1
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
2
|
Liu Z, Lv S, Qin Z, Shu J, Zhu F, Luo Y, Fan L, Chen M, Bo H, Liu L. LINC00470 promotes malignant progression of testicular germ cell tumors. Mol Biol Rep 2024; 51:1152. [PMID: 39541046 DOI: 10.1007/s11033-024-10083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is a common malignant tumor in adolescents. Now, many long non-coding RNAs (LncRNAs) have been found to have an important function in TGCT. LINC00470 is specifically and highly expressed in TGCT, however, there is still no definite information concerning its role and underlying mechanism in TGCT. The purpose of this research was to look into the involvement of LINC00470 in TGCT and its intrinsic mechanism. METHODS AND RESULTS UCSC and GEPIA2 databases were used to analyze the expression of LINC00470, and the BEST website was used to perform GSEA enrichment analysis, immune infiltration analysis, and drug susceptibility analysis. SiRNA transfection was used to silence LINC00470 in TCAM-2 and NCCIT cells. Clone formation and Transwell assays were performed in TGCT cells to confirm the effects of LINC00470 on clone formation, migration, and invasion. Western Blot was performed to determine the expression of proteins related to the EMT and AKT signaling pathways. LINC00470 was specifically highly expressed in TGCT, and played a role in promoting tumor cell clone formation and cell metastasis by affecting the TGF-β and PI3K-AKT-mTOR signaling pathways to regulate the epithelial-mesenchymal transition (EMT) process; LINC00470 may also play a pro-tumor role by negatively regulating immune infiltration; in addition, the expression of LINC00470 was negatively correlated with the chemosensitivity of cisplatin in TGCT patients. CONCLUSIONS LINC00470 may play a significant role in the etiology and metastasis of TGCT through EMT and AKT-mediated signaling pathways.
Collapse
Affiliation(s)
- Zhizhong Liu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shanshan Lv
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zailong Qin
- Laboratory of Genetics and Metabolism, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jinhui Shu
- Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| | - Lvjun Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Center of Reproductive Medicine, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Rong J, Wang Q, Li T, Qian J, Cheng J. Glucose metabolism in glioma: an emerging sight with ncRNAs. Cancer Cell Int 2024; 24:316. [PMID: 39272133 PMCID: PMC11395608 DOI: 10.1186/s12935-024-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Glioma is a primary brain tumor that grows quickly, has an unfavorable prognosis, and can spread intracerebrally. Glioma cells rely on glucose as the major energy source, and glycolysis plays a critical role in tumorigenesis and progression. Substrate utilization shifts throughout glioma progression to facilitate energy generation and biomass accumulation. This metabolic reprogramming promotes glioma cell proliferation and metastasis and ultimately decreases the efficacy of conventional treatments. Non-coding RNAs (ncRNAs) are involved in several glucose metabolism pathways during tumor initiation and progression. These RNAs influence cell viability and glucose metabolism by modulating the expression of key genes of the glycolytic pathway. They can directly or indirectly affect glycolysis in glioma cells by influencing the transcription and post-transcriptional regulation of oncogenes and suppressor genes. In this review, we discussed the role of ncRNAs in the metabolic reprogramming of glioma cells and tumor microenvironments and their abnormal expression in the glucometabolic pathway in glioma. In addition, we consolidated the existing theoretical knowledge to facilitate the use of this emerging class of biomarkers as biological indicators and potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Jun Rong
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China
| | - Qifu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), WuHu, People's Republic of China
| | - Tingzheng Li
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China
| | - Jin Qian
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China.
| | - Jinchao Cheng
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China.
| |
Collapse
|
4
|
Wylezinski LS, Sesler CL, Shaginurova GI, Grigorenko EV, Wohlgemuth JG, Cockerill FR, Racke MK, Spurlock CF. Machine Learning Analysis Using RNA Sequencing to Distinguish Neuromyelitis Optica from Multiple Sclerosis and Identify Therapeutic Candidates. J Mol Diagn 2024; 26:520-529. [PMID: 38522839 PMCID: PMC11163981 DOI: 10.1016/j.jmoldx.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
This study aims to identify RNA biomarkers distinguishing neuromyelitis optica (NMO) from relapsing-remitting multiple sclerosis (RRMS) and explore potential therapeutic applications leveraging machine learning (ML). An ensemble approach was developed using differential gene expression analysis and competitive ML methods, interrogating total RNA-sequencing data sets from peripheral whole blood of treatment-naïve patients with RRMS and NMO and healthy individuals. Pathway analysis of candidate biomarkers informed the biological context of disease, transcription factor activity, and small-molecule therapeutic potential. ML models differentiated between patients with NMO and RRMS, with the performance of certain models exceeding 90% accuracy. RNA biomarkers driving model performance were associated with ribosomal dysfunction and viral infection. Regulatory networks of kinases and transcription factors identified biological associations and identified potential therapeutic targets. Small-molecule candidates capable of reversing perturbed gene expression were uncovered. Mitoxantrone and vorinostat-two identified small molecules with previously reported use in patients with NMO and experimental autoimmune encephalomyelitis-reinforced discovered expression signatures and highlighted the potential to identify new therapeutic candidates. Putative RNA biomarkers were identified that accurately distinguish NMO from RRMS and healthy individuals. The application of multivariate approaches in analysis of RNA-sequencing data further enhances the discovery of unique RNA biomarkers, accelerating the development of new methods for disease detection, monitoring, and therapeutics. Integrating biological understanding further enhances detection of disease-specific signatures and possible therapeutic targets.
Collapse
Affiliation(s)
- Lukasz S Wylezinski
- Decode Health, Inc., Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | - Jay G Wohlgemuth
- Quest Diagnostics, Secaucus, New Jersey; Trusted Health Advisors, San Juan Capistrano, California
| | - Franklin R Cockerill
- Decode Health, Inc., Nashville, Tennessee; Trusted Health Advisors, San Juan Capistrano, California; Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Charles F Spurlock
- Decode Health, Inc., Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Wagner School of Public Service, New York University, New York, New York.
| |
Collapse
|
5
|
Bhatt U, Cucchiarini A, Luo Y, Evans CW, Mergny JL, Iyer KS, Smith NM. Preferential formation of Z-RNA over intercalated motifs in long noncoding RNA. Genome Res 2024; 34:217-230. [PMID: 38355305 PMCID: PMC10984386 DOI: 10.1101/gr.278236.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.
Collapse
Affiliation(s)
- Uditi Bhatt
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
| |
Collapse
|
6
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
7
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
8
|
Wang L, Fang X, Yang Z, Li X, Cheng M, Cheng L, Wang G, Li W, Liu L. LncRP11-675F6.3 responds to rapamycin treatment and reduces triglyceride accumulation via interacting with HK1 in hepatocytes by regulating autophagy and VLDL-related proteins. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1606-1617. [PMID: 37222534 PMCID: PMC10577451 DOI: 10.3724/abbs.2023091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been widely proven to be involved in liver lipid homeostasis. Herein, we identify an upregulated lncRNA named lncRP11-675F6.3 in response to rapamycin treatment using a microarray in HepG2 cells. Knockdown of lncRP11-675F6. 3 leads to a significant reduction in apolipoprotein 100 (ApoB100), microsomal triglyceride transfer protein (MTTP), ApoE and ApoC3 with increased cellular triglyceride level and autophagy. Furthermore, we find that ApoB100 is obviously colocalized with GFP-LC3 in autophagosomes when lncRP11-675F6. 3 is knocked down, indicating that elevated triglyceride accumulation likely related to autophagy induces the degradation of ApoB100 and impairs very low-density lipoprotein (VLDL) assembly. We then identify and validate that hexokinase 1 (HK1) acts as the binding protein of lncRP11-675F6.3 and mediates triglyceride regulation and cell autophagy. More importantly, we find that lncRP11-675F6.3 and HK1 attenuate high fat diet induced nonalcoholic fatty liver disease (NAFLD) by regulating VLDL-related proteins and autophagy. In conclusion, this study reveals that lncRP11-675F6.3 is potentially involved in the downstream of mTOR signaling pathway and the regulatory network of hepatic triglyceride metabolism in cooperation with its interacting protein HK1, which may provide a new target for fatty liver disorder treatment.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xiaojuan Fang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ziyou Yang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xueling Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Mengdi Cheng
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Liang Cheng
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ganglin Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Wei Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Lin Liu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
- Zhuji Affiliated Hospital of Wenzhou Medical UniversityShaoxing311800China
| |
Collapse
|
9
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Li W, Wang M, Ma W, Liu P, Zhang M, He J, Cui Y. Temozolomide protects against the progression of glioblastoma via SOX4 downregulation by inhibiting the LINC00470-mediated transcription factor EGR2. CNS Neurosci Ther 2023; 29:2292-2307. [PMID: 36987665 PMCID: PMC10352878 DOI: 10.1111/cns.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE Temozolomide is extensively applied in chemotherapy for glioblastoma with unclear exact action mechanisms. This article seeks to address the potential molecular mechanisms in temozolomide therapy for glioblastoma involving LINC00470. METHODS Bioinformatics analysis was conducted to predict the potential mechanism of LINC00470 in glioblastoma, which was validated by dual-luciferase reporter, RIP, ChIP, and RNA pull-down assays. LINC00470 expression and the predicted downstream transcription factor early growth response 2 (EGR2) were detected in the collected brain tissues from glioblastoma patients. Following temozolomide treatment and/or gain- and loss-of-function approaches in glioblastoma cells, cell viability, invasion, migration, cycle distribution, angiogenesis, autophagy, and apoptosis were measured. In addition, the expression of mesenchymal surface marker proteins was assessed by western blot. Tumor xenograft in nude mice was conducted for in vivo validation. RESULTS Mechanistic analysis and bioinformatics analysis revealed that LINC00470 transcriptionally activated SRY-related high-mobility-group box 4 (SOX4) through the transcription factor EGR2. LINC00470 and EGR2 were highly expressed in brain tissues of glioblastoma patients. LINC00470 and EGR2 mRNA expression gradually decreased with increasing concentrations of temozolomide in glioblastoma cells, and SOX4 expression was reduced in cells by temozolomide and LINC00470 knockdown. Temozolomide treatment induced cell cycle arrest, diminished cell viability, migration, invasion, and angiogenesis, and increased apoptosis and autophagy in glioblastoma, which was counteracted by overexpressing LINC00470 or SOX4 but was further promoted by LINC00470 knockdown. Temozolomide restrained glioblastoma growth and angiogenesis in vivo, while LINC00470 or SOX4 overexpression nullified but LINC00470 knockdown further facilitated these trends. CONCLUSION Conclusively, temozolomide repressed glioblastoma progression by repressing the LINC00470/EGR2/SOX4 axis.
Collapse
Affiliation(s)
- Wenyang Li
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Wang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wenjia Ma
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ping Liu
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Mingming Zhang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jiarong He
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Cui
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
11
|
Barry A, Samuel SF, Hosni I, Moursi A, Feugere L, Sennett CJ, Deepak S, Achawal S, Rajaraman C, Iles A, Wollenberg Valero KC, Scott IS, Green V, Stead LF, Greenman J, Wade MA, Beltran-Alvarez P. Investigating the effects of arginine methylation inhibitors on microdissected brain tumour biopsies maintained in a miniaturised perfusion system. LAB ON A CHIP 2023; 23:2664-2682. [PMID: 37191188 DOI: 10.1039/d3lc00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arginine methylation is a post-translational modification that consists of the transfer of one or two methyl (CH3) groups to arginine residues in proteins. Several types of arginine methylation occur, namely monomethylation, symmetric dimethylation and asymmetric dimethylation, which are catalysed by different protein arginine methyltransferases (PRMTs). Inhibitors of PRMTs have recently entered clinical trials to target several types of cancer, including gliomas (NCT04089449). People with glioblastoma (GBM), the most aggressive form of brain tumour, are among those with the poorest quality of life and likelihood of survival of anyone diagnosed with cancer. There is currently a lack of (pre)clinical research on the possible application of PRMT inhibitors to target brain tumours. Here, we set out to investigate the effects of clinically-relevant PRMT inhibitors on GBM biopsies. We present a new, low-cost, easy to fabricate perfusion device that can maintain GBM tissue in a viable condition for at least eight days post-surgical resection. The miniaturised perfusion device enables the treatment of GBM tissue with PRMT inhibitors ex vivo, and we observed a two-fold increase in apoptosis in treated samples compared to parallel control experiments. Mechanistically, we show thousands of differentially expressed genes after treatment, and changes in the type of arginine methylation of the RNA binding protein FUS that are consistent with hundreds of differential gene splicing events. This is the first time that cross-talk between different types of arginine methylation has been observed in clinical samples after treatment with PRMT inhibitors.
Collapse
Affiliation(s)
- Antonia Barry
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Sabrina F Samuel
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Ines Hosni
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Amr Moursi
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | | | - Srihari Deepak
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Shailendra Achawal
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Chittoor Rajaraman
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | | | | | - Ian S Scott
- Neuroscience Laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Vicky Green
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - John Greenman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Mark A Wade
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | | |
Collapse
|
12
|
Islam Khan MZ, Law HKW. Suppression of small nucleolar RNA host gene 8 (SNHG8) inhibits the progression of colorectal cancer cells. Noncoding RNA Res 2023; 8:224-232. [PMID: 36860208 PMCID: PMC9969251 DOI: 10.1016/j.ncrna.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies around the world with high mortality. Accumulating evidences demonstrate that long non-coding RNAs (lncRNAs) play critical roles in CRC tumorigenesis by regulating different pathways of carcinogenesis. SNHG8 (small nucleolar RNA host gene 8), a lncRNA, is highly expressed in several cancers and acts as an oncogene that promotes cancer progression. However, the oncogenic role of SNHG8 in CRC carcinogenesis and the underlying molecular mechanisms remain unknown. In this study, we explored the role of SNHG8 in CRC cell lines by performing a series of functional experiments. Similar to the data reported in the Encyclopedia of RNA Interactome, our RT-qPCR results showed that SNHG8 expression was significantly upregulated in CRC cell lines (DLD-1, HT-29, HCT-116, and SW480) compared to the normal colon cell line (CCD-112CoN). We performed dicer-substrate siRNA transfection to knockdown the expression of SNHG8 in HCT-116 and SW480 cell lines which were expressing high levels of SNHG8. SNHG8 knockdown significantly reduced CRC cell growth and proliferation by inducing autophagy and apoptosis pathways through the AKT/AMPK/mTOR axis. We performed wound healing migration assay and demonstrated that SNHG8 knockdown significantly increased migration index in both cell lines, indicating reduced migration abilities of cells. Further investigation showed that SNHG8 knockdown suppresses epithelial to mesenchymal transition and reduces cellular migratory properties of CRC cells. Taken together, our study suggests that SNHG8 acts as an oncogene in CRC through the mTOR-dependent autophagy, apoptosis, and EMT pathways. Our study provides a better understanding the role of SNHG8 in CRC at molecular level and SNHG8 might be used as novel therapeutic target for CRC management.
Collapse
|
13
|
The Role of Long Noncoding RNA (lncRNAs) Biomarkers in Renal Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010643. [PMID: 36614082 PMCID: PMC9820502 DOI: 10.3390/ijms24010643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma is one of the common cancers whose incidence and mortality are continuously growing worldwide. Initially, this type of tumour is usually asymptomatic. Due to the lack of reliable diagnostic markers, one-third of ccRCC patients already have distant metastases at the time of diagnosis. This underlines the importance of establishing biomarkers that would enable the prediction of the disease's course and the risk of metastasis. LncRNA, which modulates genes at the epigenetic, transcriptional, and post-transcriptional levels, appears promising. The actions of lncRNA involve sponging and sequestering target miRNAs, thus affecting numerous biological processes. Studies have confirmed the involvement of RNAs in various diseases, including RCC. In this review, we focused on MALAT1 (a marker of serious pathological changes and a factor in the promotion of tumorigenesis), RCAT1 (tumour promoter in RCC), DUXAP9 (a plausible marker of localized ccRCC), TCL6 (exerting tumour-suppressive effects in renal cancer), LINC00342 (acting as an oncogene), AGAP2 Antisense1 (plausible predictor of RCC progression), DLEU2 (factor promoting tumours growth via the regulation of epithelial-mesenchymal transition), NNT-AS1 (sponge of miR-22 contributing to tumour progression), LINC00460 (favouring ccRCC development and progression) and Lnc-LSG1 (a factor that may stimulate ccRCC metastasis).
Collapse
|
14
|
Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, Sekawi Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J Neurovirol 2022; 28:566-582. [PMID: 35951174 DOI: 10.1007/s13365-022-01089-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Mehdi Shafa
- Cell Therapy process development, Lonza Houston Inc, Houston, TX, USA
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| |
Collapse
|
15
|
Mukherjee S, Kundu U, Desai D, Pillai PP. Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights. J Mol Neurosci 2022; 72:2188-2206. [PMID: 36370303 DOI: 10.1007/s12031-022-02069-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Uma Kundu
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dhwani Desai
- Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University, Halifix, Canada
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
16
|
Song K, Zheng X, Liu X, Sheng Y, Liu L, Wen L, Shang S, Deng Y, Ouyang Q, Sun X, Li Q, Chen P, Cai G, Chen M, Zhang Y, Liang B, Zhang J, Zhang X, Chen X. Genome-wide association study of SNP- and gene-based approaches to identify susceptibility candidates for lupus nephritis in the Han Chinese population. Front Immunol 2022; 13:908851. [PMID: 36275661 PMCID: PMC9580327 DOI: 10.3389/fimmu.2022.908851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLupus nephritis (LN) is one of the most common and serious complications of systemic lupus erythaematosus (SLE). Genetic factors play important roles in the pathogenesis of LN and could be used to predict who might develop LN. The purpose of this study was to screen for susceptible candidates of LN across the whole genome in the Han Chinese population.Methods592 LN patients and 453 SLE patients without renal damage were genotyped at 492,970 single nucleotide polymorphisms (SNPs) in the genome-wide association study (GWAS). Fifty-six SNPs were selected for replication in an independent cohort of 188 LN and 171 SLE without LN patients. Further quantitative real-time (qRT) PCR was carried out in 6 LN patients and 6 healthy controls. Gene-based analysis was conducted using the versatile gene-based test for GWAS. Subsequently, enrichment and pathway analyses were performed in the DAVID database.ResultsThe GWAS analysis and the following replication research identified 9 SNPs showing suggestive correlation with LN (P<10-4). The most significant SNP was rs12606116 (18p11.32), at P=8.72×10−6. The qRT-PCR results verified the mRNA levels of LINC00470 and ADCYAP1, the closest genes to rs12606116, were significantly lower in LN patients. From the gene-based analysis, 690 genes had suggestive evidence of association (P<0.05), including LINC00470. The enrichment analysis identified the involvement of transforming growth factor beta (TGF-β) signalings in the development of LN. Lower plasma level of TGF-β1 (P<0.05) in LN patients and lower expression of transforming growth factor beta receptor 2 in lupus mice kidney (P<0.05) futher indicate the involvement of TGF-β in LN.ConclusionsOur analyses identified several promising susceptibility candidates involved in LN, and further verification of these candidates was necessary.
Collapse
Affiliation(s)
- Kangkang Song
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Xiaomin Liu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Leilei Wen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Shunlai Shang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qing Ouyang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qinggang Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Pu Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Mengyun Chen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Yuanjing Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Jianglin Zhang
- Department of Rheumatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiangmei Chen, ; Xuejun Zhang,
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
- *Correspondence: Xiangmei Chen, ; Xuejun Zhang,
| |
Collapse
|
17
|
Su J, Li Y, Liu Q, Peng G, Qin C, Li Y. Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments. J Transl Med 2022; 20:440. [PMID: 36180956 PMCID: PMC9524046 DOI: 10.1186/s12967-022-03657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor that leads to lethality. Several studies have demonstrated that mitochondria play an important role in GBM and that mitochondria-related genes (MRGs) are potential therapeutic targets. However, the role of MRGs in GBM remains unclear. Methods Differential expression and univariate Cox regression analyses were combined to screen for prognostic differentially-expressed (DE)-MRGs in GBM. Based on LASSO Cox analysis, 12 DE-MRGs were selected to construct a risk score model. Survival, time dependent ROC, and stratified analyses were performed to evaluate the performance of this risk model. Mutation and functional enrichment analyses were performed to determine the potential mechanism of the risk score. Immune cell infiltration analysis was used to determine the association between the risk score and immune cell infiltration levels. CCK-8 and transwell assays were performed to evaluate cell proliferation and migration, respectively. Mitochondrial reactive oxygen species (ROS) levels and morphology were measured using a confocal laser scanning microscope. Genes and proteins expression levels were investigated by quantitative PCR and western blotting, respectively. Results We identified 21 prognostic DE-MRGs, of which 12 DE-MRGs were selected to construct a prognostic risk score model for GBM. This model presented excellent performance in predicting the prognosis of patients with GBM and acted as an independent predictive factor. Functional enrichment analysis revealed that the risk score was enriched in the inflammatory response, extracellular matrix, and pro-cancer-related and immune related pathways. Additionally, the risk score was significantly associated with gene mutations and immune cell infiltration in GBM. Single-stranded DNA-binding protein 1 (SSBP1) was considerably upregulated in GBM and associated with poor prognosis. Furthermore, SSBP1 knockdown inhibited GBM cell progression and migration. Mechanistically, SSBP1 knockdown resulted in mitochondrial dysfunction and increased ROS levels, which, in turn, increased temozolomide (TMZ) sensitivity in GBM cells by enhancing ferroptosis. Conclusion Our 12 DE-MRGs-based prognostic model can predict the GBM patients prognosis and 12 MRGs are potential targets for the treatment of GBM. SSBP1 was significantly upregulated in GBM and protected U87 cells from TMZ-induced ferroptosis, which could serve as a prognostic and therapeutic target/biomarker for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03657-4.
Collapse
Affiliation(s)
- Jun Su
- Department of Neurosurgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Yue Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
Wu W, Wen K. Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncol Rep 2022; 48:153. [PMID: 35856447 PMCID: PMC9350995 DOI: 10.3892/or.2022.8365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
As epigenetic regulators, long non-coding RNAs (lncRNAs) are involved in various important regulatory processes and typically interact with RNA-binding proteins (RBPs) to exert their core functional effects. An increasing number of studies have demonstrated that lncRNAs can regulate the occurrence and development of cancer through a variety of complex mechanisms and can also participate in tumor glucose metabolism by directly or indirectly regulating the Warburg effect. As one of the metabolic characteristics of tumor cells, the Warburg effect provides a large amount of energy and numerous intermediate products to meet the consumption demands of tumor metabolism, providing advantages for the occurrence and development of tumors. The present review article summarizes the regulatory effects of lncRNAs on the reprogramming of glucose metabolism after interacting with RBPs in tumors. The findings discussed herein may aid in the better understanding of the pathogenesis of malignancies, and may provide novel therapeutic targets, as well as new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
19
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|
20
|
Lin X, Luo ML, Song E. Long non-coding RNA and non-coding nucleic acids: Signaling players in the networks of the tumor ecosystem. CELL INSIGHT 2022; 1:100004. [PMID: 37192988 PMCID: PMC10120285 DOI: 10.1016/j.cellin.2022.100004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 05/18/2023]
Abstract
Recent findings have revealed that human genome encodes tens of thousands long noncoding RNAs (lncRNAs), which play essential roles in broad spectrum of cellular processes. Emerging evidence has uncovered a new archetype of lncRNAs which functions as key components of cell signaling pathways. In this review, we describe how lncRNAs interact with proteins to regulate cancer intracellular signaling and intercellular signaling in the tumor microenvironment (TME), which enable cancer cells to acquire malignant hallmarks. Moreover, besides lncRNAs, non-coding nucleic acids, such as neutrophil extracellular trap-DNA (NET-DNA), endogenous DNA and RNA, can act as signal molecules to connect cells from distant organs and trigger systemic responses in the macroenvironment of tumor-bearing hosts. Overall, the widely observed dysregulation of non-coding nucleic acids in cancer alters signaling networks in the tumor ecosystem, providing a rich resource for the identification of cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiaorong Lin
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515031, People's Republic of China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
21
|
Li T, Tong H, Zhu J, Qin Z, Yin S, Sun Y, Liu X, He W. Identification of a Three-Glycolysis-Related lncRNA Signature Correlated With Prognosis and Metastasis in Clear Cell Renal Cell Carcinoma. Front Med (Lausanne) 2022; 8:777507. [PMID: 35083240 PMCID: PMC8785401 DOI: 10.3389/fmed.2021.777507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
The clear cell renal cell carcinoma (ccRCC) is not only a malignant disease but also an energy metabolic disease, we aimed to identify a novel prognostic model based on glycolysis-related long non-coding RNA (lncRNAs) and explore its mechanisms. With the use of Pearson correlation analysis between the glycolysis-related differentially expressed genes and lncRNAs from The Cancer Genome Atlas (TCGA) dataset, we identified three glycolysis-related lncRNAs and successfully constructed a prognostic model based on their expression. The diagnostic efficacy and the clinically predictive capacity of the signature were evaluated by univariate and multivariate Cox analyses, Kaplan–Meier survival analysis, and principal component analysis (PCA). The glycolysis-related lncRNA signature was constructed based on the expressions of AC009084.1, AC156455.1, and LINC00342. Patients were grouped into high- or low-risk groups according to risk score demonstrated significant differences in overall survival (OS) period, which were validated by patients with ccRCC from the International Cancer Genome Consortium (ICGC) database. Univariate Cox analyses, multivariate Cox analyses, and constructed nomogram-confirmed risk score based on our signature were independent prognosis predictors. The CIBERSORT algorithms demonstrated significant correlations between three-glycolysis-related lncRNAs and the tumor microenvironment (TME) components. Functional enrichment analysis demonstrated potential pathways and processes correlated with the risk model. Clinical samples validated expression levels of three-glycolysis-related lncRNAs, and LINC00342 demonstrated the most significant aberrant expression. in vitro, the general overexpression of LINC00342 was detected in ccRCC cells. After silencing LINC00342, the aberrant glycolytic levels and migration abilities in 786-O cells were decreased significantly, which might be explained by suppressed Wnt/β-catenin signaling pathway and reversed Epithelial mesenchymal transformation (EMT) process. Collectively, our research identified a novel three-glycolysis-related lncRNA signature as a promising model for generating accurate prognoses for patients with ccRCC, and silencing lncRNA LINC00342 from the signature could partly inhibit the glycolysis level and migration of ccRCC cells.
Collapse
Affiliation(s)
- Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijia Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Liu
- Department of Urology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Pandey A, Yadav P, Shukla S. Unfolding the role of autophagy in the cancer metabolism. Biochem Biophys Rep 2021; 28:101158. [PMID: 34754952 PMCID: PMC8564564 DOI: 10.1016/j.bbrep.2021.101158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is considered an indispensable process that scavenges toxins, recycles complex macromolecules, and sustains the essential cellular functions. In addition to its housekeeping role, autophagy plays a substantial role in many pathophysiological processes such as cancer. Certainly, it adapts cancer cells to thrive in the stress conditions such as hypoxia and starvation. Cancer cells indeed have also evolved by exploiting the autophagy process to fulfill energy requirements through the production of metabolic fuel sources and fundamentally altered metabolic pathways. Occasionally autophagy as a foe impedes tumorigenesis and promotes cell death. The complex role of autophagy in cancer makes it a potent therapeutic target and has been actively tested in clinical trials. Moreover, the versatility of autophagy has opened new avenues of effective combinatorial therapeutic strategies. Thereby, it is imperative to comprehend the specificity of autophagy in cancer-metabolism. This review summarizes the recent research and conceptual framework on the regulation of autophagy by various metabolic pathways, enzymes, and their cross-talk in the cancer milieu, including the implementation of altered metabolism and autophagy in clinically approved and experimental therapeutics.
Collapse
Affiliation(s)
- Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
23
|
Zhao N, Zhang J, Zhao Q, Chen C, Wang H. Mechanisms of Long Non-Coding RNAs in Biological Characteristics and Aerobic Glycolysis of Glioma. Int J Mol Sci 2021; 22:ijms222011197. [PMID: 34681857 PMCID: PMC8541290 DOI: 10.3390/ijms222011197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most common and aggressive tumor of the central nervous system. The uncontrolled proliferation, cellular heterogeneity, and diffusive capacity of glioma cells contribute to a very poor prognosis of patients with high grade glioma. Compared to normal cells, cancer cells exhibit a higher rate of glucose uptake, which is accompanied with the metabolic switch from oxidative phosphorylation to aerobic glycolysis. The metabolic reprogramming of cancer cell supports excessive cell proliferation, which are frequently mediated by the activation of oncogenes or the perturbations of tumor suppressor genes. Recently, a growing body of evidence has started to reveal that long noncoding RNAs (lncRNAs) are implicated in a wide spectrum of biological processes in glioma, including malignant phenotypes and aerobic glycolysis. However, the mechanisms of diverse lncRNAs in the initiation and progression of gliomas remain to be fully unveiled. In this review, we summarized the diverse roles of lncRNAs in shaping the biological features and aerobic glycolysis of glioma. The thorough understanding of lncRNAs in glioma biology provides opportunities for developing diagnostic biomarkers and novel therapeutic strategies targeting gliomas.
Collapse
|
24
|
Huang P, Zhu S, Liang X, Zhang Q, Luo X, Liu C, Song L. Regulatory Mechanisms of LncRNAs in Cancer Glycolysis: Facts and Perspectives. Cancer Manag Res 2021; 13:5317-5336. [PMID: 34262341 PMCID: PMC8275123 DOI: 10.2147/cmar.s314502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer cells exhibit distinct metabolic characteristics that employ glycolysis to provide energy and intermediary metabolites. This aberrant metabolic phenotype favors cancer progression. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. LncRNAs contribute to cancer progression and therapeutic resistance and affect aerobic glycolysis via multiple mechanisms, including modulating glycolytic transporters and enzymes. Further, dysregulated signaling pathways are vital for glycolysis. In this review, we highlight regulatory mechanisms for lncRNAs in aerobic glycolysis that provide novel insights into cancer development. Moreover, a comprehensive understanding of the regulatory mechanisms of lncRNAs in aerobic glycolysis can provide new strategies for clinical cancer management.
Collapse
Affiliation(s)
- Peng Huang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Xiaohong Luo
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| |
Collapse
|
25
|
Yi T, Song Y, Zuo L, Wang S, Miao J. LINC00470 Stimulates Methylation of PTEN to Facilitate the Progression of Endometrial Cancer by Recruiting DNMT3a Through MYC. Front Oncol 2021; 11:646217. [PMID: 34249684 PMCID: PMC8267821 DOI: 10.3389/fonc.2021.646217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Increasing researches emphasize the importance of long non-coding RNAs (lncRNAs) in the development of endometrial cancer (EC). There is wide recognition that LINC00470 is a critical participant in the tumorigenesis of cancers such as gastric cancer and glioblastoma, but its possible effects on EC progression remain to be explored. METHODS We collected EC tissues and cells, where the expression of LINC00470 was determined, and followed by the Kaplan-Meier analysis of EC patient survival. We next examined the effect of LINC00470 and phosphatase and tensin homolog (PTEN) on EC cell migration, invasion, tube formation in vitro, and angiogenesis in mice xenografted with tumor after gain- or loss-of-function treatments. RNA pull-down, Co-IP, and ChIP experiments were performed to analyze the targeting relationships among LINC00470, MYC and DNMT3a. RESULTS LINC00470 was aberrantly upregulated in EC and its high expression correlated to prognosis of EC patients. LINC00470 promoted invasiveness, migration, and angiogenesis of EC cells, and facilitated tumorigenesis and metastasis in vivo, but those effects were reversed by up-regulating PTEN. Functionally, LINC00470 bound to MYC in EC and that LINC00470 stimulated the binding of MYC to DNMT3a, and thus recruited DNMT3a through MYC to promote PTEN methylation. CONCLUSIONS Our findings revealed that LINC00470 stimulated PTEN methylation to inhibit its expression by MYC-induced recruitment of DNMT3a, thus aggravating EC.
Collapse
Affiliation(s)
- Tiezhong Yi
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yicun Song
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Zuo
- Department of Obstetrics and Gynecology, Heilongjiang Provincial Hospital, Harbin, China
| | - Siyun Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jintian Miao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Wang J, Zhang Y, Song H, Yin H, Jiang T, Xu Y, Liu L, Wang H, Gao H, Wang R, Song J. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol Cancer 2021; 20:81. [PMID: 34074294 PMCID: PMC8167978 DOI: 10.1186/s12943-021-01375-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. However, the biological functions of circRNAs in colorectal cancer (CRC) are largely unknown. Methods RT-qPCR was used to detect the expression of circRNAs and mRNA in CRC cells and tissues. Fluorescence in situ hybridization (FISH) was used to analyze the location of circSPARC. Function-based experiments were performed using circSPARC knockdown and overexpression cell lines in vitro and in vivo, including CCK8, colony formation, transwell and metastasis models. Mechanistically, luciferase reporter assay, western blots, RNA immunoprecipitation (RIP), Chromatin isolation by RNA purification (ChIRP) and immunohistochemical stainings were performed. Results CircSPARC was upregulated in both the tissues and plasma of CRC patients. High expression of circSPARC was associated with advanced TNM stage, lymph node metastases, and poor survival. Silencing circSPARC inhibited CRC cell migration and proliferation in vitro and vivo. Mechanistically, circSPARC sponged miR-485-3p to upregulate JAK2 expression and ultimately contribute to the accumulation of phosphorylated (p)-STAT3. Besides, circSPARC recruited FUS, which facilitated the nuclear translocation of p-STAT3. Conclusions These findings suggest that circSPARC might serve as a potential diagnostic and prognostic biomarker and a therapeutic target for CRC treatment by regulating JAK2/STAT3 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01375-x.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hang Yin
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Lianyu Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hongyu Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Hong Gao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Renhao Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China.
| |
Collapse
|
27
|
LINC00470 accelerates the proliferation and metastasis of melanoma through promoting APEX1 expression. Cell Death Dis 2021; 12:410. [PMID: 33875645 PMCID: PMC8055894 DOI: 10.1038/s41419-021-03612-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Recently studies found that APEX1 was abnormally expressed in melanoma, indicating that it might be involved in the development of melanoma. However, the underlying mechanism and the interaction between APEX1 and LINC00470 in melanoma are not clear. Therefore, we aimed to investigate the role of LINC00470 in the development of melanoma in this work. We discovered that LINC00470 was overexpressed in melanoma tissues and cells compared with the adjacent normal tissues and cells by qPCR. The overexpression of LINC00470 promoted the proliferation and migration of melanoma cells. The functional investigation demonstrated that LINC00470 activated the transcription factor, ZNF131, to regulate the APEX1 expression, which finally promoted cell proliferation and migration. In contrast, knockdown of LINC00470 could significantly inhibit the melanoma cell proliferation and migration, and suppress the growth of tumor in vivo. Overexpression of APEX1 could reverse the impact of the silence of LINC00470 in melanoma cells. In summary, our studies revealed that LINC00470 promoted melanoma proliferation and migration by enhancing the expression of APEX1, which indicated that LINC00470 might be a therapeutic target for the treatment of melanoma.
Collapse
|
28
|
Pan M, Shi J, Yin S, Meng H, He C, Wang Y. The Effect and Mechanism of LINC00663 on the Biological Behavior of Glioma. Neurochem Res 2021; 46:1737-1746. [PMID: 33830405 DOI: 10.1007/s11064-021-03311-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 11/25/2022]
Abstract
Glioma is the most frequent primary malignant brain tumor, which is characterized by high incidence and mortality, with a poor prognosis. Numerous studies have revealed the abnormal expression of long non-coding RNAs in gliomas. This study explored the effects and potential mechanism of LINC00663 in glioma. The LINC00663 levels and their prognostic values were analyzed from the GEO databases using bioinformatics. Also, LINC00663 expression in tissue samples and cell lines was measured using qRT-PCR. The roles of LINC00663 in glioma were confirmed using CCK8, EdU assay as well as Transwell tests. Moreover, the influences of LINC00663 on the AKT/mTOR signal cascades were detected using western blotting assay. LINC00663 expression was higher in both glioma tissues and cell lines than that in the normal brain tissues and human astrocytes. High expression of LINC00663 led to the low overall survival rate of patients with glioma. LINC00663 knockdown notably restrained cell proliferation, migration, and invasion abilities by decreasing the activation of AKT and mTOR. This study indicated that LINC00663 might have a cancer-promoting role in accelerating glioma development and progression through regulating AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, No. 8 Jingshun Dongjie, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Jingren Shi
- Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, No. 8 Jingshun Dongjie, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Shangqi Yin
- Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, No. 8 Jingshun Dongjie, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Huan Meng
- Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, No. 8 Jingshun Dongjie, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Chaonan He
- Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, No. 8 Jingshun Dongjie, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Yajie Wang
- Department of Clinical Laboratory, Capital Medical University Affiliated Beijing Ditan Hospital, No. 8 Jingshun Dongjie, Chaoyang District, Beijing, 100015, People's Republic of China.
| |
Collapse
|
29
|
Lai X, Wei J, Gu XZ, Yao XM, Zhang DS, Li F, Sun YY. Dysregulation of LINC00470 and METTL3 promotes chemoresistance and suppresses autophagy of chronic myelocytic leukaemia cells. J Cell Mol Med 2021; 25:4248-4259. [PMID: 33749070 PMCID: PMC8093980 DOI: 10.1111/jcmm.16478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic lncRNAs have been found to directly interact with target mRNAs and regulate their stability. In this study, we aimed to study the molecular mechanism underlying the function of m6 A as a central regulator in chemoresistance and CML proliferation. In this study, we established three mice groups (control group, ADR-R group and ADR-R + shLINC00470 group). We detected PTEN mRNA expression in the presence of LINC00470 in the mice models, as well as in the KCL22 and K562 cells. LINC00470 was significantly enriched for PTEN mRNA to exhibit a negative regulatory relationship between LINC00470 and PTEN mRNA. However, the alteration of LINC00470 had no effect on the luciferase activity of PTEN promoter, while the half-life of PTEN mRNA was affected. It was further validated that LINC00470 down-regulated PTEN expression by positively regulating the m6A modification of PTEN mRNA via RNA methyltransferase METTL3. Moreover, the relative expression of LC3II, Beclin-1, ATG7 and ATG5 was all decreased in cells treated with LINC00470, and down-regulated PTEN expression was observed in chemo-resistant cells, while the expression of PTEN was rescued by the transfection of shMETTL3 into chemo-resistant cells. Moreover, the knockdown of METTL3 also restored the normal level of PTEN m6 A modification and LINC00470 expression in chemo-resistant cells. In conclusion, our results demonstrated the molecular mechanism underlying the effect of LINC00470 on CML by reducing the PTEN stability via RNA methyltransferase METTL3, thus leading to the inhibition of cell autophagy while promoting chemoresistance in CML.
Collapse
Affiliation(s)
- Xun Lai
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Jia Wei
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Xue-Zhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiang-Mei Yao
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Di-Si Zhang
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Feng Li
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Yun-Yan Sun
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| |
Collapse
|
30
|
Li L, Miao H, Chang Y, Yao H, Zhao Y, Wu F, Song X. Multidimensional crosstalk between RNA-binding proteins and noncoding RNAs in cancer biology. Semin Cancer Biol 2021; 75:84-96. [PMID: 33722631 DOI: 10.1016/j.semcancer.2021.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/09/2023]
Abstract
RNA-binding proteins (RBPs) are well-known to bind RNA via a set of RNA-binding domains (RBDs) and determine the fate and function of their RNA targets; inversely, some RBPs, in certain cases, may be modulated by the bound RNAs rather than regulate their RNA partners. Current proteome-wide studies reveal that almost half of RBPs have no canonical RBDs, and the discovery of tens of thousands of noncoding RNAs (ncRNAs), especially those with the size larger than 200 nt (namely long noncoding RNAs, lncRNAs), makes the crosstalk between RBPs and RNAs more complicated. It is clear that macromolecular complexes formed by RBP and RNA are not only a form of existence of their RBP and RNA components in cells, but also represent a functional entity through which those RBPs and regulatory ncRNAs participate in the construction of regulatory networks in organism. In this review, we summarize the multidimensional crosstalk between RBPs and ncRNAs in cancer and discuss how RBPs achieve their function via the bound ncRNAs in different aspects of gene expression as well as how RBPs direct modification and processing of ncRNAs, in order to better understand tumor biology and provide new insights into development of strategies for cancer therapy and early detection.
Collapse
Affiliation(s)
- Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yanbo Chang
- Sichuan Institute for Food and Drug Control, Department of Forensic Analytical Toxicology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Fan Wu
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Li Y, Guo F, Chen T, Zhang L, Qin Y. Anthraquinone derivative C10 inhibits proliferation and cell cycle progression in colon cancer cells via the Jak2/Stat3 signaling pathway. Toxicol Appl Pharmacol 2021; 418:115481. [PMID: 33722666 DOI: 10.1016/j.taap.2021.115481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Since its discovery, anthraquinone has become very valuable as a lead compound in the development of anti-cancer drugs. Previously, we designed and synthesized a new type of amide anthraquinone derivative (1-nitro-2-acylanthraquinone glycine, C10) with good activity against colon cancer. However, its effect and the underlying mechanism are unclear. In this study, C10 significantly inhibited the proliferation of HCT116 and HT29 colon cancer cells by blocking the cell cycle at the G2/M phase. C10 also plays a role in cell cycle arrest by reducing the protein and gene expression levels of cyclin B1 and its downstream signaling molecule cyclin-dependent kinase (CDK1). In addition, molecular docking studies showed that C10 has high affinity for Jak2, the first target in the cell cycle-related Jak2/Stat3 signaling pathway. Furthermore, C10 downregulated the expression of Jak2/Stat3 signaling pathway-related signaling molecules proteins and genes, and up-regulated the expression of PIAS-3, the upstream signaling molecule of Stat3, thereby down-regulating Stat3 phosphorylation. C10 reversed the expression of Jak2/Stat3 signaling pathway-related molecules activated by IL-6. Overall, our results indicate for the first time that C10 induces cell cycle arrest and inhibits cell proliferation by inhibiting the Jak2/Stat3 signaling pathway. This study provides new insights into the potential role of Jak2/Stat3 in the regulating cell cycle-related signaling pathways that mediate the inhibitory effects of C10 on colon cancer cell proliferation.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Fang Guo
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Tinggui Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Liwei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yu Qin
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
32
|
Ma W, Zhou Y, Liu M, Qin Q, Cui Y. Long non-coding RNA LINC00470 in serum derived exosome: a critical regulator for proliferation and autophagy in glioma cells. Cancer Cell Int 2021; 21:149. [PMID: 33663509 PMCID: PMC7931344 DOI: 10.1186/s12935-021-01825-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background To explore the mechanism of LINC00470 in serum exosomes from glioma patients regulating the autophagy and proliferation of glioma cells. Methods Exosomes were extracted from glioma patients (GBM-exo). Expression of LINC00470 in exosomes was analyzed with the clinicopathological characteristics of glioma patients. Glioma mouse model was established. The effects of LINC00470, miR-580-3p and WEE1 on cell autophagy and proliferation, as well as the activation of PI3K/AKT/mTOR pathway were measured. Dual luciferase reporter assay and RNA immunoprecipitation (RIP) were conducted to validate the binding of LINC00470 and miR-580-3p and of miR-580-3p and WEE1. Results LINC00470 overexpressed in GBM-exo and associated with disease severity and postoperative survival time of glioma patients. GBM-exo deteriorated tumor progression in nude mice. Cells incubated with GBM-exo or transfected with pcDNA3.1-LINC00470/miR-580-3p inhibitor/pcDNA3.1-WEE1 had less autophagosome, downregulated LC3-II/LC3-I and Beclin1 expression levels and increased expression of p62 as well as strengthened proliferation ability. The PI3K/AKT/mTOR pathway was activated. LINC00470 competitively bound to miR-580-3p with WEE1. Conclusion LINC00470 in GBM-exo can bind to miR-580-3p in glioma cells to regulate WEE1 expression and activate the PI3K/AKT/mTOR pathway, thereby inhibiting autophagy and enhancing the proliferation of glioma cells.
Collapse
Affiliation(s)
- Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Qilin Qin
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Gong D, Sun Y, Guo C, Sheu T, Zhai W, Zheng J, Chang C. Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clin Transl Med 2021; 11:e353. [PMID: 33783995 PMCID: PMC7989709 DOI: 10.1002/ctm2.353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) has gender differences, with the androgen receptor (AR) linked positively with metastasis to the lung. Its linkage to ccRCC bone metastases (RBMs), however, remains unclear. METHODS In the current study, five human RCC and five RCC bone metastasis tissues were deeply sequenced using Arraystar human circRNA V2.0 microarray. We conducted gain-of-function screening in vitro and in vivo to elucidate the AR's role in the RBM. Loss/gain-of-function was also implemented to verify the roles of related non-coding RNAs and proteins. RESULTS We uncovered that RBM also has a gender difference showing higher AR expression may be linked to fewer RBMs, which might involve suppressing osteolytic formation. Mechanism dissection indicates that AR can decrease the circular RNA EXOC7 (circEXOC7), expression via enhancing transcription of DHX9, a regulatory protein in circRNA biogenesis. The circEXOC7 can sponge/suppress miR-149-3p resulting in suppressing the CSF1 expression by directly binding to the 3'UTR region of CSF1 mRNA. Results from clinical epidemiological surveys also found that AR has a positive correlation with miR-149-3p and a negative correlation with CSF1 in AR-positive ccRCC tissues. Preclinical studies with Balb/c nude mouse model also validated that targeting this newly verified AR/DHX9/circEXOC7/miR-149-3p/CSF1 signaling via altering circEXOC7 or AR could lead to suppressing the RBM progression. CONCLUSIONS These data showed that AR/DHX9/circEXOC7/miR-149-3p/CSF1 signaling acts as a valuable feature in the bone metastasis of renal cancer, which may benefit in suppressing the RBM progression.
Collapse
MESH Headings
- Animals
- Bone Neoplasms/genetics
- Bone Neoplasms/prevention & control
- Bone Neoplasms/secondary
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Osteolysis/genetics
- Osteolysis/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
Collapse
Affiliation(s)
- Dongkui Gong
- Department of UrologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- George Whipple Lab for Cancer ResearchDepartments of PathologyUrology, Radiation Oncology and The Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Yin Sun
- George Whipple Lab for Cancer ResearchDepartments of PathologyUrology, Radiation Oncology and The Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Changcheng Guo
- George Whipple Lab for Cancer ResearchDepartments of PathologyUrology, Radiation Oncology and The Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of UrologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Tzong‐jen Sheu
- Department of Orthopedics and Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Wei Zhai
- George Whipple Lab for Cancer ResearchDepartments of PathologyUrology, Radiation Oncology and The Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of UrologyRenji HospitalSchool of Medicine in Shanghai Jiao Tong UniversityShanghaiChina
| | - Junhua Zheng
- Department of UrologyShanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Chawnshang Chang
- George Whipple Lab for Cancer ResearchDepartments of PathologyUrology, Radiation Oncology and The Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Sex Hormone Research CenterChina Medical University/HospitalTaichungTaiwan
| |
Collapse
|
34
|
Liu QM, Liu LL, Li XD, Tian P, Xu H, Li ZL, Wang LK. Silencing lncRNA TUG1 Alleviates LPS-Induced Mouse Hepatocyte Inflammation by Targeting miR-140/TNF. Front Cell Dev Biol 2021; 8:616416. [PMID: 33644034 PMCID: PMC7905057 DOI: 10.3389/fcell.2020.616416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis is a major public health problem that increases the risk of liver cirrhosis and liver cancer. Numerous studies have revealed that long non-coding RNAs (lncRNAs) exert essential function in the inflammatory response of multiple organs. Herein, we aimed to explore the effect of lncRNA TUG1 in LPS-induced hepatocyte inflammation response and further illuminate the underlying mechanisms. Mice were intraperitoneally injected with LPS, and the liver inflammation was evaluated. Microarray showed that lncRNA TUG1 was upregulated in LPS-induced hepatocyte inflammation. qRT-PCR and immunofluorescence assay indicated a significant increase of TUG1 in mice with LPS injection. Functional analysis showed that si-TUG1 inhibited LPS-induced inflammation response in mice liver, inhibited apoptosis level, and protected liver function. Then, we knock down TUG1 in normal human hepatocyte AML12. Consistent with in vivo results, si-TUG1 removed the injury of LPS on AML12 cells. Furthermore, TUG1 acted as a sponge of miR-140, and miR-140 directly targeted TNFα (TNF). MiR-140 or si-TNF remitted the beneficial effects of TUG1 on LPS-induced hepatocyte inflammation response both in vitro and in vivo. Our data revealed that deletion of TUG1 protected against LPS-induced hepatocyte inflammation via regulating miR-140/TNF, which might provide new insight for hepatitis treatment.
Collapse
Affiliation(s)
- Qing-Min Liu
- Intensive Care Unit, Linyi People's Hospital, Linyi, China
| | - Li-Li Liu
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Xi-Dong Li
- Department of Infection Control Center, Linyi People's Hospital, Linyi, China
| | - Ping Tian
- Department of Infection Control Center, Linyi People's Hospital, Linyi, China
| | - Hao Xu
- Department of Infection Control Center, Linyi People's Hospital, Linyi, China
| | - Zeng-Lian Li
- Department of Infection Control Center, Linyi People's Hospital, Linyi, China
| | - Li-Kun Wang
- Department of Infection Control Center, Linyi People's Hospital, Linyi, China
| |
Collapse
|
35
|
Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging Role of Long Non-Coding RNAs in the Pathobiology of Glioblastoma. Front Oncol 2021; 10:625884. [PMID: 33634032 PMCID: PMC7901982 DOI: 10.3389/fonc.2020.625884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the utmost aggressive diffuse kind of glioma which is originated from astrocytes, neural stem cells or progenitors. This malignant tumor has a poor survival rate. A number of genetic aberrations and somatic mutations have been associated with this kind of cancer. In recent times, the impact of long non-coding RNAs (lncRNAs) in glioblastoma has been underscored by several investigations. Up-regulation of a number of oncogenic lncRNAs such as H19, MALAT1, SNHGs, MIAT, UCA, HIF1A-AS2 and XIST in addition to down-regulation of other tumor suppressor lncRNAs namely GAS5, RNCR3 and NBAT1 indicate the role of these lncRNAs in the pathogenesis of glioblastoma. Several in vitro and a number of in vivo studies have demonstrated the contribution of these transcripts in the regulation of cell proliferation and apoptosis, cell survival, invasion and metastasis of glioblastoma cells. Moreover, some lncRNAs such as SBF2-AS1 are involved in conferring resistance to temozolomide. Finally, few circularRNAs have been identified that influence the evolution of glioblastoma. In this paper, we discuss the impacts of lncRNAs in the pathogenesis of glioblastoma, their applications as markers and their implications in the therapeutic responses in this kind of cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Liang R, Tang Y. LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis. Cancer Biomark 2021; 28:169-180. [PMID: 32176627 DOI: 10.3233/cbm-190939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Glioma is considered to be one of the most common and lethal malignant brain tumors, accounting for 40% to 50% of brain tumors. Long non-coding RNAs (lncRNAs) have been widely proved to play an irreplaceable role in the tumorigenesis and progression. Nevertheless, the role of LINC00467 in glioblastoma remained unclear. AIM The current study was aimed to explore the functional mechanism of LINC00467 in glioblastoma. METHODS The expression of LINC00467/miR-339-3p/IP6K2 glioblastoma tissues and cells was evaluated by RT-qPCR. The protein expression of genes (cleaved PARP, PARP, cleaved caspase 3, caspase 3, Bax, Bcl-2 and IP6K2) was measured by western blot assay. Then role of LINC00467 was demonstrated by EdU, colony formation, flow cytometry and TUNEL assays. The relationship between miR-339-3p and LINC00467/IP6K2 was validated by RNA pull down and luciferase reporter assays. RESULTS The expression of LINC00467 was upregulated in glioblastoma tissues and cells. LINC00467 knockdown suppressed cell proliferation but activated cell apoptosis. Further, LINC00467 high expression was associated with shorter overall survival rate in glioblastoma patients. Further, LINC00467 could bind with miR-339-3p, and IP6K2 was targeted by miR-339-3p. IP6K2 expression was regulated by LINC00467/miR-339-3p in a ceRNA pattern. Moreover, LINC00467 could regulate the development of glioblastoma via miR-339-3p/IP6K2 axis. CONCLUSIONS LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis, which may enlighten to find a novel therapeutic tactic for glioblastoma patients.
Collapse
|
37
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
38
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
39
|
Niu X, Sun J, Meng L, Fang T, Zhang T, Jiang J, Li H. A Five-lncRNAs Signature-Derived Risk Score Based on TCGA and CGGA for Glioblastoma: Potential Prospects for Treatment Evaluation and Prognostic Prediction. Front Oncol 2020; 10:590352. [PMID: 33392085 PMCID: PMC7773845 DOI: 10.3389/fonc.2020.590352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating studies have confirmed the crucial role of long non-coding RNAs (ncRNAs) as favorable biomarkers for cancer diagnosis, therapy, and prognosis prediction. In our recent study, we established a robust model which is based on multi-gene signature to predict the therapeutic efficacy and prognosis in glioblastoma (GBM), based on Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. lncRNA-seq data of GBM from TCGA and CGGA datasets were used to identify differentially expressed genes (DEGs) compared to normal brain tissues. The DEGs were then used for survival analysis by univariate and multivariate COX regression. Then we established a risk score model, depending on the gene signature of multiple survival-associated DEGs. Subsequently, Kaplan-Meier analysis was used for estimating the prognostic and predictive role of the model. Gene set enrichment analysis (GSEA) was applied to investigate the potential pathways associated to high-risk score by the R package “cluster profile” and Wiki-pathway. And five survival associated lncRNAs of GBM were identified: LNC01545, WDR11-AS1, NDUFA6-DT, FRY-AS1, TBX5-AS1. Then the risk score model was established and shows a desirable function for predicting overall survival (OS) in the GBM patients, which means the high-risk score significantly correlated with lower OS both in TCGA and CGGA cohort. GSEA showed that the high-risk score was enriched with PI3K-Akt, VEGFA-VEGFR2, TGF-beta, Notch, T-Cell pathways. Collectively, the five-lncRNAs signature-derived risk score presented satisfactory efficacies in predicting the therapeutic efficacy and prognosis in GBM and will be significant for guiding therapeutic strategies and research direction for GBM.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Tianjin 4th Central Hospital, Tianjin, China
| | - Jiangnan Sun
- Department of Psychiatry, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Lingyin Meng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, China
| | - Tongshuo Zhang
- Department of Laboratory, Jiangsu Provincial Corps Hospital of Chinese People's Armed Police Force, Yangzhou, China
| | - Jipeng Jiang
- Postgraduate School, Medical School of Chinese PLA, Beijing, China.,Department of Thoracic Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huanming Li
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, China
| |
Collapse
|
40
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
41
|
Wang Z, Liu Z, Yang Y, Kang L. Identification of biomarkers and pathways in hypertensive nephropathy based on the ceRNA regulatory network. BMC Nephrol 2020; 21:476. [PMID: 33176720 PMCID: PMC7659166 DOI: 10.1186/s12882-020-02142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypertensive nephropathy (HTN) is a kind of renal injury caused by chronic hypertension, which seriously affect people's life. The purpose of this study was to identify the potential biomarkers of HTN and understand its possible mechanisms. METHODS The dataset numbered GSE28260 related to hypertensive and normotensive was downloaded from NCBI Gene Expression Omnibus. Then, the differentially expressed RNAs (DERs) were screened using R limma package, and functional analyses of DE-mRNA were performed by DAVID. Afterwards, a ceRNA network was established and KEGG pathway was analyzed based on the Gene Set Enrichment Analysis (GSEA) database. Finally, a ceRNA regulatory network directly associated with HTN was proposed. RESULTS A total of 947 DERs were identified, including 900 DE-mRNAs, 20 DE-lncRNAs and 27 DE-miRNAs. Based on these DE-mRNAs, they were involved in biological processes such as fatty acid beta-oxidation, IRE1-mediated unfolded protein response, and transmembrane transport, and many KEGG pathways like glycine, serine and threonine metabolism, carbon metabolism. Subsequently, lncRNAs KCTD21-AS1, LINC00470 and SNHG14 were found to be hub nodes in the ceRNA regulatory network. KEGG analysis showed that insulin signaling pathway, glycine, serine and threonine metabolism, pathways in cancer, lysosome, and apoptosis was associated with hypertensive. Finally, insulin signaling pathway was screened to directly associate with HTN and was regulated by mRNAs PPP1R3C, PPKAR2B and AKT3, miRNA has-miR-107, and lncRNAs SNHG14, TUG1, ZNF252P-AS1 and MIR503HG. CONCLUSIONS Insulin signaling pathway was directly associated with HTN, and miRNA has-miR-107 and lncRNAs SNHG14, TUG1, ZNF252P-AS1 and MIR503HG were the biomarkers of HTN. These results would improve our understanding of the occurrence and development of HTN.
Collapse
Affiliation(s)
- Zhen Wang
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Zhongjie Liu
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Yingxia Yang
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Lei Kang
- Neurology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
42
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond) 2020; 41:109-120. [PMID: 33119215 PMCID: PMC7896749 DOI: 10.1002/cac2.12108] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Altered metabolism is a hallmark of cancer, and the reprogramming of energy metabolism has historically been considered a general phenomenon of tumors. It is well recognized that long noncoding RNAs (lncRNAs) regulate energy metabolism in cancer. However, lncRNA‐mediated posttranslational modifications and metabolic reprogramming are unclear at present. In this review, we summarized the current understanding of the interactions between the alterations in cancer‐associated energy metabolism and the lncRNA‐mediated posttranslational modifications of metabolic enzymes, transcription factors, and other proteins involved in metabolic pathways. In addition, we discuss the mechanisms through which these interactions contribute to tumor initiation and progression, and the key roles and clinical significance of functional lncRNAs. We believe that an in‐depth understanding of lncRNA‐mediated cancer metabolic reprogramming can help to identify cellular vulnerabilities that can be exploited for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yue-Tao Tan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Jin-Fei Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Ting Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
43
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
44
|
Wu C, Su J, Long W, Qin C, Wang X, Xiao K, Li Y, Xiao Q, Wang J, Pan Y, Liu Q. LINC00470 promotes tumour proliferation and invasion, and attenuates chemosensitivity through the LINC00470/miR-134/Myc/ABCC1 axis in glioma. J Cell Mol Med 2020; 24:12094-12106. [PMID: 32916774 PMCID: PMC7579701 DOI: 10.1111/jcmm.15846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Glioma is the most common primary malignant tumour in the brain; temozolomide (TMZ) is the most prevalent chemotherapeutic drug currently used to combat this cancer. We reported previously that the long intergenic non‐protein coding RNA 470 (LINC00470) is a novel prognostic biomarker for glioma and promotes the tumour growth in an intracranial transplantation mouse model. However, the effects of LINC00470 on glioma cell proliferation, invasion and TMZ chemosensitivity, as well as its molecular mechanism, remain unclear. In this study, we found elevated expression levels of LINC00470 and MYC in glioma tissues and cells and decreased expression of microRNA‐134 (miR‐134). Functional studies have shown that LINC00470 promotes proliferation and invasion, and attenuates chemosensitivity of glioma cells, while miR‐134 exerts the opposite effect. In the rescue experiments, the tumorigenic effect of LINC00470 was offset by miR‐134. In the mechanism study, we found that LINC00470 was a competitive endogenous RNA (ceRNA) of miR‐134 and that miR‐134 can directly target MYC and negatively regulate its expression. Furthermore, MYC was positively correlated with ATP‐binding cassette subfamily C member 1 (ABCC1) expression in glioma cells and MYC up‐regulated ABCC1 expression. Further studies found that LINC00470 regulated MYC by sponging miR‐134 to regulate the expression of ABCC1. We concluded that LINC00470 promoted the expression of MYC and ABCC1 by suppressing miR‐134, thus promoting glioma cell proliferation and invasion, and attenuating TMZ chemosensitivity. Moreover, the LINC00470/miR‐134/MYC/ABCC1 axis constitutes a potential therapeutic target.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China.,Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Qun Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Junquan Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| |
Collapse
|
45
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
46
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
47
|
Chen H, Hou G, Yang J, Chen W, Guo L, Mao Q, Ge J, Zhang X. SOX9-activated PXN-AS1 promotes the tumorigenesis of glioblastoma by EZH2-mediated methylation of DKK1. J Cell Mol Med 2020; 24:6070-6082. [PMID: 32329150 PMCID: PMC7294137 DOI: 10.1111/jcmm.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/26/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence has validated the essential regulation of long non-coding RNAs (lncRNAs) in the biological process of tumours. LncRNA PXN-AS1 has been discovered to be as a tumour suppressor in pancreatic cancer; however, its function and mechanism remain greatly unknown in glioblastoma (GBM). Our present study indicated that PXN-AS1 was highly expressed in GBM tissues and cells. Besides, the knock-down of PXN-AS1 was closely associated with the inhibitory proliferation and inducing apoptosis of GBM cells. PXN-AS1 inhibition was also found to restrain GBM tumour growth. Importantly, SOX9 functioned as a transcription factor and activated PXN-AS1 expression, and overexpressed PXN-AS1 rescued the inhibitory role of down-regulated SOX9 in GBM cell growth. Subsequently, it was discovered that PXN-AS1 activated Wnt/β-catenin pathway. DKK1 was widely known as an inhibitor gene of Wnt/β-catenin pathway, and its expression was negatively associated with PXN-AS1 and SOX9. Interestingly, we found that PXN-AS1 could recruit EZH2 to mediate the H3K27me3 level of DKK1 promoter. Restoration experiments manifested that DKK1 knock-down counteracted PXN-AS1 depletion-mediated repression in GBM cell growth. All facts pointed out that PXN-AS1 might be of importance in exploring the therapeutic strategies of GBM.
Collapse
Affiliation(s)
- Hongjin Chen
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Guoqiang Hou
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Jian Yang
- Department of Pediatric NeurosurgeryXin Hua Hospital affiliated to School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weilin Chen
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Liemei Guo
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Qin Mao
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Jianwei Ge
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| | - Xiaohua Zhang
- Department of NeurosurgerySchool of MedicineRenji HospitalJiaotong UniversityShanghaiChina
| |
Collapse
|
48
|
Yang Z, Dong X, Pu M, Yang H, Chang W, Ji F, Liu T, Wei C, Zhang X, Qiu X. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer 2020; 23:449-463. [PMID: 31673844 DOI: 10.1007/s10120-019-01019-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly investigated in numerous carcinomas containing gastric cancer (GC). The aim of our research is to inquire about the expression profile and role of LBX2-AS1 in GC. METHODS The expressions of LBX2-AS1, miR-219a-2-3p, FUS and LBX2 were measured by qRT-PCR. Western blot evaluated FUS and LBX2 protein levels. Cell proliferation and apoptosis were, respectively, evaluated by CCK-8, colony formation, EdU, flow cytometry and TUNEL assays. FISH and subcellular fractionation assays examined the position of LBX2-AS1. The binding between genes were certified by RIP, RNA pull-down, ChIP and luciferase reporter assays. Pearson correlation analysis analyzed the association of genes. Kaplan-Meier method detected the relationship of LBX2-AS1 expression with overall survival. RESULTS The up-regulation of LBX2-AS1 in GC tissues and cells was verified. Function assays proved that LBX2-AS1 down-regulation restricted the proliferation ability. Then, we unveiled the LBX2-AS1/miR-219a-2-3p/FUS axis. Additionally, LBX2-AS1 positively regulated LBX2 mRNA stability via FUS. LBX2 transcriptionally modulated LBX2-AS1. In the end, rescue and in vivo experiments validated the whole regulatory mechanism. CONCLUSION LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop mainly affected the proliferation and apoptosis abilities of GC cells, offering novel therapeutic targets for the treatment of patients with GC.
Collapse
Affiliation(s)
- Zhen Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinhua Dong
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Minglong Pu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hongwei Yang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weilong Chang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Feihong Ji
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tao Liu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Chongqing Wei
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xiefu Zhang
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xinguang Qiu
- Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China. .,General Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
49
|
Shi T, Guo D, Xu H, Su G, Chen J, Zhao Z, Shi J, Wedemeyer M, Attenello F, Zhang L, Lu W. HOTAIRM1, an enhancer lncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes. Mol Biol Rep 2020; 47:2723-2733. [PMID: 32180085 DOI: 10.1007/s11033-020-05371-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 01/31/2023]
Abstract
The long noncoding RNA HOTAIRM1 reportedly plays important roles in acute myeloid leukemia, gastric cancer and colorectal cancer. Here, we analyzed potential function of HOTAIRM1 in glioma and asked whether it participates in long-range chromatin interactions. We monitored expression of HOTAIRM1 in glioma tissues and correlated levels with patient survival using the TCGA dataset. HOTAIRM1 was highly expressed in glioma tissue, with high levels associated with shortened patient survival time. We then suppressed HOTAIRM1 activity in the human glioblastoma U251 line using CRISPR-cas9 to knock in a truncating polyA fragment. Reporter analysis of these and control cells confirmed that the HOTAIRM1 locus serves as an active enhancer. We then performed Capture-C analysis to identify target genes of that locus and applied RNA antisense purification to assess chromatin interactions between the HOTAIRM1 locus and HOXA cluster genes. HOTAIRM1 knockdown in glioma cells decreased proliferation and reduced expression of HOXA cluster genes. HOTAIRM1 regulates long-range interactions between the HOTAIRM1 locus and HOXA genes. Our work suggests a new mechanism by which HOTAIRM1 regulates glioma progression by regulating high-order chromatin structure and could suggest novel therapeutic targets to treat an intractable cancer.
Collapse
Affiliation(s)
- Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Heming Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Frank Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
50
|
Wang D, Xiao Q, Zhang W, Wang X, Xue X, Zhang X, Yu Z, Zhao Y, Liu J, Wang H. Landscape of ubiquitination events that occur in host skin in response to tick (Haemaphysalis longicornis) bitten. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103572. [PMID: 31838045 DOI: 10.1016/j.dci.2019.103572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Ticks are major parasites of domestic livestock, wildlife, and humans. After a tick bite, diverse cutaneous manifestations initially occur in the bitten area in the host. In this study, a label-free proteomics approach was applied to identify the differentially ubiquitinated proteins (DUPs) induced by tick-bitten in the skin. In total, 113 proteins were ubiquitinated in rabbit skin during tick bitten period, among which the ubiquitination levels of 43 proteins were altered. These DUPs in skin subjected to tick-bitten were enriched in metabolic processes, immune processes, and protein degradation processes. Bioinformatic analysis suggested that tick bitten may regulate the glycolysis pathway in host skin via differential ubiquitination of GAPDH, HK1 and TPI1, while regulate the ubiquitin-proteasome system, the MHC-I and MHC-II antigen-presenting pathways, and the HIF-1 signaling pathway via differential ubiquitination of MEK1, PSMC3, PSMA6, MHC-II and PSMD1. Moreover, PSMC3, PSMA6, PSMD1 and MEK1 were demonstrated as novel targets of ubiquitination. This study provides the first overview of ubiquitination in host skin affected by tick bitten and broadens our knowledge of the molecular mechanism involved in tick bitten.
Collapse
Affiliation(s)
- Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Weiqi Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Yinan Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|