1
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
2
|
Zhang LG, Cheng J, An MQ, Li CJ, Dong LG, Wang JM, Liu CF, Wang F, Mao CJ. Safinamide alleviates hyperalgesia via inhibiting hyperexcitability of DRG neurons in a mouse model of Parkinson's disease. Behav Brain Res 2024; 459:114787. [PMID: 38042302 DOI: 10.1016/j.bbr.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Pain is a widespread non-motor symptom that presents significant treatment challenges in patients with Parkinson's disease (PD). Safinamide, a new drug recently introduced for PD treatment, has demonstrated analgesic effects on pain in PD patients, though the underlying mechanisms remain unclear. To investigate the analgesic and anti-PD effect of safinamide, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used, and rasagiline as positive control on motor symptoms. Notably, only safinamide alleviated hyperalgesia in MPTP mice. Whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons revealed hyperexcitability in MPTP mice, which safinamide counteracted in a concentration-dependent manner. The voltage clamp further demonstrated that sodium current in DRG neurons of MPTP mice was enhanced and safinamide reduced sodium current density. RT-qPCR identified upregulated Nav1.7 and Nav1.8 transcripts (Scn9a and Scn10a) in DRG neurons of MPTP mice. Our results suggest that safinamide could relieve hyperalgesia by inhibiting DRG neuron hyperexcitability in MPTP mice.
Collapse
Affiliation(s)
- Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jing Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Min Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Zhou Z, Chen QY, Zhuo M, Xu PY. Inhibition of calcium-stimulated adenylyl cyclase subtype 1 (AC1) for the treatment of pain and anxiety symptoms in Parkinson's disease mice model. Mol Pain 2024; 20:17448069241266683. [PMID: 38912637 PMCID: PMC11282525 DOI: 10.1177/17448069241266683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Pain and anxiety are two common and undertreated non-motor symptoms in Parkinson's disease (PD), which affect the life quality of PD patients, and the underlying mechanisms remain unclear. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical long-term potentiation (LTP) and injury induced synaptic potentiation in the cortical areas including anterior cingulate cortex (ACC) and insular cortex (IC). Genetic deletion of AC1 or pharmacological inhibition of AC1 improved chronic pain and anxiety in different animal models. In this study, we proved the motor deficit, pain and anxiety symptoms of PD in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model. As a lead candidate AC1 inhibitor, oral administration (1 dose and seven doses) of NB001 (20 and 40 mg/kg) showed significant analgesic effect in MPTP-treated mice, and the anxiety behavior was also reduced (40 mg/kg). By using genetic knockout mice, we found that AC1 knockout mice showed reduced pain and anxiety symptoms after MPTP administration, but not AC8 knockout mice. In summary, genetic deletion of AC1 or pharmacological inhibition of AC1 improved pain and anxiety symptoms in PD model mice, but didn't affect motor function. These results suggest that NB001 is a potential drug for the treatment of pain and anxiety symptoms in PD patients by inhibiting AC1 target.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Exercise & Health Science, Xi’an Physical Education University, Xi’an, China
| | - Qi-Yu Chen
- Zhuomin Institute of Brain Research, Qingdao, China
| | - Min Zhuo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Zhuomin Institute of Brain Research, Qingdao, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Fu Y, Gong C, Zhu C, Zhong W, Guo J, Chen B. Research trends and hotspots of neuropathic pain in neurodegenerative diseases: a bibliometric analysis. Front Immunol 2023; 14:1182411. [PMID: 37503342 PMCID: PMC10369061 DOI: 10.3389/fimmu.2023.1182411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Neuropathic pain is caused by a neurological injury or disease and can have a significant impact on people's daily lives. Studies have shown that neuropathic pain is commonly associated with neurodegenerative diseases. In recent years, there has been a lot of literature on the relationship between neuropathic pain and neurodegenerative diseases. However, bibliometrics is rarely used in analyzing the general aspects of studies on neuropathic pain in neurodegenerative diseases. Methods The bibliometric analysis software CiteSpace and VOSviewer were used to analyze the knowledge graph of 387 studies in the Science Citation Index Expanded of the Web of Science Core Collection Database. Results We obtained 2,036 documents through the search, leaving 387 documents after culling. 387 documents were used for the data analysis. The data analysis showed that 330 papers related to neuropathic pain in neurodegenerative diseases were published from 2007-2022, accounting for 85.27% of all published literature. In terms of contributions to the scientific study of neuropathic pain, the United States is in the top tier, with the highest number of publications, citations, and H-indexes. Conclusion The findings in our study may provide researchers with useful information about research trends, frontiers, and cooperative institutions. Multiple sclerosis, Parkinson's disease, and Alzheimer's disease are the three most studied neurodegenerative diseases. Among the pathological basis of neurodegenerative diseases, microglia-regulated neuroinflammation is a hot research topic. Deep brain stimulation and gamma knife radiosurgery are two popular treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jiabao Guo
- *Correspondence: Binglin Chen, ; Jiabao Guo,
| | | |
Collapse
|
5
|
Cortical Synaptic Mechanism for Chronic Pain and Anxiety in Parkinson's Disease. J Transl Int Med 2023; 10:300-303. [PMID: 36860635 PMCID: PMC9969574 DOI: 10.2478/jtim-2022-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Nayeri Z, Aliakbari F, Afzali F, Parsafar S, Gharib E, Otzen DE, Morshedi D. Characterization of exogenous αSN response genes and their relation to Parkinson’s disease using network analyses. Front Pharmacol 2022; 13:966760. [PMID: 36249814 PMCID: PMC9563388 DOI: 10.3389/fphar.2022.966760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Despite extensive research, the molecular mechanisms underlying the toxicity of αSN in Parkinson’s disease (PD) pathology are still poorly understood. To address this, we used a microarray dataset to identify genes that are induced and differentially expressed after exposure to toxic αSN aggregates, which we call exogenous αSN response (EASR) genes. Using systems biology approaches, we then determined, at multiple levels of analysis, how these EASR genes could be related to PD pathology. A key result was the identification of functional connections between EASR genes and previously identified PD-related genes by employing the proteins’ interactions networks and 9 brain region-specific co-expression networks. In each brain region, co-expression modules of EASR genes were enriched for gene sets whose expression are altered by SARS-CoV-2 infection, leading to the hypothesis that EASR co-expression genes may explain the observed links between COVID-19 and PD. An examination of the expression pattern of EASR genes in different non-neurological healthy brain regions revealed that regions with lower mean expression of the upregulated EASR genes, such as substantia nigra, are more vulnerable to αSN aggregates and lose their neurological functions during PD progression. Gene Set Enrichment Analysis of healthy and PD samples from substantia nigra revealed that a specific co-expression network, “TNF-α signaling via NF-κB”, is an upregulated pathway associated with the PD phenotype. Inhibitors of the “TNF-α signaling via NF-κB” pathway may, therefore, decrease the activity level of this pathway and thereby provide therapeutic benefits for PD patients. We virtually screened FDA-approved drugs against these upregulated genes (NR4A1, DUSP1, and FOS) using docking-based drug discovery and identified several promising drugs. Altogether, our study provides a better understanding of αSN toxicity mechanisms in PD and identifies potential therapeutic targets and small molecules for treatment of PD.
Collapse
Affiliation(s)
- Zahra Nayeri
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farhang Aliakbari
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Farzaneh Afzali
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Soha Parsafar
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Gharib
- Department of Chemistry and Biochemistry, University de Moncton, Moncton, ON, Canada
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dina Morshedi
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- *Correspondence: Dina Morshedi,
| |
Collapse
|
7
|
Zhou Z, Ye P, Li XH, Zhang Y, Li M, Chen QY, Lu JS, Xue M, Li Y, Liu W, Lu L, Shi W, Xu PY, Zhuo M. Correction to: Synaptic potentiation of anterior cingulate cortex contributes to chronic pain of Parkinson's disease. Mol Brain 2022; 15:58. [PMID: 35733170 PMCID: PMC9219181 DOI: 10.1186/s13041-022-00943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Penghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Yuxiang Zhang
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Muhang Li
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanan Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Weiqi Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Wang W, Chen QY, Zhao P, Zhong J, Wang Y, Li X, Zhuo M, Chen X. Human safety study of a selective neuronal adenylate cyclase 1 (AC1) inhibitor NB001 which relieves the neuropathic pain and blocks ACC in adult mice. Mol Pain 2022; 18:17448069221089596. [PMID: 35266830 DOI: 10.1177/17448069221089596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calcium-dependent, neuronal adenylyl cyclase subtype 1 (AC1) is critical for cortical potentiation and chronic pain. NB001 is a first-in-class drug acting as a selective inhibitor against AC1. The present study delineated the pharmacokinetic (PK) properties of human-used NB001 (hNB001) formulated as immediate-release tablet. This first-in-human study was designed as randomized, double-blind, placebo-controlled trial. hNB001 showed placebo-like safety and good tolerability in healthy volunteers. A linear dose-exposure relationship was demonstrated at doses between 20 mg and 400 mg. The relatively small systemic exposure of hNB001 in human showed low bioavailability of this compound through oral administration, which can be improved through future dosage research. Food intake had minimal impact on the absorption of hNB001 tablet. Animal experiments further confirmed that hNB001 had strong analgesic effect in animal models on neuropathic pain. In brain slice prepared from the anterior cingulate cortex (ACC), bath application of hNB001 blocked the induction of LTP. These results from both rodents and human strongly suggest that hNB001 can be safely used for the future treatment of different types of chronic pain in human patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Zhuo
- Physiology7938University of Toronto
| | | |
Collapse
|