to target pathological proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun Jung Lee
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - David Hernán Aguirre-Padilla
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Neuromodulation and Functional Neurosurgery Program, San Borja Arriarán Hospital, Santiago, Chile; Department of Neurology and Neurosurgery, Medical School, University of Chile, Santiago, Chile; Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Anton Fomenko
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jimmy George
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Clement Hamani
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Xing V, Biggar K, Ferguson SSG, Hayley S. In vitro modulation of mTOR and mGlur5 influence α-synuclein accumulation. Mol Brain 2024; 17:9. [PMID: 38360671 PMCID: PMC10870503 DOI: 10.1186/s13041-023-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) is abnormal alpha-synuclein (α-syn) aggregation which forms the main component of intracellular Lewy body inclusions. This short report used preformed α-syn fibrils, as well as an A53T mutant α-syn adenovirus to mimic conditions of pathological protein aggregation in dopaminergic human derived SH-SY5Y neural cells. Since there is evidence that the mTOR pathway and glutamatergic signaling each influence protein aggregation, we also assessed the impact of the mTOR inhibitor, rapamycin and the mGluR5 allosteric modulator, CTEP. We found that both rapamycin and CTEP induced a significant reduction of α-syn fibrils in SH-SY5Y cells and this effect was associated with a reduction in mTOR signaling and enhancement in autophagic pathway factors. These data support the possibility that CTEP (or rapamycin) might be a useful pharmacological approach to target abnormal α-syn accumulation by promoting intracellular degradation or enhanced clearance.
Collapse
Affiliation(s)
- Viktoria Xing
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kyle Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Stephen S G Ferguson
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
5
|
Amireddy N, Dulam V, Kaul S, Pakkiri R, Kalivendi SV. The mitochondrial uncoupling effects of nitazoxanide enhances cellular autophagy and promotes the clearance of α-synuclein: Potential role of AMPK-JNK pathway. Cell Signal 2023:110769. [PMID: 37315747 DOI: 10.1016/j.cellsig.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Upregulation and aggregation of the pre-synaptic protein, α-synuclein plays a key role in Parkinson's disease (PD) and mitochondrial dysfunction was surmised to be an upstream event in the disease pathogenesis. Emerging reports identified the role of nitazoxanide (NTZ), an anti-helminth drug, in enhancing mitochondrial oxygen consumption rate (OCR) and autophagy. In the present study, we have examined the mitochondrial effects of NTZ in mediating cellular autophagy and subsequent clearance of both endogenous and pre-formed aggregates of α-synuclein in cellular model of PD. Our results demonstrate that the mitochondrial uncoupling effects of NTZ results in the activation of AMPK and JNK, which in-turn leads to the enhancement of cellular autophagy. Also,1-methyl-4-phenylpyridinium (MPP+) mediated decrease in autophagic flux with a concomitant increase in the α-synuclein levels were ameliorated in cells treated with NTZ. However, in cells lacking functional mitochondria (ρ0 cells), NTZ did not mitigate MPP+ mediated alterations in the autophagic clearance of α-synuclein, indicating that the mitochondrial effects of NTZ play a crucial role in the clearance of α-synuclein by autophagy. Also, the ability of AMPK inhibitor, compound C, in abrogating NTZ mediated enhancement in the autophagic flux and α-synuclein clearance highlight the pivotal role of AMPK in NTZ mediated autophagy. Further, NTZ per se enhanced the clearance of preformed α-synuclein aggregates that were exogenously added to the cells. Overall, the results of our present study suggest that NTZ activates macroautophagy in cells due to its uncoupling effects on mitochondrial respiration via activation of AMPK-JNK pathway resulting in the clearance of both endogenous and pre-formed α-synuclein aggregates. As NTZ happens to possess good bioavailability and safety profile, considering this drug for PD based on its mitochondrial uncoupling and autophagy enhancing properties for mitigating mitochondrial reactive oxygen species (ROS) and α-synuclein toxicity appears to be a promising therapeutic option.
Collapse
Affiliation(s)
- Niharika Amireddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandana Dulam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Shweta Kaul
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajeswari Pakkiri
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Shasi V Kalivendi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods. J Neurosci Methods 2023; 385:109761. [PMID: 36470469 PMCID: PMC9884911 DOI: 10.1016/j.jneumeth.2022.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
Collapse
|
7
|
Tiwari S, Singh A, Gupta P, Singh S. UBA52 Is Crucial in HSP90 Ubiquitylation and Neurodegenerative Signaling during Early Phase of Parkinson's Disease. Cells 2022; 11:cells11233770. [PMID: 36497031 PMCID: PMC9738938 DOI: 10.3390/cells11233770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Protein aggregation is one of the major pathological events in age-related Parkinson's disease (PD) pathology, predominantly regulated by the ubiquitin-proteasome system (UPS). UPS essentially requires core component ubiquitin; however, its role in PD pathology is obscure. This study aimed to investigate the role of ubiquitin-encoding genes in sporadic PD pathology. Both cellular and rat models of PD as well as SNCA C57BL/6J-Tg (Th-SNCA*A30P*A53T)39 Eric/J transgenic mice showed a decreased abundance of UBA52 in conjunction with significant downregulation of tyrosine hydroxylase (TH) and neuronal death. In silico predictions, mass spectrometric analysis, and co-immunoprecipitation findings suggested the protein-protein interaction of UBA52 with α-synuclein, HSP90 and E3-ubiquitin ligase CHIP, and its co-localization with α-synuclein in the mitochondrion. Next, in vitro ubiquitylation assay indicated an imperative requirement of the lysine-63 residue of UBA52 in CHIP-mediated HSP90 ubiquitylation. Myc-UBA52 expressed neurons inhibited alteration in PD-specific markers such as α-synuclein and TH protein along with increased proteasome activity in diseased conditions. Furthermore, Myc-UBA52 expression inhibited the altered protein abundance of HSP90 and its various client proteins, HSP75 (homolog of HSP90 in mitochondrion) and ER stress-related markers during early PD. Taken together, the data highlights the critical role of UBA52 in HSP90 ubiquitylation in parallel to its potential contribution to the modulation of various disease-related neurodegenerative signaling targets during the early phase of PD pathology.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
8
|
Durell SR, Guy HR. The amyloid concentric β-barrel hypothesis: Models of synuclein oligomers, annular protofibrils, lipoproteins, and transmembrane channels. Proteins 2022; 90:512-542. [PMID: 34570382 PMCID: PMC8988847 DOI: 10.1002/prot.26249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/13/2021] [Indexed: 02/03/2023]
Abstract
Amyloid beta (Aβ of Alzheimer's disease) and α-synuclein (α-Syn of Parkinson's disease) form large fibrils. Evidence is increasing however that much smaller oligomers are more toxic and that these oligomers can form transmembrane ion channels. We have proposed previously that Aβ42 oligomers, annular protofibrils, and ion channels adopt concentric β-barrel molecular structures. Here we extend that hypothesis to the superfamily of α, β, and γ-synucleins. Our models of numerous synuclein oligomers, annular protofibrils, tubular protofibrils, lipoproteins, and ion channels were developed to be consistent with sizes, shapes, molecular weights, and secondary structures of assemblies as determined by electron microscopy and other studies. The models have the following features: (1) all subunits have identical structures and interactions; (2) they are consistent with conventional β-barrel theory; (3) the distance between walls of adjacent β-barrels is between 0.6 and 1.2 nm; (4) hydrogen bonds, salt bridges, interactions among aromatic side-chains, burial and tight packing of hydrophobic side-chains, and aqueous solvent exposure of hydrophilic side-chains are relatively optimal; and (5) residues that are identical among distantly related homologous proteins cluster in the interior of most oligomers whereas residues that are hypervariable are exposed on protein surfaces. Atomic scale models of some assemblies were developed.
Collapse
Affiliation(s)
- Stewart R Durell
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - H Robert Guy
- Amyloid Research Consultants (ARC), Cochiti Lake, New Mexico, USA
| |
Collapse
|
9
|
The Alpha-Synuclein RT-QuIC Products Generated by the Olfactory Mucosa of Patients with Parkinson’s Disease and Multiple System Atrophy Induce Inflammatory Responses in SH-SY5Y Cells. Cells 2021; 11:cells11010087. [PMID: 35011649 PMCID: PMC8750063 DOI: 10.3390/cells11010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) and multiple system atrophy (MSA) are caused by two distinct strains of disease-associated α-synuclein (αSynD). Recently, we have shown that olfactory mucosa (OM) samples of patients with PD and MSA can seed the aggregation of recombinant α-synuclein by means of Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC). Remarkably, the biochemical and morphological properties of the final α-synuclein aggregates significantly differed between PD and MSA seeded samples. Here, these aggregates were given to neuron-like differentiated SH-SY5Y cells and distinct inflammatory responses were observed. To deepen whether the morphological features of α-synuclein aggregates were responsible for this variable SH-SY5Y inflammatory response, we generated three biochemically and morphologically distinct α-synuclein aggregates starting from recombinant α-synuclein that were used to seed αSyn_RT-QuIC reaction; the final reaction products were used to stimulate SH-SY5Y cells. Our study showed that, in contrast to OM samples of PD and MSA patients, the artificial aggregates did not transfer their distinctive features to the αSyn_RT-QuIC products and the latter induced analogous inflammatory responses in cells. Thus, the natural composition of the αSynD strains but also other specific factors in OM tissue can substantially modulate the biochemical, morphological and inflammatory features of the αSyn_RT-QuIC products.
Collapse
|
10
|
Cankara FN, Çelik ZB, Günaydın C. Cannabinoid receptor-1 has an effect on CD200 under rotenone and alpha-synuclein induced stress. Neurosci Lett 2021; 755:135908. [PMID: 33892001 DOI: 10.1016/j.neulet.2021.135908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Decades after identifying cannabinoids and their beneficial effects on Parkinson's disease (PD), many gaps are still missing. Although, CB2-dependent actions have been shown as underlying positive effects of cannabinoid treatment, in recent years, another receptor of cannabinoids, CB1, emerged as a valuable player in cannabinoid-induced neuroprotection. Remarkably, the effects of CB1 are mainly related to immune cells in the CNS, microglia, and astrocytes. However, oxidative stress, α-syn accumulation, and immune disbalance are essential aspects of both neurons and glial cells. Therefore, in this study, we investigated the effects of the CB1 on both α-syn and rotenone-treated SH-SY5Y and C8-D1A cells. ACEA and AM-251 were used as CB1 agonists and antagonists. Cell viability, IL-1β, IL-6, TNF-α levels, and CD200 expressions were determined in culture mediums. Our results demonstrated that preformed fibril form (pFF) of α-syn did not cause any significant change in SH-SY5Y cells compared to C8-D1A cells. Rotenone significantly increased the expression of IL-1β, IL-6, and TNF-α levels in both cells. pFF α-syn and rotenone treatment caused a decrease in CD200 expression. Surprisingly both ACEA and AM-251 alleviated rotenone-induced increase in cytokine levels in both cell lines. Although ACEA prevented pFF α-syn induced increase in cytokine levels and decrease in CD200 expression in C8-D1A cells, AM-251 failed to affect CD200 expression levels. Additionally, ACEA + AM-251 abolished the protective effects of both ACEA and AM-251 against rotenone and α-syn insults in both cell lines. The current study suggests that cannabinoid receptor agonism alleviates rotenone and α-syn-dependent inflammation in neurons and astrocytes.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Süleyman Demirel University, Faculty of Medicine, Department of Pharmacology, Isparta, Turkey.
| | - Zülfinaz Betül Çelik
- Ondokuz Mayıs University, Faculty of Medicine, Department of Medical Biology, Samsun, Turkey.
| | - Caner Günaydın
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pharmacology, Samsun, Turkey.
| |
Collapse
|
11
|
Kang C, Sun R. Molecular Dynamics Study of the Interaction between the N-terminal of α-Synuclein and a Lipid Bilayer Mimicking Synaptic Vesicles. J Phys Chem B 2020; 125:1036-1048. [DOI: 10.1021/acs.jpcb.0c08620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Christopher Kang
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| | - Rui Sun
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| |
Collapse
|