1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2024:10.1007/s12035-024-04316-z. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Qin S, Wu H, Li C, Yang J, Yan W, He Z, Xing X, Zhang J, Xu X, Zhao L, Su X. Detection of Naturally occurring abortive transcripts by Base-Stacking Hybridization Assisted Ligation and PCR amplification. Biosens Bioelectron 2024; 251:116099. [PMID: 38330773 DOI: 10.1016/j.bios.2024.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Abortive transcripts (ATs) refer to nascent 2-10 nucleotides (nt) RNAs released by RNA polymerases before synthesizing productive RNAs. The quantitative detection of ATs is important for studying transcription initiation and the biological function of ATs; however, no method is available for the qualitative and quantitative assessment of such ultra-short oligonucleotides (typically shorter than 11 nt) in vivo at present, even with the LNA probes, the detection limit can only reach 11 nt. Here, we demonstrated the base stacking hybridization assisted ligation (BSHAL) technique, combined with TaqMan-MGB qPCR, can detect 4-10 nt ATs with a specificity of nucleotide resolution and a sensitivity of approximately 10 pM. By this technique, we detected endogenous ATs in cell lines, mice plasmas, and mice liver tissues, respectively, and proved that naturally occurring ATs do exist. We found that the 8 nt ATs of HMSB and Gapdh could be used as reference ATs for data normalization in Homo and mouse respectively, and 8 nt ATs of Afp and Gpc3 were suitable for use as plasma biomarkers of Hepatocellular carcinoma in mouse, indicate ATs are promising biomarkers. This study offers opportunities to study ATs and other ultra-short oligonucleotides in biological samples.
Collapse
Affiliation(s)
- Shaowei Qin
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
| | - Haizhu Wu
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
| | - Cailin Li
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
| | - Jiarui Yang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, 21218, USA
| | - Weiwei Yan
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
| | - Zhigui He
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
| | - Xuekun Xing
- College of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Jiayang Zhang
- College of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Xianglin Xu
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
| | - Lifeng Zhao
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Liu L, Zhang Y, Hu X, Zhang H, Jiang C, Guo Y, Cang S. MiR-138-5p inhibits prostate cancer cell proliferation and chemoresistance by targeting APOBEC3B. Transl Oncol 2023; 35:101723. [PMID: 37364333 DOI: 10.1016/j.tranon.2023.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Docetaxel is one of the most commonly used drugs in prostate cancer (PCa) chemotherapy, but its therapeutic effect in PCa is usually limited due to its drug resistance. APOBEC3B is a DNA cytosine deaminase that can alter biological processes, including chemoresistance. APOBEC3B is upregulated in various cancers. However, the biological function and underlying regulation of APOBEC3B in PCa remain unclear. In this study, we explored the role of APOBEC3B in PCa chemoresistance and the molecular mechanism of its dysregulated expression. Our results revealed that APOBEC3B was upregulated in PCa docetaxel-resistant cells, while its knockdown significantly repressed cell proliferation and docetaxel resistance of PCa cells. Bioinformatics and luciferase report analysis showed that miR-138-5p targeted APOBEC3B. In addition, miR-138-5p overexpression impeded cell proliferation and docetaxel resistance in PCa, while miR-138-5p inhibitors reversed this process. Further studies showed that upregulation of APOBEC3B expression in docetaxel-resistant cells overexpressing miR-138-5p could desensitize PCa cells to docetaxel treatment. Taken together, miR-138-5p regulates PCa cell proliferation and chemoresistance by targeting the 3'-UTR of APOBEC3B, which may provide novel insights and therapeutic targets for the treatment of PCa.
Collapse
Affiliation(s)
- Lina Liu
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yan Zhang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xi Hu
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Hui Zhang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Chenyang Jiang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yan Guo
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, Henan Provincial Academician Workstation of Non-coding RNA Translational Research, Henan Provincial People's Hospital, Henan University People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Mumtaz S, Usman Rashid M, Khan RU, Malkani N. miR-4482 and miR-3912 aim for 3'UTR of ERG mRNA in prostate cancer. PLoS One 2023; 18:e0286996. [PMID: 37310937 DOI: 10.1371/journal.pone.0286996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Ets-related gene (ERG) is overexpressed as a fusion protein in prostate cancer. During metastasis, the pathological role of ERG is associated with cell proliferation, invasion, and angiogenesis. Here, we hypothesized that miRNAs regulate ERG expression through its 3'UTR. Several bioinformatics tools were used to identify miRNAs and their binding sites on 3'UTR of ERG. The selected miRNAs expression was analyzed in prostate cancer samples by qPCR. The miRNAs overexpression was induced in prostate cancer cells (VCaP) to analyze ERG expression. Reporter gene assay was performed to evaluate the ERG activity in response to selected miRNAs. The expression of ERG downstream target genes was also investigated through qPCR after miRNAs overexpression. To observe the effects of selected miRNAs on cell proliferation and migration, scratch assay was performed to calculate the cell migration rate. miR-4482 and miR-3912 were selected from bioinformatics databases. miR-4482 and -3912 expression were decreased in prostate cancer samples, as compared to controls (p<0.05 and p<0.001), respectively. Overexpression of miR-4482 and miR-3912 significantly reduced ERG mRNA (p<0.001 and p<0.01), respectively) and protein (p<0.01) in prostate cancer cells. The transcriptional activity of ERG was significantly reduced (p<0.01) in response to miR-4482 and-3912. ERG angiogenic targets and cell migration rate was also reduced significantly (p<0.001) after miR-4482 and -3912 over-expression. This study indicates that miR-4482 and -3912 can suppress the ERG expression and its target genes, thereby, halt prostate cancer progression. These miRNAs may be employed as a potential therapeutic target for the miRNA-based therapy against prostate cancer.
Collapse
Affiliation(s)
- Sidra Mumtaz
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | | | - Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan
| |
Collapse
|
5
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
6
|
Fathi M, Aghdaie HA, Ghafouri-Fard S, Shams R. Evaluation of potential of miR-8073 and miR-642 as diagnostic markers in pancreatic cancer. Mol Biol Rep 2022; 49:6475-6481. [PMID: 35596051 DOI: 10.1007/s11033-022-07476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer is a cancer with an insidious course. Since disease is often diagnosed at advanced stages, clinical outcome is impaired. Thus identification of biomarkers for this malignancy has importance in enhancement of patients' survival. METHODS AND RESULTS In the current study, we assessed expression levels of miR-8073 and miR-642 in the circulation of 50 patients with pancreatic cancer and 50 controls. Plasma levels of miR-8073 and miR-642 were significantly higher in patients with pancreatic cancer compared with controls (P value < 0.0001 and P value = 0.0068, respectively). Plasma levels of miR-642 were inversely correlated with albumin levels (R=-0.28, P value = 0.049), WBC count (R=-0.35, P value = 0.01), as well as CRP level (R=-0.30, P value = 0.035). On the other hand, levels of this miRNA were positively correlated with lipase level (R = 0.29, P value = 0.042). Levels of miR-8073 were not correlated with any of the available parameters. Plasma levels of miR-8073 could separate patients with pancreatic cancer from controls with AUC, sensitivity and specificity values of 0.82, 0.77 and 0.78, respectively. miR-642 could differentiate these two groups with AUC, sensitivity and specificity values of 0.63, 0.58 and 0.78, respectively. Combination of these two parameters resulted in AUC, sensitivity and specificity values of 0.79, 0.77 and 0.78, respectively. CONCLUSIONS Taken together, these two miRNAs are suggested as possible blood markers for pancreatic cancer.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaie
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Roshanak Shams
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Braoudaki M, Ahmad MS, Mustafov D, Seriah S, Siddiqui MN, Siddiqui SS. Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin Cancer Biol 2022; 86:436-449. [PMID: 35700938 DOI: 10.1016/j.semcancer.2022.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
Colorectal cancer (CRC) is considered the second cause of cancer death worldwide. The early diagnosis plays a key role in patient prognosis and subsequently overall survival. Similar to several types of cancer, colorectal cancer is also characterised by drug resistance and heterogeneity that contribute to its complexity -especially at advanced stages. However, despite the extensive research related to the identification of biomarkers associated to early diagnosis, accurate prognosis and the management of CRC patients, little progress has been made thus far. Therefore, the mortality rates, especially at advanced stages, remain high. A large family of chemoattractant cytokines called chemokines are known for their significant role in inflammation and immunity. Chemokines released by the different tumorous cells play a key role in increasing the complexity of the tumour's microenvironment. The current review investigates the role of chemokines and chemokine receptors in colorectal cancer and their potential as clinical molecular signatures that could be effectively used as a personalised therapeutic approach. We discussed how chemokine and chemokine receptors regulate the microenvironment and lead to heterogeneity in CRC. An important aspect of chemokines is their role in drug resistance which has been extensively discussed. This review also provides an overview of the current advances in the search for chemokines and chemokine receptors in CRC.
Collapse
Affiliation(s)
- Maria Braoudaki
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Mohammed Saqif Ahmad
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Denis Mustafov
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Sara Seriah
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Mohammad Naseem Siddiqui
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shoib Sarwar Siddiqui
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK.
| |
Collapse
|
8
|
Yu L, Zhang S, He W. miR-136 Suppresses the Aggressive Proliferation of Non-Small Cell Lung Cancer Through Restraining Histone Deacetylase 1 (HDAC1) and Phosphorylation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (Jak2/STAT3) Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNA-136 can inhibit the proliferating activity of malignant cells and also participate in chemotherapy resistance of colorectal cancer via modulating HDAC1. This study assessed miR-136’s effect on NSCLC cell proliferation and underlying mechanisms. Tumor tissues and paracancerous
tissues from NSCLC patients were collected to measure miR-136 and HDAC1 level. Cells were transfected with miR-136-mimics, miR-136-inhibitors or miR-136 mimics+HDAC1-OE followed by analysis of cell viability and apoptosis by CCK-8 method and flow cytometry, phosphorylation of Jak2/STAT3 by
western blot. miR-136 was significantly downregulated in tumor tissues and NSCLC cells, accompanied by upregulated HDAC1. miR-136 overexpression suppressed HDAC1 expression, retarded phosphorylation and activation of Jak2/STAT3 signaling, reduced NSCLC cell viability and enhanced apoptosis.
In addition, co-transfection of miR-136-mimics and HDAC1-OE reversed the inhibitory effects of miR-136 on NSCLC cells. In conclusion, miR-136 is reduced and HDAC1 is increased in NSCLC and miR-136 overexpression inhibited NSCLC cell proliferation and increased apoptosis possibly through regulating
HDAC1/Jak2/STAT3 signal pathway, indicating that miR-136 might be a novel target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Liang Yu
- Department of General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750000, China
| | - Sheng Zhang
- Department of General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750000, China
| | - Wei He
- Department of General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750000, China
| |
Collapse
|
9
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
10
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
11
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:cancers13123028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Childhood tumors of the central nervous system (CNS) constitute a grave disease and their diagnosis is difficult to be handled. To gain better knowledge of the tumor’s biology, it is essential to understand the underlying mechanisms of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that are dysregulated in many types of CNS tumors and regulate their occurrence and development through specific signal pathways. However, different types of CNS tumors’ area are characterized by different deregulated miRNAs. Here, we hypothesized that CNS tumors could have commonly deregulated miRNAs, i.e., miRNAs that are simultaneously either upregulated or downregulated in all tumor types compared to the normal brain tissue, irrespectively of the tumor sub-type and/or diagnosis. The only criterion is that they are present in brain tumors. This approach could lead us to the discovery of miRNAs that could be used as pan-CNS tumoral therapeutic targets, if successful. Abstract Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. Aim: The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. Materials: A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. Results: We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. Conclusions: Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
- Correspondence: (A.Z.); (M.B.); Tel.: +974-4403-7819 (A.Z.); +44-(0)-1707286503 (ext. 3503) (M.B.)
| |
Collapse
|
12
|
Tang K, Gardner S, Snuderl M. The Role of Liquid Biopsies in Pediatric Brain Tumors. J Neuropathol Exp Neurol 2021; 79:934-940. [PMID: 32766689 DOI: 10.1093/jnen/nlaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Early detection and serial therapeutic monitoring for pediatric brain tumors are essential for diagnosis and therapeutic intervention. Currently, neuropathological diagnosis relies on biopsy of tumor tissue and surgical intervention. There is a great clinical need for less invasive methods to molecularly characterize the tumor and allow for more reliable monitoring of patients during treatment and to identify patients that might potentially benefit from targeted therapies, particularly in the setting where diagnostic tissue cannot be safely obtained. In this literature review, we highlight recent studies that describe the use of circulating tumor DNA, circulating tumor cells, circulating RNA and microRNA, and extracellular vesicles as strategies to develop liquid biopsies in pediatric central nervous system tumors. Liquid biomarkers have been demonstrated using plasma, urine, and cerebrospinal fluid. The use of liquid biopsies to help guide diagnosis, determine treatment response, and analyze mechanisms of treatment resistance is foreseeable in the future. Continued efforts to improve signal detection and standardize liquid biopsy procedures are needed for clinical application.
Collapse
Affiliation(s)
- Karen Tang
- Division of Hematology/Oncology, Department of Pediatrics.,Clinical and Translational Science Institute
| | - Sharon Gardner
- Division of Hematology/Oncology, Department of Pediatrics
| | - Matija Snuderl
- Department of Neuropathology, New York.,University Langone Health, New York, New York
| |
Collapse
|
13
|
Liquid Biomarkers for Pediatric Brain Tumors: Biological Features, Advantages and Perspectives. J Pers Med 2020; 10:jpm10040254. [PMID: 33260839 PMCID: PMC7711550 DOI: 10.3390/jpm10040254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tumors of the central nervous system are the most frequent solid tumor type and the major cause for cancer-related mortality in children and adolescents. These tumors are biologically highly heterogeneous and comprise various different entities. Molecular diagnostics are already well-established for pediatric brain tumors and have facilitated a more accurate patient stratification. The availability of targeted, biomarker-driven therapies has increased the necessity of longitudinal monitoring of molecular alterations within tumors for precision medicine-guided therapy. Nevertheless, diagnosis is still primarily based on analyses of the primary tumor and follow-up is usually performed by imaging techniques which lack important information on tumor biology possibly changing the course of the disease. To overcome this shortage of longitudinal information, liquid biopsy has emerged as a promising diagnostic tool representing a less-invasive source of biomarkers for tumor monitoring and therapeutic decision making. Novel ultrasensitive methods for detection of allele variants, genetic alterations with low abundance, have been developed and are promising tools for establishing and integrating liquid biopsy techniques into clinical routine. Pediatric brain tumors harbor multiple molecular alterations with the potential to be used as liquid biomarkers. Consequently, studies have already investigated different types of biomarker in diverse entities of pediatric brain tumors. However, there are still certain pitfalls until liquid biomarkers can be unleashed and implemented into routine clinical care. Within this review, we summarize current knowledge on liquid biopsy markers and technologies in pediatric brain tumors, their advantages and drawbacks, as well as future potential biomarkers and perspectives with respect to clinical implementation in patient care.
Collapse
|
14
|
Fei L, Sun G, You Q. miR-642a-5p partially mediates the effects of lipopolysaccharide on human pulmonary microvascular endothelial cells via eEF2. FEBS Open Bio 2020; 10:2294-2304. [PMID: 32881411 PMCID: PMC7609801 DOI: 10.1002/2211-5463.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Inhalation or systemic administration of lipopolysaccharide (LPS) can induce acute pulmonary inflammation and lung injury. The pulmonary vasculature is composed of pulmonary microvascular endothelial cells (PMVECs), which form a semiselective membrane for gas exchange. The miRNA miR‐642a‐5p has previously been reported to be up‐regulated in patients with acute respiratory distress syndrome; thus, here, we examined whether this miRNA is involved in the effects of LPS on PMVECs. The levels of miR‐642a‐5p and mRNA encoding eukaryotic elongation factor 2 (eEF2) were detected by quantitative RT‐PCR. Moesin and eEF2 protein levels were tested by western blot assay. Dual‐luciferase reporter assay was used to examine the relationship between miR‐642a‐5p and eEF2. Cell viability was assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, and cell permeability was analyzed using the transendothelial electrical resistance assay. We report that miR‐642a‐5p levels are significantly up‐regulated in LPS‐stimulated PMVECs, and miR‐642a‐5p contributes to LPS‐induced hyperpermeability and apoptosis of PMVECs. LPS treatment results in down‐regulation of eEF2 in PMVECs. Overexpression of eEF2, a direct target of miR‐642a‐5p, inhibited the effect of LPS on PMVECs. miR‐642a‐5p promoted LPS‐induced hyperpermeability and apoptosis by targeting eEF2. Thus, miR‐642a‐5p and eEF2 may serve as potential targets for acute lung injury/acute respiratory distress syndrome diagnosis or treatment.
Collapse
Affiliation(s)
- Liming Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Yi W, Liu J, Qu S, Fan H, Lv Z. An 8 miRNA-Based Risk Score System for Predicting the Prognosis of Patients With Papillary Thyroid Cancer. Technol Cancer Res Treat 2020; 19:1533033820965594. [PMID: 33054579 PMCID: PMC7570775 DOI: 10.1177/1533033820965594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Dysregulation of microRNAs (miRNAs) in papillary thyroid cancer (PTC) might influence prognosis of PTC. This study is aimed to develop a risk score system for predicting prognosis of PTC. Methods: The miRNA and gene expression profiles of PTC were obtained from The Cancer Genome Atlas database. PTC samples were randomly separated into training set (n = 248) and validation set (n = 248). The differentially expressed miRNAs (DE-miRNAs) in the training set were screened using limma package. The independent prognosis-associated DE-miRNAs were identified for building a risk score system. Risk score of PTC samples in the training set was calculated and samples were divided into high risk group and low risk group. Kaplan-Meier curves and receiver operating characteristic (ROC) curve were used to assess the accuracy of the risk score system in the training set, validation set and entire set. Finally, a miRNA-gene regulatory network was visualized by Cytoscape software, followed by enrichment analysis. Results: Totally, 162 DE-miRNAs between tumor and control groups in the training set were identified. An 8 independent prognosis-associated DE-miRNAs, (including miR-1179, miR-133b, miR-3194, miR-3912, miR-548j, miR-6720, miR-6734, and miR-6843) based risk score system was developed. The area under ROC curve in the training set, validation set and entire set was all above 0.93. A miRNA-gene regulatory network involving the 8 DE-miRNAs were built and functional enrichment analysis suggested the genes in the network were significantly enriched into 13 pathways, including calcium signaling pathway and hedgehog signaling pathway. Conclusion: The risk score system developed this study might be used for predicting the prognosis of PTC. Besides, the 8 miRNAs might affect the prognosis of PTC via hedgehog signaling pathway and calcium signaling pathway.
Collapse
Affiliation(s)
- Wanwan Yi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Jin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Shuping Qu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China.,Wanwan Yi, Jin Liu and Shuping Qu are co-first authors
| | - Hengwei Fan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China.,Hengwei Fan and Zhongwei Lv are co-corresponding authors
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hengwei Fan and Zhongwei Lv are co-corresponding authors
| |
Collapse
|
16
|
Bogner EM, Daly AF, Gulde S, Karhu A, Irmler M, Beckers J, Mohr H, Beckers A, Pellegata NS. miR-34a is upregulated in AIP-mutated somatotropinomas and promotes octreotide resistance. Int J Cancer 2020; 147:3523-3538. [PMID: 32856736 DOI: 10.1002/ijc.33268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Pituitary adenomas (PAs) are intracranial tumors associated with significant morbidity due to hormonal dysregulation, mass effects and have a heavy treatment burden. Growth hormone (GH)-secreting PAs (somatotropinomas) cause acromegaly-gigantism. Genetic forms of somatotropinomas due to germline AIP mutations (AIPmut+) have an early onset and are aggressive and resistant to treatment with somatostatin analogs (SSAs), including octreotide. The molecular underpinnings of these clinical features remain unclear. We investigated the role of miRNA dysregulation in AIPmut+ vs AIPmut- PA samples by array analysis. miR-34a and miR-145 were highly expressed in AIPmut+ vs AIPmut- somatotropinomas. Ectopic expression of AIPmut (p.R271W) in Aip-/- mouse embryonic fibroblasts (MEFs) upregulated miR-34a and miR-145, establishing a causal link between AIPmut and miRNA expression. In PA cells (GH3), miR-34a overexpression promoted proliferation, clonogenicity, migration and suppressed apoptosis, whereas miR-145 moderately affected proliferation and apoptosis. Moreover, high miR-34a expression increased intracellular cAMP, a critical mitogenic factor in PAs. Crucially, high miR-34a expression significantly blunted octreotide-mediated GH inhibition and antiproliferative effects. miR-34a directly targets Gnai2 encoding Gαi2, a G protein subunit inhibiting cAMP production. Accordingly, Gαi2 levels were significantly lower in AIPmut+ vs AIPmut- PA. Taken together, somatotropinomas with AIP mutations overexpress miR-34a, which in turn downregulates Gαi2 expression, increases cAMP concentration and ultimately promotes cell growth. Upregulation of miR-34a also impairs the hormonal and antiproliferative response of PA cells to octreotide. Thus, miR-34a is a novel downstream target of mutant AIP that promotes a cellular phenotype mirroring the aggressive clinical features of AIPmut+ acromegaly.
Collapse
Affiliation(s)
- Eva-Maria Bogner
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Auli Karhu
- Department of Medical and Clinical Genetics & Genome-Scale Biology Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Technische Universität München, Chair of Experimental Genetics, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
18
|
Li C, Zou H, Xiong Z, Xiong Y, Miyagishima DF, Wanggou S, Li X. Construction and Validation of a 13-Gene Signature for Prognosis Prediction in Medulloblastoma. Front Genet 2020; 11:429. [PMID: 32508873 PMCID: PMC7249855 DOI: 10.3389/fgene.2020.00429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 01/28/2023] Open
Abstract
Background: Recent studies have identified several molecular subgroups of medulloblastoma associated with distinct clinical outcomes; however, no robust gene signature has been established for prognosis prediction. Our objective was to construct a robust gene signature-based model to predict the prognosis of patients with medulloblastoma. Methods: Expression data of medulloblastomas were acquired from the Gene Expression Omnibus (GSE85217, n = 763; GSE37418, n = 76). To identify genes associated with overall survival (OS), we performed univariate survival analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. A risk score model was constructed based on selected genes and was validated using multiple datasets. Differentially expressed genes (DEGs) between the risk groups were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein–protein interaction (PPI) analyses were performed. Network modules and hub genes were identified using Cytoscape. Furthermore, tumor microenvironment (TME) was evaluated using ESTIMATE algorithm. Tumor-infiltrating immune cells (TIICs) were inferred using CIBERSORTx. Results: A 13-gene model was constructed and validated. Patients classified as high-risk group had significantly worse OS than those as low-risk group (Training set: p < 0.0001; Validation set 1: p < 0.0001; Validation set 2: p = 0.00052). The area under the curve (AUC) of the receiver operating characteristic (ROC) analysis indicated a good performance in predicting 1-, 3-, and 5-year OS in all datasets. Multivariate analysis integrating clinical factors demonstrated that the risk score was an independent predictor for the OS (validation set 1: p = 0.001, validation set 2: p = 0.004). We then identified 265 DEGs between risk groups and PPI analysis predicted modules that were highly related to central nervous system and embryonic development. The risk score was significantly correlated with programmed death-ligand 1 (PD-L1) expression (p < 0.001), as well as immune score (p = 0.035), stromal score (p = 0.010), and tumor purity (p = 0.010) in Group 4 medulloblastomas. Correlations between the 13-gene signature and the TIICs in Sonic hedgehog and Group 4 medulloblastomas were revealed. Conclusion: Our study constructed and validated a robust 13-gene signature model estimating the prognosis of medulloblastoma patients. We also revealed genes and pathways that may be related to the development and prognosis of medulloblastoma, which might provide candidate targets for future investigation.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Han Zou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Danielle F Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Braoudaki M, Sarafidis M, Koutsouris DD, Koutsouri G, Lambrou GI. Bioinformatics Analysis Reveals Ki-67 Specific microRNA Functions in Pediatric Embryonal Tumors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1346-1349. [PMID: 31946142 DOI: 10.1109/embc.2019.8857896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pediatric Central Nervous System (CNS) neoplasms are the second most prevalent tumors of childhood. CNS malignancies are considered as the most notorious type of tumors, due to their anatomic position manifesting an imminent threat to the patients' life. miRNAs are molecules that play a significant role in CNS tumor biology. At the same time diagnostic markers such as Ki-67 have played an important role in CNS tumor diagnosis. In a previous study we have identified several miRNAs, common to different subtypes of pediatric embryonal CNS malignancies as well as, we have identified miRNAs that manifest significant dynamics with respect to their expression and the neoplasmatic subtype. Among the previously reported miRNAs, several have manifested significant differences with respect to Ki-67 expression. Those miRNAs, were further analyzed bioinformatically and related functions were revealed, where some of them confirmed Ki-67 role as a proliferation marker but also predicted novel miRNAs functions in pediatric embryonal tumors.
Collapse
|
20
|
Braoudaki M, Koutsouris DD, Kouris I, Paidi A, Koutsouri G, George Lambrou I. Bioinformatics and Regression Analyses Manifest Tumor-Specific miRNA Expression Dynamics in Pediatric Embryonal Malignancies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5834-5837. [PMID: 30441662 DOI: 10.1109/embc.2018.8513587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pediatric Central Nervous System (CNS) neoplasms are the second most prevalent tumors of childhood. Further on, prognosis of this type of neoplasms still remain poor and the comprehension of the etiology and pathogenesis of the disease still remains scarce. Several reports have identified microRNAs as significant molecules in the development of central nervous system tumors and propose that they might compose key molecules underlying oncogenesis. In a previous study we have identified several miRNAs, common to different subtypes of pediatric embryonal CNS malignancies as well as, we have identified miRNAs that manifest significant dynamics with respect to their expression and the neoplasmatic subtype. Overall, 19 tumor cases from children diagnosed with embryonal brain tumors were investigated. As controls, children who suffered a sudden death underwent autopsy and were not present with any brain malignancy were used (13 samples of varying localization). Our experimental approach included microarrays covering 1211 miRNAs, which appeared to manifest tumor-specific dynamics. In conclusion, it appeared that certain miRNAs are neoplasm specific and in particular, their expression manifests linear dynamics. Thus, the investigation of miRNA expression in pediatric embryonal brain tumors might contribute towards the discovery of tumor-specific miRNA signatures, which could potentially afford the identification of gene-specific biomarkers related to diagnosis, prognosis and patient targeted therapy, as well as help us understand oncogenetic dynamics.
Collapse
|
21
|
Chen Y, Zhao J, Duan Z, Gong T, Chen W, Wang S, Xu H. miR‑27b‑3p and miR‑607 cooperatively regulate BLM gene expression by directly targeting the 3'‑UTR in PC3 cells. Mol Med Rep 2019; 19:4819-4831. [PMID: 30957187 PMCID: PMC6522798 DOI: 10.3892/mmr.2019.10135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
BLM RecQ like helicase (BLM) has a pivotal role in genetic recombination, transcription, DNA replication and DNA repair, which presents the possibility of using BLM as an anti-cancer target for treatment. However, the post-transcriptional control regulation of BLM gene expression is not fully understood and limits the application of drugs targeting BLM for carcinoma therapy in the future. MicroRNAs (miRNAs) inhibit gene expression through interaction with the 3′ untranslated region (3′-UTR) of mRNA at the post-transcriptional stage. Therefore, the current study screened for miRNAs that regulate BLM gene expression, with software predicting that miRNA (miR)-27b-3p, miR-607, miR-361-3p, miR-628-5p and miR-338-3p. BLM gene expression levels in the PC3 prostate cancer cell line and RWPE-2 normal prostate epithelium cell line were detected by reverse transcription-quantitative PCR. Additionally, BLM mRNA levels were following miRNA overexpression for 24 and 48 h. For further miRNA filtration and validation, a dual-luciferase reporter system and western blot analysis were performed, which demonstrated that miR-27b-3p and miR-607 reduce BLM gene expression by directly targeting the BLM mRNA 3′-UTR. A Box-Behnken design experiment suggested that miR-27b-3p and miR-607 have synergetic mutual effects on BLM gene expression. Finally, the suppressive effect of miR-27b-3p and miR-607 on PC3 cell proliferation, colony formation, migration and invasion indicated the benefit of studying BLM as a drug target in cancer. In conclusion, the findings of the current provide evidence that miR-27b-3p and miR-607 have an oncosuppressive function in PC3 cells and cooperatively downregulate BLM expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Yinglian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Sainan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
22
|
Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2018; 52:85-102. [PMID: 28774835 DOI: 10.1016/j.semcancer.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ishaq N Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Najeeb Ullah
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Kulvinder S Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India.
| |
Collapse
|
23
|
Association of MicroRNAs with the Clinicopathologic Characteristics of Ependymoma. J Mol Neurosci 2018; 66:307-313. [DOI: 10.1007/s12031-018-1178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
24
|
Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, Wang K, Gao L, Qi ST, Lu YT. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol 2018; 11:70. [PMID: 29843746 PMCID: PMC5975545 DOI: 10.1186/s13045-018-0618-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Background Chemoresistance to temozolomide (TMZ) is a major challenge in the treatment of glioblastoma (GBM). We previously found that miR-519a functions as a tumor suppressor in glioma by targeting the signal transducer and activator of transcription 3 (STAT3)-mediated autophagy oncogenic pathway. Here, we investigated the effects of miR-519a on TMZ chemosensitivity and autophagy in GBM cells. Furthermore, the underlying molecular mechanisms and signaling pathways were explored. Methods In the present study, two stable TMZ-resistant GBM cell lines were successfully generated by exposure of parental cells to a gradually increasing TMZ concentration. After transfecting U87-MG/TMZ and U87-MG cells with miR-519a mimic or inhibitor, a series of biochemical assays such as MTT, apoptosis, and colony formation were performed to determine the chemosensitive response to TMZ. The autophagy levels in GBM cells were detected by transmission electron microscopy, LC3B protein immunofluorescence, and Western blotting analysis. Stable knockdown and overexpression of miR-519a in GBM cells were established using lentivirus. A xenograft nude mouse model and in situ brain model were used to examine the in vivo effects of miR-519a. Tumor tissue samples were collected from 48 patients with GBM and were used to assess the relationship between miR-519a and STAT3 expression. Results TMZ treatment significantly upregulated miR-519a in U87-MG cells but not in U87-MG/TMZ cells. Moreover, the expression of miR-519a and baseline autophagy levels was lower in U87-MG/TMZ cells as compared to U87-MG cells. miR-519a dramatically enhanced TMZ-induced autophagy and apoptotic cell death in U87-MG/TMZ cells, while inhibition of miR-519a promoted TMZ resistance and reduced TMZ-induced autophagy in U87-MG cells. Furthermore, miR-519a induced autophagy through modification of STAT3 expression. The in vivo results showed that miR-519a can enhance apoptosis and sensitized GBM to TMZ treatment by promoting autophagy and targeting the STAT3/Bcl-2/Beclin-1 pathway. In human GBM tissues, we found an inverse correlation between miR-519a and STAT3 expression. Conclusions Our results suggested that miR-519a increased the sensitivity of GBM cells to TMZ therapy. The positive effects of miR-519a may be mediated through autophagy. In addition, miR-519a overexpression can induce autophagy by inhibiting STAT3/Bcl-2 pathway. Therefore, a combination of miR-519a and TMZ may represent an effective therapeutic strategy in GBM. Electronic supplementary material The online version of this article (10.1186/s13045-018-0618-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jun-Jie Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Qiang Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Annie Huang
- Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Canada
| | - Wei-Wen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Nanfang Neurology Research Institution, Nanfang Hospital, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Nanfang Glioma Center, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yun-Tao Lu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Nanfang Neurology Research Institution, Nanfang Hospital, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Nanfang Glioma Center, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
25
|
Examining redox modulation pathways in the post-mortem frontal cortex in patients with bipolar disorder through data mining of microRNA expression datasets. J Psychiatr Res 2018; 99:39-49. [PMID: 29407286 DOI: 10.1016/j.jpsychires.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
Abstract
The etiology of redox (reduction and oxidation) alterations in bipolar disorder (BD) is largely unknown. To explore whether microRNAs targeting redox enzymes may have a role in BD, we examined 3 frontal cortex microRNA expression datasets (Perkins [2007], Vladimirov [2009], and Miller [2009]; N for BD = 30-36 per dataset, N for controls = 28-34 per dataset) from the Stanley Neuropathology Consortium. Each dataset was analyzed separately because they were generated using different high-throughput platforms. Following the selection of only redox modulator-targeting microRNAs, microRNAs in the top 10th percentile in feature selection could together discriminate BD and controls at a greater frequency than expected by chance in classification analysis. In pathway enrichment analysis of all three datasets, these classifying microRNAs targeted the cellular nitrogen compound metabolic process pathway, which includes redox enzymes of the mitochondrial electron transport chain and the glutathione system. To see if this pathway would still emerge as significant if all microRNAs (not just redox-targeting) were analyzed, all analyses were repeated with the complete set of microRNAs. Cellular nitrogen compound metabolic process pathway was enriched in all 3 datasets in this analysis as well, demonstrating that preselection of redox microRNAs was not a requirement to identify this pathway for the discrimination of BD and controls. While preliminary, our findings suggest that microRNAs that target redox enzymes in this pathway may be good candidates for the exploration of causative factors contributing to redox alterations in BD. Future studies validating these findings in a separate set of central and peripheral samples are warranted.
Collapse
|
26
|
Tantawy M, Elzayat MG, Yehia D, Taha H. Identification of microRNA signature in different pediatric brain tumors. Genet Mol Biol 2018; 41:27-34. [PMID: 29658967 PMCID: PMC5901491 DOI: 10.1590/1678-4685-gmb-2016-0334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/21/2017] [Indexed: 12/02/2022] Open
Abstract
Understanding pediatric brain tumor biology is essential to help on disease
stratification, and to find novel markers for early diagnosis. MicroRNA (miRNA)
expression has been linked to clinical outcomes and tumor biology. Here, we
aimed to detect the expression of different miRNAs in different pediatric brain
tumor subtypes to discover biomarkers for early detection and develop novel
therapies. Expression of 82 miRNAs was detected in 120 pediatric brain tumors
from fixed-formalin paraffin-embedded tissues, low-grade glioma, high-grade
glioma, ependymoma, and medulloblastoma, using quantitative real-time PCR.
Low-expression of miR-221, miR-9, and miR-181c/d and over-expression of miR-101,
miR-222, miR-139, miR-1827, and miR-34c was found in medulloblastoma; low
expression of miR-10a and over-expression of miR-10b and miR-29a in ependymoma;
low expression of miR-26a and overexpression of miR-19a/b, miR-24, miR-27a, miR-
584, and miR-527 in low-grade glioma. Cox regression showed differential miRNA
expression between responders and non-responders. The most specific were miR-10a
and miR-29a low expression in LGG non-responders, miR-135a and miR-146b
over-expression in ependymoma non-responders, and miR-135b overexpression in
medulloblastoma non-responders. MicroRNAs are differentially expressed in
subtypes of brain tumors suggesting that they may help diagnosis. A greater
understanding of aberrant miRNA in pediatric brain tumors may support
development of novel therapies.
Collapse
Affiliation(s)
- Marwa Tantawy
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Mariam G Elzayat
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Dina Yehia
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Hala Taha
- Pathology Department, Children's Cancer Hospital Egypt, Cairo, Egypt.,Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Ma C, Zhang W, Wu Q, Liu Y, Wang C, Lao G, Yang L, Liu P. Identification of a microRNA signature associated with survivability in cervical squamous cell carcinoma. PLoS One 2018. [PMID: 29513728 PMCID: PMC5841789 DOI: 10.1371/journal.pone.0193625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study is to find the potential miRNA expression signature capable of predicting survival time for cervical squamous cell carcinoma (CSCC) patients. Methods The expression of 332 miRNAs was measured in 131 (Training cohort) and 130 (Validation cohort) patients with CSCC in the Cancer Genome Atlas (TCGA) data portal. The miRNA expression signature was identified by Cox Proportion Hazard regression model to the Training data set, and subsequently validated in an independent Validation set. Kaplan-Meier curves and the receiver operating characteristic analyses of 5 years were used to access the overall survival of miRNA signature. MiRNA signature-gene target analysis was performed, followed by the construction of the regulatory network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to explore the function of target genes of miRNA signature. Results A 2-miRNA expression signature of hsa-mir-642a and hsa-mir-378c associated with survivability was identified in CSCC. Both of them had a significant diagnostic and prognostic value of patients with CSCC. A total of 345 miRNA signature-target pairs were obtained in the miRNA signature-gene target regulatory network, in which 316 genes were targets of has-mir-378c and has-mir-642a. Functional analysis of target genes showed that MAPK signaling pathway, VEGF signaling pathway and endocytosis were the significantly enriched signal pathways that covered most genes. Conclusions The 2-miRNA signature adds to the prognostic value of CSCC. In-depth interrogation of the 2-miRNAs will provide important biological insights that finding and developing novel molecularly prediction to improve prognosis for CSCC patients.
Collapse
Affiliation(s)
- Chengbin Ma
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Wenying Zhang
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Qiongwei Wu
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Yu Liu
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Chao Wang
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Guoying Lao
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Longtao Yang
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Ping Liu
- Department of Gynecology, Changning Maternity and Infant Health Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
28
|
Gershanov S, Toledano H, Michowiz S, Barinfeld O, Pinhasov A, Goldenberg-Cohen N, Salmon-Divon M. MicroRNA-mRNA expression profiles associated with medulloblastoma subgroup 4. Cancer Manag Res 2018; 10:339-352. [PMID: 29497332 PMCID: PMC5818864 DOI: 10.2147/cmar.s156709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Medulloblastoma (MB), the most common malignant brain tumor in children, is divided into four tumor subgroups: wingless-type (WNT), sonic hedgehog (SHH), Group 3, and Group 4. Ideally, clinical practice and treatment design should be subgroup specific. While WNT and SHH subgroups have well-defined biomarkers, distinguishing Group 3 from Group 4 is not straightforward. MicroRNAs (miRNAs), which regulate posttranscriptional gene expression, are involved in MB tumorigenesis. However, the miRNA–messenger RNA (mRNA) regulatory network in MB is far from being fully understood. Our aims were to investigate miRNA expression regulation in MB subgroups, to assess miRNA target relationships, and to identify miRNAs that can distinguish Group 3 from Group 4. Patients and methods With these aims, integrated transcriptome mRNA and miRNA expression analysis was performed on primary tumor samples collected from 18 children with MB, using miRNA sequencing (miRNA-seq), RNA sequencing (RNA-seq), and quantitative PCR. Results Of all the expressed miRNAs, 19 appeared to be significantly differentially expressed (DE) between Group 4 and non-Group 4 subgroups (false discovery rate [FDR] <0.05), including 10 miRNAs, which, for the first time, are reported to be in conjunction with MB. RNA-seq analysis identified 165 genes that were DE between Group 4 and the other subgroups (FDR <0.05), among which seven are predicted targets of five DE miRNAs and exhibit inverse expression pattern. Conclusion This study identified miRNA molecules that may be involved in Group 4 etiology, in general, and can distinguish between Group 3 and Group 4, in particular. In addition, understanding the involvement of miRNAs and their targets in MB may improve diagnosis and advance the development of targeted treatment for MB.
Collapse
Affiliation(s)
- Sivan Gershanov
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Michowiz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Neurosurgery, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Orit Barinfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petah Tikva, Tel Aviv, Israel
| | - Albert Pinhasov
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Beilinson Hospital, Petah Tikva, Tel Aviv, Israel.,Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
29
|
Lykoudi A, Kolialexi A, Lambrou GI, Braoudaki M, Siristatidis C, Papaioanou GK, Tzetis M, Mavrou A, Papantoniou N. Dysregulated placental microRNAs in Early and Late onset Preeclampsia. Placenta 2017; 61:24-32. [PMID: 29277268 DOI: 10.1016/j.placenta.2017.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION To determine the miRNA expression profile in placentas complicated by Preeclampsia (PE) and compare it to uncomplicated pregnancies. METHODS Sixteen placentas from women with PE, [11 with early onset PE (EOPE) and 5 with late onset PE (LOPE)], as well as 8 placentas from uncomplicated pregnancies were analyzed using miRNA microarrays. For statistical analyses the MATLAB® simulation environment was applied. The over-expression of miR-518a-5p was verified using Quantitative Real-Time Polymerase Chain Reaction. RESULTS Forty four miRNAs were found dysregulated in PE complicated placentas. Statistical analysis revealed that miR-431, miR-518a-5p and miR-124* were over-expressed in EOPE complicated placentas as compared to controls, whereas miR-544 and miR-3942 were down-regulated in EOPE. When comparing the miRNA expression profile in cases with PE and PE-growth restricted fetuses (FGR), miR-431 and miR-518a-5p were found over-expressed in pregnancies complicated by FGR. DISCUSSION Since specific miRNAs can differentiate EOPE and LOPE from uncomplicated placentas, they may be considered as putative PE-specific biomarkers. MiR-518a-5p emerged as a potential diagnostic indicator for EOPE cases as well as for PE-FGR complicated placentas, indicating a potential link to the severity of the disease.
Collapse
Affiliation(s)
- Alexandra Lykoudi
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece; Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aggeliki Kolialexi
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece; Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Thivon & Levadeias, 11527, Athens, Greece
| | - Maria Braoudaki
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| | - Charalampos Siristatidis
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Konstantinos Papaioanou
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ariadni Mavrou
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolas Papantoniou
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
30
|
MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol 2017. [PMID: 28629431 PMCID: PMC5477161 DOI: 10.1186/s13045-017-0493-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Brain metastasis (BM) is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). Recent studies demonstrated that microRNA-330-3p (miR-330-3p) was involved in NSCLC brain metastasis (BM). However, the exact parts played by miR-330-3p in BM of NSCLC remain unknown. Discovery and development of biomarkers and elucidation of the mechanism underlying BM in NSCLC is critical for effective prophylactic interventions. Here, we evaluated the expression and biological effects of miR-330-3p in NSCLC cells and explored the underlying mechanism of miR-330-3p in promoting cell migration and invasion in NSCLC. Methods Stable over-expression and knockdown of miR-330-3p in NSCLC cells was constructed with lentivirus. Expression levels of miR-330-3p in NSCLC cells were quantified by quantitive real-time PCR (qRT-PCR). The effects of miR-330-3p on NSCLC cells were investigated using assays of cell viability, migration, invasion, cell cycle, apoptosis, western blotting, immunohistochemical, and immunofluorescence staining. A xenograft nude mouse model and in situ brain metastasis model were used to observe tumor growth and brain metastasis. The potential target of miR-330-3p in NSCLC cells was explored using the luciferase reporter assay, qRT-PCR, and western blotting. The miR-330-3p targets were identified using bioinformatics analysis and verified by luciferase reporter assay. The correlation between GRIA3 and DNA methyltransferase (DNMT) 1 and DNMT3A was tested by RT-PCR, western blotting, and co-immunoprecipitation (IP). Results miR-330-3p was significantly up-regulated in NSCLC cell lines. MTT assay, transwell migration, and invasion assays showed that miR-330-3p promoted the growth, migration, and invasion of NSCLC cells in vitro and induced tumor growth and metastasis in vivo. Luciferase reporter assays showed that GRIA3 was a target of miR-330-3p. qRT-PCR and western blotting exhibited that miR-330-3p promoted the growth, invasion, and migration of NSCLC cells by activating mitogen-activated protein kinase (MAPK)/extracellular-regulated protein kinases (ERK) signaling pathway. Furthermore, miR-330-3p up-regulated the total DNA methylation in NSCLC cells, and co-IP-demonstrated GRIA3 was directly related with DNMT1 and DNMT3A. Conclusions miR-330-3p promoted the progression of NSCLC and might be a potential target for the further research of NSCLC brain metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0493-0) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Aberrant microRNA expression in tumor mycosis fungoides. Tumour Biol 2016; 37:14667-14675. [DOI: 10.1007/s13277-016-5325-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023] Open
|
32
|
miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas. Tumour Biol 2016; 37:9887-97. [PMID: 26813564 DOI: 10.1007/s13277-016-4903-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
In the current setting, we attempted to verify and validate miRNA candidates relevant to pediatric primary brain tumor progression and outcome, in order to provide data regarding the identification of novel prognostic biomarkers. Overall, 26 resected brain tumors were studied from children diagnosed with pilocytic astrocytomas (PAs) (n = 19) and ependymomas (EPs) (n = 7). As controls, deceased children who underwent autopsy and were not present with any brain malignancy were used. The experimental approach included microarrays covering 1211 miRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression profiles of miR-15a and miR-24-1. The multiparameter analyses were performed with MATLAB. Matching differentially expressed miRNAs were detected in both PAs and EPs, following distinct comparisons with the control cohort; however, in several cases, they exhibited tissue-specific expression profiles. On correlations between miRNA expression and EP progression or outcome, miR-15a and miR-24-1 were found upregulated in EP relapsed and EP deceased cases when compared to EP clinical remission cases and EP survivors, respectively. Taken together, following several distinct associations between miRNA expression and diverse clinical parameters, the current study repeatedly highlighted miR-15a and miR-24-1 as candidate oncogenic molecules associated with inferior prognosis in children diagnosed with ependymoma.
Collapse
|
33
|
MicroRNA expression profiles in pediatric dysembryoplastic neuroepithelial tumors. Med Oncol 2015; 33:5. [DOI: 10.1007/s12032-015-0719-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 12/30/2022]
|
34
|
Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015; 8:122. [PMID: 26514126 PMCID: PMC4627430 DOI: 10.1186/s13045-015-0220-7] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) displays high resistance to conventional chemotherapy. Considering that microRNA-122 (miR-122) performs an essential function to promote chemosensitivity of HCC cells, an effective vehicle-mediated miR-122 delivery may represent a promising strategy for HCC chemotherapy. An increasing interest is focused on the use of exosomes as biological vehicles for microRNAs (miRNA) transfer. Mesenchymal stem cells (MSCs) are known for their capacity to produce large amounts of exosomes. This study aimed to determine whether adipose tissue-derived MSC (AMSC) exosomes can be used for miR-122 delivery. Methods AMSCs were transfected with a miR-122 expression plasmid. At 48 h after transfection, AMSC-derived exosomes (122-Exo) were harvested and added to recipient HCC cells. Expression levels of miR-122 in AMSCs, exosomes, and HCC cells were quantified by real-time PCR. The mRNA and protein levels of miR-122-target genes in recipient HCC cells were quantified by real-time PCR and Western blot, respectively. The effects of 122-Exo on cell viability, apoptosis, and cell cycle of HCC cells were evaluated by MTT and flow cytometry analysis. Xenograft models were used to determine whether 122-Exo can sensitize HCC cells to sorafenib in vivo. Results Data showed that miR-122-transfected AMSC can effectively package miR-122 into secreted exosomes, which can mediate miR-122 communication between AMSCs and HCC cells, thereby rendering cancer cells sensitive to chemotherapeutic agents through alteration of miR-122-target gene expression in HCC cells. Moreover, intra-tumor injection of 122-Exo significantly increased the antitumor efficacy of sorafenib on HCC in vivo. Conclusions The findings suggest that the export of miR-122 via AMSC exosomes represents a novel strategy to enhance HCC chemosensitivity.
Collapse
Affiliation(s)
- Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Xiuli Song
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310003, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|