1
|
Hektoen HH, Tsuruda KM, Fjellbirkeland L, Nilssen Y, Brustugun OT, Andreassen BK. Real-world evidence for pembrolizumab in non-small cell lung cancer: a nationwide cohort study. Br J Cancer 2024:10.1038/s41416-024-02895-1. [PMID: 39489879 DOI: 10.1038/s41416-024-02895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Based on favourable results from clinical trials, immune checkpoint inhibitors (ICI) have become the standard first line (1 L) systemic anticancer treatment (SACT) for advanced stage non-small cell lung cancer (NSCLC) without targetable mutations. We evaluate whether these results are generalizable to everyday clinical practice and compare overall survival (OS) of patients treated with ICI to a historical cohort of patients treated with chemotherapy and results from clinical trials. METHODS Our study comprised all advanced NSCLC patients initiating SACT in 2012-21 in Norway. Clinical characteristics and treatment information was retrieved from Norwegian Health Registries. RESULTS Survival for all 8416 advanced NSCLC patients treated with SACT increased concurrently with the gradual implementation of ICIs. Median OS of patients treated with 1 L pembrolizumab after 2017 was better (mono-/combination therapy: 13.8/12.8 months) than for patients treated with chemotherapy before 2017 (8.0 months). Although median OS for patients treated with pembrolizumab was lower in clinical practice than clinical trials (Keynote-024/189: 26.3/22.0 months), the survival benefit relative to chemotherapy was similar. CONCLUSION Our nationwide study demonstrated a survival benefit over conventional chemotherapy of a similar magnitude as observed in clinical trials and confirms the effectiveness of pembrolizumab in routine clinical practice.
Collapse
Affiliation(s)
- Helga H Hektoen
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kaitlyn M Tsuruda
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Lars Fjellbirkeland
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yngvar Nilssen
- Department of Registration, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Odd Terje Brustugun
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Oncology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Bettina K Andreassen
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
2
|
Du J, Zhang J, Liu D, Gao L, Liao H, Chu L, Lin J, Li W, Meng X, Zou F, Cai S, Zou M, Dong H. 1G6-D7 Inhibits Homologous Recombination Repair by Targeting Extracellular HSP90α to Promote Apoptosis in Non-Small Cell Lung Cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4884-4898. [PMID: 38899512 DOI: 10.1002/tox.24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Despite recent advances in treatment, non-small cell lung cancer (NSCLC) continues to have a high mortality rate. Currently, NSCLC pathogenesis requires further investigation, and therapeutic drugs are still under development. Homologous recombination repair (HRR) repairs severe DNA double-strand breaks. Homologous recombination repair deficiency (HRD) occurs when HRR is impaired and causes irreparable double-strand DNA damage, leading to genomic instability and increasing the risk of cancer development. Poly(ADP-ribose) polymerase (PARP) inhibitors can effectively treat HRD-positive tumors. Extracellular heat shock protein 90α (eHSP90α) is highly expressed in hypoxic environments and inhibits apoptosis, thereby increasing cellular tolerance. Here, we investigated the relationship between eHSP90α and HRR in NSCLC. DNA damage models were established in NSCLC cell lines (A549 and H1299). The activation of DNA damage and HRR markers, apoptosis, proliferation, and migration were investigated. In vivo tumor models were established using BALB/c nude mice and A549 cells. We found that human recombinant HSP90α stimulation further activated HRR and reduced DNA damage extent; however, eHSP90α monoclonal antibody, 1G6-D7, effectively inhibited HRR. HRR inhibition and increased apoptosis were observed after LRP1 knockdown; this effect could not be reversed with hrHSP90α addition. The combined use of 1G6-D7 and olaparib caused significant apoptosis and HRR inhibition in vitro and demonstrated promising anti-tumor effects in vivo. Extracellular HSP90α may be involved in HRR in NSCLC through LRP1. The combined use of 1G6-D7 and PARP inhibitors may exert anti-tumor effects by inhibiting DNA repair and further inducing apoptosis of NSCLC cells.
Collapse
Affiliation(s)
- Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology, The USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, California, Los Angeles, USA
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Reck M, Granados ALO, de Marinis F, Meyers O, Shen Q, Cho L, Stjepanovic N, Boklage S. Patient-reported outcomes in patients with metastatic non-squamous non-small cell lung cancer from the randomized Phase II PERLA trial comparing first-line chemotherapy plus dostarlimab or pembrolizumab. Eur J Cancer 2024; 212:115050. [PMID: 39378565 DOI: 10.1016/j.ejca.2024.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND PERLA (NCT04581824) compared efficacy and safety of dostarlimab (DCT) or pembrolizumab (PCT) plus chemotherapy as first-line treatment for metastatic non-small cell lung cancer. Here, we report patient-reported outcomes (PROs; exploratory analysis) from PERLA. METHODS Patients were randomized 1:1 to receive DCT or PCT every 3 weeks (Q3W) for ≤ 35 cycles [C]. PROs (EORTC QLQ-C30 and QLQ-LC13, PRO-CTCAE, FACT-GP5) were collected at baseline, Q3W until C4, Q9W until C16, Q12W until end of treatment and at 30-day safety follow-up. Change from baseline and time to deterioration (TTD) in QLQ-C30 and QLQ-LC13 were analyzed using longitudinal mixed models and Kaplan-Meier estimators, respectively. RESULTS The PRO (DCT/PCT) datasets included 102/99 patients for QLQ-C30, 96/90 for QLQ-LC13, 96/88 for PRO-CTCAE, and 95/87 for FACT-GP5. Completion rates were > 80 % to C4, then decreased in both arms. For QLQ-C30 and QLQ-LC13, most patients reported stable/improved responses at C13 (∼ 9 months on treatment), with similar responses between arms except more patients reported improvements in dyspnea (QLQ-C30: 36.4 % vs 13.0 %; QLQ-LC13: 40.6 % vs 25.0 %) and chest pain (QLQ-LC13: 34.4 % vs 10.0 %) with DCT vs PCT. TTD per QLQ-C30 and QLQ-LC13 were similar between arms, although TTD in dyspnea was longer with DCT vs PCT (QLQ-LC13: 4.24 vs 1.54 months; p = 0.0168). Most patients in both arms reported that adverse events occurred occasionally/rarely/never with moderate/mild severity. Overall, patients reported little/no bother from treatment side effects. CONCLUSIONS DCT maintained health-related quality of life similarly to PCT and was well tolerated, supporting the PERLA primary results and dostarlimab use in future regimens.
Collapse
Affiliation(s)
- Martin Reck
- LungenClinic, Airway Research Center North, Center for Lung Research, Grosshansdorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang Y, Liu J, Yang G, Zou J, Tan Y, Xi E, Geng Q, Wang Z. Asiaticoside Inhibits Growth and Metastasis in Non-Small Cell Lung Cancer by Disrupting EMT via Wnt/β-Catenin Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4859-4870. [PMID: 38888371 DOI: 10.1002/tox.24359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/07/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the primary inducer of cancer-related death worldwide. Asiaticoside (ATS) is a triterpenoid saponin that has been indicated to possess an antitumor activity in several malignancies. Nonetheless, its detailed functions in NSCLC remain unclarified. In this study, NSCLC cells were exposed to various doses of ATS. Functional experiments were employed to estimate the ATS effect on NSCLC cell behaviors. Western blotting was implemented for protein expression evaluation. A xenograft mouse model was established to assess the ATS effect on NSCLC in vivo. The results showed that ATS restrained NSCLC cell proliferation, cell cycle progression, migration, and invasiveness. ATS reversed TGF-β-induced promotion in epithelial-mesenchymal transition (EMT). Mechanistically, ATS inhibited Wnt/β-catenin signaling in NSCLC. Upregulating β-catenin restored ATS-mediated suppression of NSCLC cell aggressiveness. Moreover, ATS administration repressed tumorigenesis in tumor-bearing mice. In conclusion, ATS represses growth and metastasis in NSCLC by blocking EMT via the inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiangyong Liu
- Department of Radiography, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Gang Yang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Jiani Zou
- Department of Radiography, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yan Tan
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Erping Xi
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| |
Collapse
|
5
|
Santoro A, Pilar G, Tan DSW, Zugazagoitia J, Shepherd FA, Bearz A, Barlesi F, Kim TM, Overbeck TR, Felip E, Cai C, Simantini E, McCulloch T, Schaefer ES. Spartalizumab in combination with platinum-doublet chemotherapy with or without canakinumab in patients with PD-L1-unselected, metastatic NSCLC. BMC Cancer 2024; 24:1307. [PMID: 39448966 PMCID: PMC11515544 DOI: 10.1186/s12885-024-12841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Despite promising outcomes of treatment with anti-programmed cell death (PD)-1/PD-ligand (L)1 agents in combination with platinum-doublet chemotherapy (PDC) in the first-line setting, a significant unmet medical need remains in patients with PD-L1-unselected non-small cell lung cancer (NSCLC). METHODS This multicenter, open-label, phase 1b study comprising dose-confirmation and dose-expansion parts investigated the combination of spartalizumab and various PDC regimens, with or without canakinumab, in treatment-naïve patients with PD-L1-unselected, metastatic NSCLC. The primary objectives were to determine maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) of spartalizumab, with or without canakinumab, in combination with PDC in the dose-confirmation part and antitumor activity of spartalizumab in the dose-expansion part. RESULTS The MTD/RDE of spartalizumab was 300 mg every 3 weeks (Q3W) when administered with either gemcitabine (1250 mg/m2)/cisplatin (75 mg/m2) (group A; no dose-limiting toxicities [DLTs]), pemetrexed (500 mg/m2)/cisplatin (group B; 2 DLTs: grade 2 posterior reversible encephalopathy syndrome and grade 4 hyponatremia), or paclitaxel (200 mg/m2)/carboplatin area under the curve 6 min*mg/mL (group C; 1 DLT: grade 4 neutropenic colitis). The RDE of canakinumab combined with spartalizumab and pemetrexed/cisplatin (group E; no DLTs) was 200 mg Q3W (no dose-expansion part was initiated). No new safety signals were identified. In groups A, B, C, and E, the overall response rates were 57.6%, 55.3%, 51.5%, and 57.1%, respectively. Group B compared with other groups had the longest median progression-free survival (10.4 months vs. 6.2-7.5 months), overall survival (29.7 months vs. 16.1-21.0 months), and duration of response (30.1 months vs. 6.0-8.2 months). CONCLUSIONS The combination of spartalizumab and PDC, with or without canakinumab, was well tolerated across treatment groups. The antitumor activity across treatment groups was comparable with that of pembrolizumab and pemetrexed combination. Canakinumab did not appear to improve the antitumor activity when combined with spartalizumab, pemetrexed and cisplatin. TRIAL REGISTRATION The trial was registered in Clinicaltrials.gov with identifier no. NCT03064854. Date of Registration: 06 February 2017.
Collapse
Affiliation(s)
- Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano-Milan, 20089, Italy.
| | - Garrido Pilar
- Department of Medical Oncology, Hospital Ramón Y Cajal, Madrid, Spain
| | - Daniel S W Tan
- Department of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Jon Zugazagoitia
- Department of Medical Oncology, University Hospital 12 de Octubre, Madrid, Spain
| | - Frances A Shepherd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico - CRO, Aviano, Italy
| | - Fabrice Barlesi
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, CNRS, INSERM, CRCM, APHM, CEPCM, CLIP, Marseille, France
- Faculté de Médecine, Université Paris Saclay, Kremlin Bicêtre, France
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tobias R Overbeck
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Enriqueta Felip
- Department of Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Can Cai
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Eddy Simantini
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Eric S Schaefer
- Department of Medical Oncology, Highlands Oncology Group, Fayetteville, AZ, USA
| |
Collapse
|
6
|
Huang C, Huang X, Qiu X, Kong X, Wu C, Jiang X, Yao M, Wang M, Su L, Lv C, Wong PP. Pericytes Modulate Third-Generation Tyrosine Kinase Inhibitor Sensitivity in EGFR-Mutated Lung Cancer Cells Through IL32-β5-Integrin Paracrine Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405130. [PMID: 39435643 DOI: 10.1002/advs.202405130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Indexed: 10/23/2024]
Abstract
EGFR-mutated lung cancer patients sometimes display restricted responses to third-generation tyrosine kinase inhibitors (TKIs), potentially attributable to undervalued input from stromal cells, notably pericytes (PCs). The study shows that PCs isolated from EGFR-mutated patients have a unique secretome profile, notably secreting IL32 and affecting signaling pathways and biological processes linked to TKI sensitivity. Clinical evidence, supported by single-cell RNA sequencing and multiplex immunostaining of tumor tissues, confirms the presence of IL32-expressing pericytes closely interacting with β5-integrin-expressing cancer cells in EGFR-mutated patients, impacting therapeutic response and prognosis. Co-culture and conditioned medium experiments demonstrate that PCs reduce TKI effectiveness in EGFR-mutated cancer cells, a reversible phenomenon through silencing IL32 expression in PCs or depleting the IL32 receptor β5-integrin on cancer cells, thereby restoring cancer cell sensitivity. Mechanistically, it is shown that YY1 signaling upregulates IL32 secretion in PCs, subsequently activating the β5-integrin-Src-Akt pathway in EGFR-mutated cancer cells, contributing to their TKI sensitivity. In animal studies, co-injection of cancer cells with PCs compromises TKI effectiveness, independently of blood vessel functions, while inhibition of β5-integrin restores tumor cell sensitivity. Overall, the findings highlight direct crosstalk between cancer cells and pericytes, impacting TKI sensitivity via IL32-β5-integrin paracrine signaling, proposing an enhanced therapeutic approach for EGFR-mutated patients.
Collapse
Affiliation(s)
- Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chunmiao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510120, China
| | - Cui Lv
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
7
|
Tang R, Zhang Z, Liu X, Zhu L, Xu Y, Chai R, Zhan W, Shen S, Liang G. Fibroblast Growth Factor Receptor 1-Specific Dehydrogelation to Release Its Inhibitor for Enhanced Lung Tumor Therapy. ACS NANO 2024; 18:29223-29232. [PMID: 39392940 DOI: 10.1021/acsnano.4c11548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is emerging as a promising molecular target of lung cancer, and various FGFR1 inhibitors have exhibited significant therapeutic effects on lung cancer in preclinical research. Due to their low targeting ability or bioavailability, direct administration of these inhibitors may cause side effects. Herein, a hydrogelator, Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr-OH (Nap-Y), was rationally designed to coassemble with an FGFR1 inhibitor nintedanib (Nin) to form a peptide hydrogel Gel Y/Nin for localized administration and FGFR1-triggered release of Nin. Upon specific phosphorylation by FGFR1 overexpressed on lung cancer cells, Nap-Y in Gel Y/Nin is converted to the hydrophilic product Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr(H2PO3)-OH (Nap-Yp), leading to dehydrogelation of the gel and subsequent Nin release. In vitro experiments demonstrate that the release of Nin in a sustained manner from Gel Y/Nin significantly suppresses the survival, migration, and invasion of A549 cells by inhibiting FGFR1 expression and its phosphorylation function on downstream signaling molecules. Nude mouse studies show that Gel Y/Nin exhibits enhanced therapeutic efficacy on lung tumor than free Nin. We anticipate that Gel Y/Nin will be utilized for lung cancer treatment in clinical settings in the near future.
Collapse
Affiliation(s)
- Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Liangxi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuting Xu
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Shurong Shen
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Abraham I, Calamia M, Alkhatib N, Pondel M, MacDonald K. Budget impact analysis of pembrolizumab versus the novel PD-1 inhibitor toripalimab in locally advanced or metastatic nonsquamous non-small cell lung cancer. J Med Econ 2024; 27:36-50. [PMID: 39359042 DOI: 10.1080/13696998.2024.2411877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
AIM To estimate the budget impact of adding a toripalimab regimen to the existing treatment mix of pembrolizumab, both with pemetrexed and carboplatin, in patients with locally advanced or metastatic nonsquamous NSCLC within two price inputs (wholesale acquisition cost (WAC) and average sales price (ASP)). METHODS Budget impact analysis comparing a treatment mix "without" versus "with" the toripalimab regimen in the annual US nonsquamous NSCLC population treated with a PD-1 inhibitor, a 3-year time horizon, toripalimab market share of 1% in 2024, increasing to 4% (2025) and 5% (2026), and medication use adjustments for discontinuation or progression to estimate fully-treated-patient-equivalents. Cost inputs included drugs, administration, and grade 3/4 adverse event (AE) management. The models were replicated in a 1-million-member plan to estimate costs per-member-per-month (PMPM) and per-member-per-year (PMPY). One-way (OWSA) and probabilistic sensitivity analyses (PSA) as well as two scenario analyses were performed. RESULTS In the "without" scenario, the 3-year WAC costs for the pembrolizumab regimen total $40,750,234,637 ($39,024,548,745 for treatment and $1,725,685,894 for managing AEs). In the "with" scenario, these costs decline to $39,341,379,081. Corresponding "with" costs for toripalimab are $1,186,027,704 (treatment) and $99,454,471 (AE management) for a total of $1,285,482,175. This yields annual net savings of between $10,779,362 (at 1% market share) in 2024 and $64,858,298 (5% market share) in 2026, for 3-year savings of $123,373,381. The associated savings in a 1-million-member plan are $0.030 PMPM and $0.363 PMPY. The ASP model shows similar patterns. Savings were demonstrated in 68% of PSA simulations; OWSAs and scenario analyses reveal how parameter variability impacts results. CONCLUSION Significant savings are likely achievable from treating between 1% (year 1) to 5% (year 3) of nonsquamous NSCLC patients with the toripalimab regimen. Projected 3-year savings range from $122 million (ASP) to $123 million (WAC); corresponding to savings of $0.030 PMPM and $0.363 PMPY.
Collapse
Affiliation(s)
- Ivo Abraham
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
- Department of Family and Community Medicine, College of Medicine - Tucson, University of Arizona, Tucson, AZ, USA
- Matrix45, Tucson, AZ, USA
| | - Matthias Calamia
- Matrix45, Tucson, AZ, USA
- Zorginstituut Nederland (National Health Care Institute of The Netherlands), Diemen, The Netherlands
| | - Nimer Alkhatib
- Matrix45, Tucson, AZ, USA
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Path Economics, LLC, Amman, Jordan
| | - Marc Pondel
- Coherus BioSciences, Inc, Redwood City, CA, USA
| | | |
Collapse
|
9
|
Teng F, Ju X, Gao Z, Xu J, Li Y, Wang Y, Zou B, Yu J. Perioperative immunotherapy for patients with EGFR mutant non-small cell lung cancer: Unexpected potential benefits. Biochim Biophys Acta Rev Cancer 2024; 1879:189194. [PMID: 39413856 DOI: 10.1016/j.bbcan.2024.189194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Given that immunotherapy has resulted in a significant overall survival (OS) benefit in advanced-stage disease, it is of notable interest to determine the effectiveness of these agents in early-stage non-small cell lung cancer (NSCLC). The potential exists for the immunotherapeutic approach in early-stage NSCLC to mirror the paradigm seen in advanced NSCLC, wherein survival enhancements have notably benefited the majority of patients. However, their performance in early-stage epidermal growth factor receptor (EGFR) mutant NSCLC is controversial. In the limited studies that included patients with EGFR mutation status, we found unexpected, good survival benefits of perioperative immune checkpoint inhibitors (ICIs) in resectable EGFR-positive NSCLC, which is controversial with those in advanced EGFR-mutant NSCLC. It is possible because of the shift toward immunosuppression that the immune environment undergoes during tumor progression. In the early disease stages, the anti-tumor immune response can be activated with fewer hindrances. In the context of EGFR mutant tumors, intratumor genetic heterogeneity can generate treatment-sensitive and -resistant subclones. The subclonality of the resistant subclone is pivotal in therapy response, with tyrosine kinase inhibitors (TKIs) selectively controlling EGFR-mutant cell proliferation and "competitive release" potentially explaining lower pathological responses in adjuvant TKIs trials. This review delves into emerging data on perioperative treatment modalities for early-stage EGFR mutant NSCLC, exploring unique mechanisms and predictive biomarkers to guide perioperative management strategies.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Xiao Ju
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yikun Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yungang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bingwen Zou
- Department of Radiation Oncology, West China Hospital of Sichuan University, Sichuan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Xing S, Yang H, Chen X, Wang Y, Zhang S, Wang P, Chen C, Wang K, Liu Z, Zheng X. Discovery of pyrimidine-2,4-diamine analogues as efficiency anticancer drug by targeting GTSE1. Bioorg Chem 2024; 151:107700. [PMID: 39128245 DOI: 10.1016/j.bioorg.2024.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
A series of pyrimidine-2,4-diamine analogues were designed and synthesized. Their anticancer activity and the underlying mechanism against colorectal cancer (CRC) HCT116 cells and non-small cell lung cancer (NSCLC) A549 cells were investigated. The results demonstrated that the active compound Y18 significantly inhibited cancer cell proliferation by inducing robust cell cycle arrest and cell senescence through the persistence of DNA damage. Additionally, Y18 exhibited significant inhibitory effects on the adhesion, migration and invasion of cancer cells in vitro. Mechanistically, Y18 achieved these anticancer activities by suppressing GTSE1 transcription and expression. Y18 also effectively inhibited tumor growth in vivo with minimal side effects. Furthermore, Y18 exhibited a suitable half-life and oral bioavailability (16.27%), with limited inhibitory activity on CYP isoforms. Taken together, these results suggested that Y18 could be a potential chemotherapeutic drug for cancer treatment, particularly in cases of GTSE1 overexpressed cancers.
Collapse
Affiliation(s)
- Sunhui Xing
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Huamao Yang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiaojian Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yan Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Shuyuan Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Peipei Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chaoyue Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; The Key Laboratory of Pediatric Hematology and oncology Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
11
|
Li H, Lei Y, Chen N, Guo G, Xiang X, Huang Y. circRNA-CPA4 Regulates Cell Proliferation and Apoptosis of Non-small Cell Lung Cancer via the miR-1183/PDPK1 Axis. Biochem Genet 2024; 62:4087-4102. [PMID: 38273153 DOI: 10.1007/s10528-023-10641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Non-small-cell lung cancer (NSCLC) stands as a prevalent subtype of lung cancer, with circular RNAs emerging as key players in cancer development. This study elucidates the role of circRNA-CPA4 in NSCLC. Elevated circRNA-CPA4 expression in NSCLC lines was confirmed through qRT-PCR. Silencing circRNA-CPA4 with shRNA revealed, through CCK-8, colony formation, and flow cytometry assays, a notable constraint on proliferation and promotion of apoptosis in NSCLC cells. Subcellular localization analysis, RNA immunoprecipitation, and expression level assessments were employed to decipher the intricate interplay among miR-1183, circRNA-CPA4, and PDPK1. Results demonstrated heightened circRNA-CPA4 levels in NSCLC, and its knockdown curtailed NSCLC growth in vivo. Acting as a molecular sponge for miR-1183, circRNA-CPA4 regulated PDPK1 expression. Conversely, inhibiting miR-1183 counteracted the impact of circRNA-CPA4 silencing, reinstating NSCLC cell proliferation, and impeding apoptosis. Overall, this study unveils a novel mechanism: circRNA-CPA4 promotes PDPK1 expression by sequestering miR-1183, fostering NSCLC cell proliferation, and hindering apoptosis.
Collapse
Affiliation(s)
- Heng Li
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunzhou Road 519, Kunming, 650118, China
| | - Nan Chen
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Gang Guo
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Xudong Xiang
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Yunchao Huang
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China.
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunzhou Road 519, Kunming, 650118, China.
| |
Collapse
|
12
|
Sun CY, Cao D, Wang YN, Weng NQ, Ren QN, Wang SC, Zhang MY, Mai SJ, Wang HY. Cholesterol inhibition enhances antitumor response of gilteritinib in lung cancer cells. Cell Death Dis 2024; 15:704. [PMID: 39349433 PMCID: PMC11443066 DOI: 10.1038/s41419-024-07082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Repositioning approved antitumor drugs for different cancers is a cost-effective approach. Gilteritinib was FDA-approved for the treatment of FLT3-mutated acute myeloid leukemia in 2018. However, the therapeutic effects and mechanism of Gilteritinib on other malignancies remain to be defined. In this study, we identified that gilteritinib has an inhibitory effect on lung cancer cells (LCCs) without FLT3 mutation in vitro and in vivo. Unexpectedly, we found that gilteritinib induces cholesterol accumulation in LCCs via upregulating cholesterol biosynthetic genes and inhibiting cholesterol efflux. This gilteritinib-induced cholesterol accumulation not only attenuates the antitumor effect of gilteritinib but also induces gilteritinib-resistance in LCCs. However, when cholesterol synthesis was prevented by squalene epoxidase (SQLE) inhibitor NB-598, both LCCs and gilteritinib-resistant LCCs became sensitive to gilteritinib. More importantly, the natural cholesterol inhibitor 25-hydroxycholesterol (25HC) can suppress cholesterol biosynthesis and increase cholesterol efflux in LCCs. Consequently, 25HC treatment significantly increases the cytotoxicity of gilteritinib on LCCs, which can be rescued by the addition of exogenous cholesterol. In a xenograft model, the combination of gilteritinib and 25HC showed significantly better efficacy than either monotherapy in suppressing lung cancer growth, without obvious general toxicity. Thus, our findings identify an increase in cholesterol induced by gilteritinib as a mechanism for LCC survival, and highlight the potential of combining gilteritinib with cholesterol-lowering drugs to treat lung cancer.
Collapse
Affiliation(s)
- Chao-Yue Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Di Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yue-Ning Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Nuo-Qing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Qian-Nan Ren
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
13
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
14
|
Bestvina CM, Waters D, Morrison L, Emond B, Lafeuille MH, Hilts A, Mujwara D, Lefebvre P, He A, Vanderpoel J. Impact of next-generation sequencing vs polymerase chain reaction testing on payer costs and clinical outcomes throughout the treatment journeys of patients with metastatic non-small cell lung cancer. J Manag Care Spec Pharm 2024:1-12. [PMID: 39259000 DOI: 10.18553/jmcp.2024.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
BACKGROUND For patients with metastatic non-small cell lung cancer (mNSCLC), next-generation sequencing (NGS) biomarker testing has been associated with a faster time to appropriate targeted therapy and more comprehensive testing relative to polymerase chain reaction (PCR) testing. However, the impact on payer costs and clinical outcomes during patients' treatment journeys has not been fully characterized. OBJECTIVE To assess the costs and clinical outcomes of NGS vs PCR biomarker testing among patients with newly diagnosed de novo mNSCLC from a US payers' perspective. METHODS A Markov model assessed costs and clinical outcomes of NGS vs PCR testing from the start of testing up to 3 years after. Patients entered the model after receiving biomarker test results and then initiated first-line (1L) targeted or nontargeted therapy (immunotherapy and/or chemotherapy) depending on actionable mutation detection. A few patients with an actionable mutation were not detected by PCR and inappropriately initiated 1L nontargeted therapy. At each 1-month cycle, patients could remain on treatment with 1L, progress to second line or later (2L+), or die. Literature-based inputs included the rates of progression-free survival (PFS) and overall survival (OS), targeted and nontargeted therapy costs, total costs of testing, and medical costs of 1L, 2L+, and death. Per patient average PFS and OS as well as cumulative costs were reported for NGS and PCR testing. RESULTS In a modeled population of 100 patients (75% commercial and 25% Medicare), 45.9% of NGS and 40.0% of PCR patients tested positive for an actionable mutation. Relative to PCR, NGS was associated with $7,386 in savings per patient (NGS = $326,154; PCR = $333,540) at 1 year, driven by lower costs of testing, including estimated costs of delayed care and nontargeted therapy initiation before receiving test results (NGS = $8,866; PCR = $16,373). Treatment costs were similar (NGS = $305,644; PCR = $305,283). In the PCR cohort, the per patient costs of inappropriate 1L nontargeted therapy owing to undetected mutations were $6,455, $6,566, and $6,569 over the first 1, 2, and 3 years, respectively. Relative to PCR testing, NGS was associated with $4,060 in savings at 2 years and $1,092 at 3 years. Patients who initiated 1L targeted therapy had an additional 5.4, 8.8, and 10.4 months of PFS and an additional 1.4, 3.6, and 5.3 months of OS over the first 1, 2, and 3 years, respectively, relative to those who inappropriately initiated 1L nontargeted therapy. CONCLUSIONS In this Markov model, as early as year 1, and over 3 years following biomarker testing, patients with newly diagnosed de novo mNSCLC undergoing NGS testing are projected to have cost savings and longer PFS and OS relative to those tested with PCR.
Collapse
Affiliation(s)
| | - Dexter Waters
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA
| | | | | | | | | | | | | | - Andy He
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA
| | - Julie Vanderpoel
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA
| |
Collapse
|
15
|
Liu L, Zhang F, Niu D, Guo X, Lei T, Liu H. Diagnostic value of microRNA-200 expression in peripheral blood-derived extracellular vesicles in early-stage non-small cell lung cancer. Clin Exp Med 2024; 24:214. [PMID: 39249157 PMCID: PMC11384644 DOI: 10.1007/s10238-024-01455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE This study assessed the diagnostic value of microRNA-200 (miR-200) expression in peripheral blood-derived extracellular vesicles (EVs) in early-stage non-small cell lung cancer (NSCLC). METHODS This study retrospectively analyzed 100 healthy volunteers (the control group) receiving physical examinations, 168 early-stage NSCLC patients (the NSCLC group), and 128 patients with benign lung nodules (the benign group). The basic and clinical data of participants were obtained, including age, sex, smoking history, carbohydrate antigen 242 (CA242), carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199), forced expiratory volume in 1 s, maximal voluntary ventilation, forced vital capacity, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and miR-200 expression. The correlation of miR-200 expression in peripheral blood-derived EVs with CA242, CEA, and CA199 was analyzed, and the diagnostic value of peripheral blood-derived EV miR-200 for early-stage NSCLC was assessed. The risk factors of early-stage NSCLC development were also determined. RESULTS Age, the percentage of patients with smoking history, CA242, CEA, CA199, IL-6, and TNF-α levels, and miR-200 expression in peripheral blood-derived EVs were significantly higher in the NSCLC group than in the benign and control groups. Lung disease patients with high miR-200 expression in peripheral blood-derived EVs comprised a higher percentage of patients with smoking history and mixed lesions and had higher CA242, CEA, CA199, and TNF-α levels than those with low miR-200 expression in peripheral blood-derived EVs. In lung diseases, miR-200 expression in peripheral blood-derived EVs was significantly and positively correlated with CA242, CEA, and CA199. Peripheral blood-derived EV miR-200 combined with CA242, CEA and CA199 had higher diagnostic value (area under the curve = 0.942) than single detection, along with higher specificity, and high expression of peripheral blood-derived EV miR-200 was an independent risk factor for early-stage NSCLC. CONCLUSION Peripheral blood-derived EV miR-200 expression in patients with lung diseases is closely correlated with CA242, CEA, and CA199, and high expression of peripheral blood-derived EV miR-200 is an independent risk factor for early-stage NSCLC and is of high clinical diagnostic value for early-stage NSCLC.
Collapse
Affiliation(s)
- Lina Liu
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), No. 21 Jiefang Road, Xincheng District, Xi'an, 710004, Shaanxi, China.
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Dongling Niu
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), No. 21 Jiefang Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| | - Xuan Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ting Lei
- Department of Experimental Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Hongli Liu
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), No. 21 Jiefang Road, Xincheng District, Xi'an, 710004, Shaanxi, China
| |
Collapse
|
16
|
Jiang S, Yang A, Yang F, Zhu X, Chen X, Li Z, Yao Y, Xu S, Yang Z, Mo N, Zhong G, Bai W, Zhao L, Zhang X, Shen X. The Geriatric Nutritional Risk Index as a prognostic factor in patients treated with immune checkpoint inhibitors with non-small-cell lung cancer. J Thorac Dis 2024; 16:5222-5237. [PMID: 39268123 PMCID: PMC11388237 DOI: 10.21037/jtd-24-436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024]
Abstract
Background Globally, non-small cell lung cancer (NSCLC) is a leading factor in cancer-related mortality. Additionally, the Geriatric Nutritional Risk Index (GNRI) has been assessed as a predictive and prognostic indicator in various types of carcinomas. Our study aims to assess the prognostic importance of GNRI computed at diagnosis in NSCLC patients receiving immune checkpoint inhibitors (ICIs). Methods The study evaluated 148 patients who underwent immunotherapy for NSCLC from January 1, 2018, through December 31, 2021, retrospectively. Patients combined with other malignant tumors or severe comorbidities were excluded from the study. The receiver operating characteristic (ROC) curve was employed in regulating the ideal cutoff worth of GNRI. Survival outcomes were evaluated through Kaplan-Meier analysis. Following this, both univariate and multivariate analyses were conducted utilizing Cox regression analysis to identify any potential factors that may influence the survival outcomes. Results The cutoff point for GNRI was 108.15 [area under the curve (AUC) =0.575, P=0.048]. Further analysis using the Kaplan-Meier method demonstrated that individuals in the high GNRI group had significantly longer progression-free survival (PFS) and overall survival (OS) compared to those in the low GNRI group (P=0.02, P=0.01). The further stratified study showed that GNRI had greater predictive value in tumor node metastasis (TNM) stage II-III and elderly (age ≥65 years) NSCLC patients undergoing ICI therapy. The multivariate Cox regression analysis indicated that GNRI [hazard ratio (HR): 0.536, P=0.03], obesity (HR: 16.283, P<0.001), and surgical history (HR: 0.305, P<0.001) were associated with poorer survival rates. Conclusions Among patients undergoing ICI therapy for NSCLC, GNRI is an effective independent prognostic indicator, and a high GNRI at diagnosis is substantially related with longer PFS and OS. The incorporation of GNRI in pre-treatment evaluations within clinical settings is beneficial.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - An Yang
- Department of Anesthesiology, Heilongjiang Provincial Hospital, Harbin, China
| | - Fuzhi Yang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xunxia Zhu
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoyu Chen
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zheng Li
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanshan Yao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shangwei Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhengyao Yang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nianping Mo
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Gang Zhong
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiting Bai
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Liting Zhao
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuelin Zhang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
17
|
Westerink L, Wolters S, Zhou G, Postma A, Boersma C, van Boven JFM, Postma MJ. Trends in NICE technology appraisals of non-small cell lung cancer drugs over the last decade. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024:10.1007/s10198-024-01711-0. [PMID: 39212880 DOI: 10.1007/s10198-024-01711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES The aim of this study is to analyse the trends in technology appraisals for non-small cell lung cancer (NSCLC) treatments performed by the National Institute for Health and Care Excellence (NICE) over the last ten years. METHODS A systematic search was conducted for single technology appraisals of NSCLC drugs in the online NICE database from 2012 to 2022. Search terms used were 'non small cell lung cancer', and 'NSCLC'. Appraisals that were under development or terminated as well as multiple technology appraisals were considered out of scope. RESULTS In the 30 included appraisals for targeted therapies and immunotherapies within NSCLC, a total of 53 different comparators were included by NICE for 41 assorted indications or subgroups. Partitioned survival models were most frequently used, often including three health states and time horizons of up to 30 years. Throughout the decade the use of indirect comparisons was high and became more established and complex over time. Of all appraisals, 90% positively recommended the treatment for use in the UK. CONCLUSION Technology appraisals became more complex over time due to the emergence of targeted therapies and immunotherapies, leading to multiple different indications, subpopulations and comparators that needed to be included in appraisals. Partitioned Survival Analysis (PartSA) models became the cornerstone within NSCLC, with time horizons up to 30 years and over time methods for indirect treatment comparisons became more established. The majority of the appraisals resulted in a positive recommendation for reimbursement.
Collapse
Affiliation(s)
- Lotte Westerink
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713, The Netherlands.
- AstraZeneca, Cambridge, UK.
| | - Sharon Wolters
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713, The Netherlands
- Asc Academics B.V, Groningen, The Netherlands
| | - Guiling Zhou
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Cornelis Boersma
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713, The Netherlands
- Health-Ecore B.V, Zeist, The Netherlands
- Department of Management Sciences, Open University, Heerlen, The Netherlands
| | - Job Frank Martien van Boven
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maarten Jacobus Postma
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713, The Netherlands
- Department of Economics, Econometrics & Finance, Faculty of Economics & Business, University of Groningen, Groningen, The Netherlands
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
18
|
Chen J, Chen K, Zhang S, Huang X. SIRT1 silencing ameliorates malignancy of non-small cell lung cancer via activating FOXO1. Sci Rep 2024; 14:19948. [PMID: 39198693 PMCID: PMC11358480 DOI: 10.1038/s41598-024-70970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), being the most prevalent and lethal malignancy affecting the lungs, poses a significant threat to human health. This research aims at illustrating the precise role and related mechanisms of silent information regulator type-1 (SIRT1) in NSCLC progression. The expression pattern of SIRT1 in NSCLC cell lines was examined using quantitative real-time polymerase chain reaction and western blotting. Functional assays in NSCLC cell lines validated the biological capabilities of SIRT1 on malignant phenotypes, and its impact on tumorigenicity was further evaluated in vivo. In addition, the FOXO1 inhibitor AS1842856 was applied to verify the role of SIRT1 on FOXO pathway in vitro. SIRT1 expression was prominently elevated in NSCLC cell lines. The depletion of SIRT1 retarded the capabilities of proliferation, migration and invasion, while enhancing apoptosis in NSCLC cells. Furthermore, SIRT1 silencing restricted the tumorigenesis of NSCLC in vivo. Additionally, AS1842856 treatment ameliorated the inhibitory effect of SIRT1 deficiency on malignant phenotypes in NSCLC cells. SIRT1 deletion exerted an anti-oncogenic role in NSCLC via activation of FOXO1.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, 570311, Hainan Province, China
| | - Kebin Chen
- Department of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Shuai Zhang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, 570311, Hainan Province, China.
| | - Xiaopeng Huang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, 570311, Hainan Province, China.
| |
Collapse
|
19
|
Zhang Y, Zhang J, Shang S, Ma J, Wang F, Wu M, Yu J, Chen D. The AST/ALT ratio predicts survival and improves oncological therapy decisions in patients with non-small cell lung cancer receiving immunotherapy with or without radiotherapy. Front Oncol 2024; 14:1389804. [PMID: 39252939 PMCID: PMC11381249 DOI: 10.3389/fonc.2024.1389804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Background and purpose Immunotherapy, with or without radiotherapy (iRT or ICIs-nonRT), is the standard treatment for non-small cell lung cancer (NSCLC). Nonetheless, the response to the treatment varies among patients. Given the established role of aspartate aminotransferase/alanine transaminase (AST/ALT) ratio in predicting cancer prognosis, we sought to identify whether the pre-treatment AST/ALT ratio has the potential to serve as a prognostic factor for NSCLC patients receiving ICIs-nonRT and iRT. Materials and methods We retrospectively analyzed NSCLC patients who received immunotherapy between April 2018 and March 2021. Patients were classified into iRT group and ICIs-nonRT group and further classified based on AST/ALT ratio cut-off values. The Kaplan-Meier (KM) method estimated the time-to-event endpoints (progression-free survival (PFS) and overall survival (OS). Results Of the cohort, 239 underwent ICIs-nonRT and 155 received iRT. Higher AST/ALT ratios correlated with worse outcomes in the ICIs-nonRT group but indicated better outcomes in those who received iRT. Multivariate analysis validated AST/ALT ratio as an independent prognostic factor. For AST/ALT ratios between 0.67-1.7, both ICIs-nonRT and iRT yielded similar treatment outcomes; with AST/ALT ratios greater than 1.7, iRT could be a more favorable treatment option (P=0.038). Conversely, for ratios less than 0.67, ICIs-nonRT could be a more favorable treatment option (P=0.073). Conclusions The pre-treatment AST/ALT ratio demonstrates potential as a prognostic marker for treatment outcomes in NSCLC patients receiving either ICIs-nonRT or iRT. This finding could help guide clinicians in selecting more effective treatment protocols, thereby enhancing patient prognosis.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingxin Zhang
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Shijie Shang
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachun Ma
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Wang
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Dawei Chen
- Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
20
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
21
|
Mack PC, Keller-Evans RB, Li G, Lofgren KT, Schrock AB, Trabucco SE, Allen JM, Tolba K, Oxnard GR, Huang RSP. Real-World Clinical Performance of a DNA-Based Comprehensive Genomic Profiling Assay for Detecting Targetable Fusions in Nonsquamous NSCLC. Oncologist 2024; 29:e984-e996. [PMID: 38401173 PMCID: PMC11299949 DOI: 10.1093/oncolo/oyae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Genomic fusions are potent oncogenic drivers across cancer types and many are targetable. We demonstrate the clinical performance of DNA-based comprehensive genomic profiling (CGP) for detecting targetable fusions. MATERIALS AND METHODS We analyzed targetable fusion genes in >450 000 tissue specimens profiled using DNA CGP (FoundationOne CDx, FoundationOne). Using a de-identified nationwide (US-based) non-small cell lung cancer (NSCLC) clinico-genomic database, we assessed outcomes in patients with nonsquamous NSCLC (NonSqNSCLC) who received matched therapy based on a fusion identified using DNA CGP. Lastly, we modeled the added value of RNA CGP for fusion detection in NonSqNSCLC. RESULTS We observed a broad diversity of fusion partners detected with DNA CGP in conjunction with targetable fusion genes (ALK, BRAF, FGFR2, FGFR3, NTRK1/2/3, RET, and ROS1). In NonSqNSCLC with oncogenic ALK, NTRK, RET, and ROS1 fusions detected by DNA CGP, patients treated with a matched tyrosine kinase inhibitor had better real-world progression-free survival than those receiving alternative treatment regimens and benefit was observed regardless of the results of orthogonal fusion testing. An estimated 1.3% of patients with NonSqNSCLC were predicted to have an oncogenic driver fusion identified by RNA, but not DNA CGP, according to a model that accounts for multiple real-world factors. CONCLUSION A well-designed DNA CGP assay is capable of robust fusion detection and these fusion calls are reliable for informing clinical decision-making. While DNA CGP detects most driver fusions, the clinical impact of fusion detection is substantial for individual patients and exhaustive efforts, inclusive of additional RNA-based testing, should be considered when an oncogenic driver is not clearly identified.
Collapse
Affiliation(s)
- Philip C Mack
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | | | - Gerald Li
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang K, Lin G, Nie Z, Jin S, Bing X, Li Z, Li M. TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-κB/NLRP3 pathway. Mol Cell Biochem 2024; 479:2069-2079. [PMID: 37566200 DOI: 10.1007/s11010-023-04823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Accumulating data have revealed the pivotal function of tripartite motif protein 38 (TRIM38) in tumors. In view of this, this investigation aims to explore the function and potential mechanism of TRIM38 in non-small cell lung cancer (NSCLC). A xenotypic tumor model was established in vivo by subcutaneously injecting NSCLC cells (2 × 106 cells) in tail vein of each mouse. Relative expression of TRIM38 mRNA was detected via quantitative real-time polymerase chain reaction (qRT-PCR). For exploring the role of TRIM38 in vivo and in vitro, mice or NSCLC cells were divided into two groups: the vector group and the TRIM38 overexpression group. Also, protein expression levels of TRIM38, Vimentin, E-cadherin, and N-cadherin were determined using western blotting and immunohistochemistry staining. Tumor nodules of mouse lung tissues were assessed via performing H&E staining. Moreover, proliferation of NSCLC cells was evaluated through colony formation and CCK-8 assays. Further, migration and invasion of NSCLC cells were assessed through wound healing and transwell assays. Protein levels of pathway-related proteins including p-p65, p65, IκB, p-IκB, p-AMPK, AMPK, and NLRP3 were examined through western blotting analysis. Tumor lung tissues of mice and NSCLC cells showed low protein and mRNA expression of TRIM38. Functionally, up-regulation of TRIM38 reduced the number of tumor nodules and suppressed epithelial-to-mesenchymal transition (EMT) in lung tissues of mice. Furthermore, up-regulation of TRIM38 in NSCLC cells inhibited migration, invasion, EMT, and proliferation. With respect to the mechanism, in vivo experiments, the inhibitory effects of TRIM38 overexpression on tumor nodules, and EMT were reversed by AMPK inhibitor. In vitro experiments, TRIM38 overexpression caused down-regulation of p-IκB and p-p65 as well as up-regulation of p-AMPK. The inhibitory effects of TRIM38 overexpression on migration, proliferation, invasion, and EMT of NSCLC cells were reversed by overexpression of NLRP3. Concurrently, AMPK inhibitor enhanced the TRIM38-overexpressed NSCLC cell's abilities in migration, clone formation, invasion, and proliferation. TRIM38 regulated the AMPK/NF-κB/NLRP3 pathway to suppress the NSCLC's progression and development.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Mingru Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China.
| |
Collapse
|
23
|
MacDonald K, Pondel M, Abraham I. Cost-efficiency and budget-neutral expanded access modeling of pembrolizumab versus the novel PD-1 inhibitor toripalimab in locally advanced or metastatic nonsquamous non-small cell lung cancer. J Med Econ 2024; 27:24-33. [PMID: 39016841 DOI: 10.1080/13696998.2024.2380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
AIMS To estimate in a panel of patients with locally advanced/metastatic nonsquamous non-small cell lung cancer (NSCLC) treated with a programmed death receptor-1 inhibitor in the US in 2024 (1) the cost-efficiency of toripalimab regimens compared to pembrolizumab regimens; and (2) the budget-neutral expanded access to additional toripalimab cycles and regimens from accrued savings. METHODS Simulation modeling of toripalimab + pemetrexed + carboplatin in nonsquamous NSCLC to a similar pembrolizumab regimen in a panel of 49,647 patients; utilizing two cost inputs (wholesale acquisition cost (WAC) at market entry and an estimated ex ante toripalimab price point of 80% of pembrolizumab average sales price (ASP)) plus administration costs over one and two years of treatment with treatment rates from 1%-10%. Scenario analyses with treatment durations equivalent to toripalimab and pembrolizumab trials' median PFS were also conducted. RESULTS In the WAC-based models, toripalimab saves $2,223 per patient per cycle and $40,014 over 1 year of treatment ($77,805 over 2 years). Extrapolated to the 49,647-patient panel, estimated 1-year savings range from $19,865,840 (1% treatment rate) to $198,658,399 (10% rate). Reallocating these savings permits budget-neutral expanded access to an additional 1,753 (1% rate) to 17,533 (10% rate) toripalimab maintenance cycles or to an additional 97 (1% rate) to 972 (10%) full 1-year toripalimab regimens with all agents. Two-year savings range from $38,628,022 (1% rate) to $386,280,221 (10%). Reallocating these efficiencies provides expanded access ranging from 3,409 (1% rate) to 34,093 (10%) additional toripalimab cycles or to 97 to 973 full 2-year regimens. The ex ante ASP model showed similar results as did the scenario analyses but at a lower magnitude than the base case. CONCLUSION Toripalimab generates significant savings that enable budget-neutral funding for up to 17,533 [34,093] additional maintenance cycles over one year [two years] with toripalimab + pemetrexed in nonsquamous NSCLC, or 972 [973] full one-year [two-year] regimens.
Collapse
Affiliation(s)
| | - Marc Pondel
- Department of Medical Affairs, Coherus BioSciences, Inc, Redwood City, CA, USA
| | - Ivo Abraham
- Department of Research, Matrix45, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
- Department of Family and Community Medicine, College of Medicine - Tucson, University of Arizona, AZ, USA Tucson
| |
Collapse
|
24
|
Rongala DS, Patil SM, Kunda NK. Oral inhalation of dacomitinib nanocarriers as a therapeutic strategy for non-small cell lung cancer. Nanomedicine (Lond) 2024; 19:1601-1613. [PMID: 39073842 PMCID: PMC11389738 DOI: 10.1080/17435889.2024.2370225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Background: Development of an inhalable nanoformulation of dacomitinib (DMB) encapsulated in poly-(lactic-co-glycolic acid) nanoparticles (NPs) to improve solubility, facilitate direct lung delivery and overcome the systemic adverse effects.Methods: DMB-loaded poly-(lactic-co-glycolic acid) NPs were prepared using solvent evaporation and characterized for particle size, polydispersity index and zeta-potential. The NPs were evaluated for in vitro drug release, aerosolization performance and in vitro efficacy studies.Results: The NPs showed excellent particle characteristics and displayed a cumulative release of ∼40% in 5 days. The NPs demonstrated a mass median aerodynamic diameter of ∼3 μm and fine particle fraction of ∼80%. Further, in vitro cell culture studies showed improved cytotoxic potential of DMB-loaded NPs compared with free drug.Conclusion: The study underscores the potential of DMB-loaded NPs as a viable approach for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Druva Sarika Rongala
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Jamaica, NY 11439, USA
| |
Collapse
|
25
|
Sun N, Li R, Deng H, Li Q, Deng J, Zhu Y, Mo W, Guan W, Hu M, Liu M, Xie X, Lin X, Zhou C. The prognostic impact of severe grade immune checkpoint inhibitor related pneumonitis in non-small cell lung cancer patients. Front Oncol 2024; 14:1372532. [PMID: 38983925 PMCID: PMC11231069 DOI: 10.3389/fonc.2024.1372532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Objective To compare the prognostic differences between non-small cell lung cancer (NSCLC) patients with mild and severe checkpoint inhibitor-associated pneumonitis (CIP), and explore the causes of death and prognostic risk factors in NSCLC patients with severe CIP. Methods A retrospective study of a cohort of 116 patients with unresectable stage III or IV NSCLC with any grade CIP from April 2016 to August 2022 were conducted. To analyze the clinical characteristics of patients with different CIP grades, patients were divided into mild CIP group (grade 1-2, n=49) and severe CIP group (grade 3-5, n=67) according to the grade of CIP. To explore the OS-related risk factors in the severe CIP group, the patients were divided into a good prognosis (GP) group (≥ median OS, n=30) and a poor prognosis (PP) group (< median OS, n=37) based on whether their overall survival (OS) were greater than median OS. Baseline clinical and laboratory data were collected for analysis. Results The median OS of all NSCLC patients combined with CIP was 11.4 months (95%CI, 8.070-16.100), The median OS for mild CIP and severe CIP was 22.1 months and 4.4 months respectively (HR=3.076, 95%CI, 1.904-4.970, P<0.0001). The results showed that the most common cause of death among severe CIP patients in the PP group was CIP and the most common cause in the GP group was tumor. The univariate regression analysis showed that suspension of antitumor therapy was a risk factor for poor prognosis (OR=3.598, 95%CI, 1.307-9.905, p=0.013). The multivariate logistic regression analysis showed that suspension of anti-tumor therapy (OR=4.24, 95%CI, 1.067-16.915, p=0.040) and elevated KL-6 (OR=1.002, 95%CI, 1.001-1.002, p<0.001) were independent risk factors for poor prognosis. Conclusion In conclusion, patients with severe CIP had a poor prognosis, especially those with elevated KL-6, and the main cause of death is immune checkpoint inhibitor-associated pneumonitis complicated with infection. In addition, anti-tumor therapy for severe CIP patients should be resumed in time and should not be delayed for too long.
Collapse
Affiliation(s)
- Ni Sun
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ru Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Henan University, Kaifeng, Henan, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qingyang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxi Deng
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenwei Mo
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenhui Guan
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minjuan Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
27
|
Peng TJ, Chang Wang CC, Tang SJ, Sun GH, Sun KH. Neurotrophin-3 Facilitates Stemness Properties and Associates with Poor Survival in Lung Cancer. Neuroendocrinology 2024; 114:921-933. [PMID: 38885623 DOI: 10.1159/000539815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cancer stem cells (CSCs) shape the tumor microenvironment via neuroendocrine signaling and orchestrate drug resistance and metastasis. Cytokine antibody array demonstrated the upregulation of neurotrophin-3 (NT-3) in lung CSCs. This study aims to dissect the role of NT-3 in lung CSCs during tumor innervation. METHODS Western blotting, quantitative reverse transcription-PCR, and flow cytometry were used to determine the expression of the NT-3 axis in lung CSCs. NT-3-knockdown and NT-3-overexpressed cells were derived lung CSCs, followed by examining the stemness gene expression, tumorsphere formation, transwell migration and invasion, drug resistance, soft agar colony formation, and in vivo tumorigenicity. Human lung cancer tissue microarray and bioinformatic databases were used to investigate the clinical relevance of NT-3 in lung cancer. RESULTS NT-3 and its receptor tropomyosin receptor kinase C (TrkC) were augmented in lung tumorspheres. NT-3 silencing (shNT-3) suppressed the migration and anchorage-independent growth of lung cancer cells. Further, shNT-3 abolished the sphere-forming capability, chemo-drug resistance, invasion, and in vivo tumorigenicity of lung tumorspheres with a decreased expression of CSC markers. Conversely, NT-3 overexpression promoted migration and anchorage-independent growth and fueled tumorsphere formation by upregulating the expression of CSC markers. Lung cancer tissue microarray analysis revealed that NT-3 increased in patients with advanced-stage, lymphatic metastasis and positively correlated with Sox2 expression. Bioinformatic databases confirmed a co-expression of NT-3/TrkC-axis and demonstrated that NT-3, NT-3/TrkC, NT-3/Sox2, and NT-3/CD133 worsen the survival of lung cancer patients. CONCLUSION NT-3 conferred the stemness features in lung cancer during tumor innervation, which suggests that NT-3-targeting is feasible in eradicating lung CSCs.
Collapse
Affiliation(s)
- Ta-Jung Peng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chih Chang Wang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Gan Y, Shi F, Zhu H, Li H, Han S, Li D. Cost-effectiveness of durvalumab plus tremelimumab in combination with chemotherapy for the treatment of metastatic non-small-cell lung cancer from the US healthcare sector's and societal perspectives. Front Pharmacol 2024; 15:1256992. [PMID: 38915475 PMCID: PMC11194367 DOI: 10.3389/fphar.2024.1256992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Metastatic non-small cell lung cancer (mNSCLC) has a high incidence rate, and economic burdens to patients, healthcare systems, and societies. Durvalumab plus tremelimumab and chemotherapy (T+D+CT) is a novel therapeutic strategy for mNSCLC, which demonstrated promising efficacy in a phase-3 randomized clinical trial, but its economic value remains unclear. Methods This economic evaluation used a hypothetical cohort of patients with mNSCLC, with characteristics mirroring those of the participants in the POSEIDON trial. Several partitioned survival models were constructed to estimate 15-year costs and health outcomes associated with the T+D+CT, durvalumab plus chemotherapy (D+CT) and chemotherapy alone (CT) strategies, discounting costs and effectiveness at 3% annually. Costs were in 2023 US dollars. Data were derived from the POSEIDON trial and published literature. Deterministic and probabilistic sensitivity analyses were performed to assess the uncertainty of input parameters and study generalizability. The analysis was designed and conducted from September 2022 to March 2023. To evaluate the cost-effectiveness of T+D+CT, compared with CT and D+CT, for mNSCLC from the perspectives of the US healthcare sector and society. Findings From the healthcare sector's perspective, the T+D+CT yielded an additional 0.09 QALYs at an increased cost of $7,108 compared with CT, which resulted in an ICER of $82,501/QALY. The T+D+CT strategy yielded an additional 0.02 QALYs at an increased cost of $27,779 compared with the D+CT, which resulted in an ICER of $1,243,868/QALY. The economic results of T+D+CT vs. CT were most sensitive to the annual discount rate, subsequent immunotherapy cost, tremelimumab cost, palliative care and death cost, pemetrexed cost, and durvalumab cost. The T+D+CT strategy was considered cost-effective relative to CT in 59%-82% of model iterations against willingness-to-pay. thresholds of $100,000/QALY gained to $150,000/QALY gained. From the societal perspective, the T+D+CT can be considered as cost-effective as compared with CT or D+CT, independent of histology. Implications In this cost-effectiveness analysis, the T+D+CT strategy represented good value compared with CT for patients with mNSCLC from the perspectives of the healthcare sector and the society. This treatment strategy may be prioritized for mNSCLC patients at high risks of disease progression.
Collapse
Affiliation(s)
- Yena Gan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenghao Shi
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - He Zhu
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huangqianyu Li
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sheng Han
- International Research Center for Medicinal Administration, Peking University, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Duoduo Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Zhang YZ, Lai HL, Huang C, Jiang ZB, Yan HX, Wang XR, Xie C, Huang JM, Ren WK, Li JX, Zhai ZR, Yao XJ, Wu QB, Leung ELH. Tanshinone IIA induces ER stress and JNK activation to inhibit tumor growth and enhance anti-PD-1 immunotherapy in non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155431. [PMID: 38537440 DOI: 10.1016/j.phymed.2024.155431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.
Collapse
Affiliation(s)
- Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Huan-Ling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ze-Bo Jiang
- Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai 519000, Guangdong, China
| | - Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xuan-Run Wang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Wen-Kang Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Xin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Zhi-Ran Zhai
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China.
| |
Collapse
|
30
|
Yeh WC, Tu YC, Chien TC, Hsu PL, Lee CW, Wu SY, Pan BS, Yu HH, Su BC. Vismodegib Potentiates Marine Antimicrobial Peptide Tilapia Piscidin 4-Induced Cytotoxicity in Human Non-Small Cell Lung Cancer Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10282-8. [PMID: 38743208 DOI: 10.1007/s12602-024-10282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a common cancer with several accepted treatments, such as chemotherapy, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, and immune checkpoint inhibitors. Nevertheless, NSCLC cells often become insensitive to these treatments, and therapeutic resistance is a major reason NSCLC still has a high mortality rate. The induction of therapeutic resistance in NSCLC often involves hedgehog, and suppression of hedgehog can increase NSCLC cell sensitivity to several conventional therapies. In our previous work, we demonstrated that the marine antimicrobial peptide tilapia piscidin 4 (TP4) exhibits potent anti-NSCLC activity in both EGFR-WT and EGFR-mutant NSCLC cells. Here, we sought to further explore whether hedgehog might influence the sensitivity of NSCLC cells to TP4. Our results showed that hedgehog was activated by TP4 in both WT and EGFR-mutant NSCLC cells and that pharmacological inhibition of hedgehog by vismodegib, a Food and Drug Administration-approved hedgehog inhibitor, potentiated TP4-induced cytotoxicity. Mechanistically, vismodegib acted by enhancing TP4-mediated increases in mitochondrial membrane potential and intracellular reactive oxygen species (ROS). MitoTempo, a specific mitochondrial ROS scavenger, abolished vismodegib/TP4 cytotoxicity. The combination of vismodegib with TP4 also reduced the levels of the antioxidant proteins catalase and superoxide dismutase, and it diminished the levels of chemoresistance-related proteins, Bcl-2 and p21. Thus, we conclude that hedgehog regulates the cytotoxic sensitivity of NSCLC cells to TP4 by protecting against mitochondrial dysfunction and suppressing oxidative stress. These findings suggest that combined treatment of vismodegib and TP4 may be a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Wei-Chen Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Chieh Tu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Cheng Chien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27157, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University School of Medicine, Durham, NC27710, USA
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Dong W, Zhang H, Han L, Zhao H, Zhang Y, Liu S, Zhang J, Niu B, Xiao W. Revealing prognostic insights of programmed cell death (PCD)-associated genes in advanced non-small cell lung cancer. Aging (Albany NY) 2024; 16:8110-8141. [PMID: 38728242 PMCID: PMC11131998 DOI: 10.18632/aging.205807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
The management of patients with advanced non-small cell lung cancer (NSCLC) presents significant challenges due to cancer cells' intricate and heterogeneous nature. Programmed cell death (PCD) pathways are crucial in diverse biological processes. Nevertheless, the prognostic significance of cell death in NSCLC remains incompletely understood. Our study aims to investigate the prognostic importance of PCD genes and their ability to precisely stratify and evaluate the survival outcomes of patients with advanced NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), univariate and multivariate Cox regression analyses for prognostic gene screening. Ultimately, we identified seven PCD-related genes to establish the PCD-related risk score for the advanced NSCLC model (PRAN), effectively stratifying overall survival (OS) in patients with advanced NSCLC. Multivariate Cox regression analysis revealed that the PRAN was the independent prognostic factor than clinical baseline factors. It was positively related to specific metabolic pathways, including hexosamine biosynthesis pathways, which play crucial roles in reprogramming cancer cell metabolism. Furthermore, drug prediction for different PRAN risk groups identified several sensitive drugs explicitly targeting the cell death pathway. Molecular docking analysis suggested the potential therapeutic efficacy of navitoclax in NSCLC, as it demonstrated strong binding with the amino acid residues of C-C motif chemokine ligand 14 (CCL14), carboxypeptidase A3 (CPA3), and C-X3-C motif chemokine receptor 1 (CX3CR1) proteins. The PRAN provides a robust personalized treatment and survival assessment tool in advanced NSCLC patients. Furthermore, identifying sensitive drugs for distinct PRAN risk groups holds promise for advancing targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - He Zhang
- Department of Oncology, The Forth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Huixia Zhao
- Department of Oncology, The Forth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Yue Zhang
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenhua Xiao
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| |
Collapse
|
32
|
Mao KY, Cao YC, Si MY, Rao DY, Gu L, Tang ZX, Zhu SY. Advances in systemic immune inflammatory indices in non-small cell lung cancer: A review. Medicine (Baltimore) 2024; 103:e37967. [PMID: 38701309 PMCID: PMC11062741 DOI: 10.1097/md.0000000000037967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Lung cancer is one of the most prevalent cancers globally, with non-small cell lung cancers constituting the majority. These cancers have a high incidence and mortality rate. In recent years, a growing body of research has demonstrated the intricate link between inflammation and cancer, highlighting that inflammation and cancer are inextricably linked and that inflammation plays a pivotal role in cancer development, progression, and prognosis of cancer. The Systemic Immunoinflammatory Index (SII), comprising neutrophil, lymphocyte, and platelet counts, is a more comprehensive indicator of the host's systemic inflammation and immune status than a single inflammatory index. It is widely used in clinical practice due to its cost-effectiveness, simplicity, noninvasiveness, and ease of acquisition. This paper reviews the impact of SII on the development, progression, and prognosis of non-small cell lung cancer.
Collapse
Affiliation(s)
- Kai-Yun Mao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yuan-Chao Cao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Mao-Yan Si
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ding-yu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Gu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhi-Xian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shen-yu Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
33
|
Ren S, Feng L, Liu H, Mao Y, Yu Z. Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer 2024; 15:1149-1163. [PMID: 38572783 DOI: 10.1111/1759-7714.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immunotherapy has revolutionized cancer treatment. Recent studies have suggested that the efficacy of immunotherapy can be further enhanced by the influence of gut microbiota. In this study, we aimed to investigate the impact of bacteria on the effectiveness of cancer immunotherapy by combining analysis of clinical samples with validation in animal models. METHODS In order to characterize the diversity and composition of microbiota and its relationship with response to immune checkpoint inhibitors (ICIs), 16S ribosomal RNA (rRNA) and GC-MS sequencing was performed on 71 stool samples from patients with advanced non-small cell lung cancer (NSCLC) prior to treatment with immune checkpoint blockade (ICB). Furthermore, fecal microbiota transplantation (FMT) was performed from different patients into mice and a subcutaneous tumor model established using the Lewis lung cancer cell line to evaluate the therapeutic effect of PD-1 on mice with varying gut microbiota. RESULTS The results demonstrated a significant association between elevated gut microbiota diversity and response to treatment with ICIs, p < 0.05. Faecalibacterium was markedly increased in the gut microbiota of responders (R), accompanied by increased short-chain fatty acid (SCFA) levels, especially butanoic acid, acetic acid and hexanoic acid, p < 0.05. Additionally, FMT from R and nonresponders (NR) could promote an anticancer effect and reduce the expression of Ki-67 cells in tumors in mice, p < 0.05. Moreover, R and NR FMT did not alter PD-L1 expression in the tumor tissues of mice, p > 0.05. The diversity of gut microbiota consistently correlated with an optimistic prognosis in NSCLC patients with immunotherapy, which could be functionally mediated by SCFAs. CONCLUSION The findings of the present study indicated that the diversity of gut microbiota and SCFAs is related to the efficacy of immunotherapy. FMT can effectively delay tumor progression, and enhance the effect of immunotherapy, thus providing evidence for improving the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Shengnan Ren
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingxin Feng
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoran Liu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuke Mao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuang Yu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
BHUSARE NILAM, KUMAR MAUSHMI. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases. Oncol Res 2024; 32:849-875. [PMID: 38686058 PMCID: PMC11055995 DOI: 10.32604/or.2024.047042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain tumor, poses significant challenges in terms of treatment success and patient survival. Current treatment modalities for glioblastoma include radiation therapy, surgical intervention, and chemotherapy. Unfortunately, the median survival rate remains dishearteningly low at 12-15 months. One of the major obstacles in treating glioblastoma is the recurrence of tumors, making chemotherapy the primary approach for secondary glioma patients. However, the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms. Consequently, considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs. To tackle glioma, numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEK-ERK-MPAK. By targeting specific signaling pathways, heterocyclic compounds have demonstrated efficacy in glioma therapeutics. Additionally, key kinases including phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase, cytoplasmic tyrosine kinase (CTK), receptor tyrosine kinase (RTK) and lipid kinase (LK) have been considered for investigation. These pathways play crucial roles in drug effectiveness in glioma treatment. Heterocyclic compounds, encompassing pyrimidine, thiazole, quinazoline, imidazole, indole, acridone, triazine, and other derivatives, have shown promising results in targeting these pathways. As part of this review, we propose exploring novel structures with low toxicity and high potency for glioma treatment. The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier. By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics, we can maximize their therapeutic value and minimize adverse effects. Considering the complex nature of glioblastoma, these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
Collapse
Affiliation(s)
- NILAM BHUSARE
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| | - MAUSHMI KUMAR
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| |
Collapse
|
35
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
36
|
Huang Z, Xiao Z, Yu L, Liu J, Yang Y, Ouyang W. Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. Crit Rev Oncol Hematol 2024; 196:104284. [PMID: 38311012 DOI: 10.1016/j.critrevonc.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Yu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayu Liu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yihan Yang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang 330006, Jiangxi Province, China.
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
37
|
Occhiuto CJ, Liby KT. KEAP1-Mutant Lung Cancers Weaken Anti-Tumor Immunity and Promote an M2-like Macrophage Phenotype. Int J Mol Sci 2024; 25:3510. [PMID: 38542481 PMCID: PMC10970780 DOI: 10.3390/ijms25063510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Considerable advances have been made in lung cancer therapies, but there is still an unmet clinical need to improve survival for lung cancer patients. Immunotherapies have improved survival, although only 20-30% of patients respond to these treatments. Interestingly, cancers with mutations in Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, are resistant to immune checkpoint inhibition and correlate with decreased lymphoid cell infiltration. NRF2 is known for promoting an anti-inflammatory phenotype when activated in immune cells, but the study of NRF2 activation in cancer cells has not been adequately assessed. The objective of this study was to determine how lung cancer cells with constitutive NRF2 activity interact with the immune microenvironment to promote cancer progression. To assess, we generated CRISPR-edited mouse lung cancer cell lines by knocking out the KEAP1 or NFE2L2 genes and utilized a publicly available single-cell dataset through the Gene Expression Omnibus to investigate tumor/immune cell interactions. We show here that KEAP1-mutant cancers promote immunosuppression of the tumor microenvironment. Our data suggest KEAP1 deletion is sufficient to alter the secretion of cytokines, increase expression of immune checkpoint markers on cancer cells, and alter recruitment and differential polarization of immunosuppressive macrophages that ultimately lead to T-cell suppression.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen T. Liby
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
38
|
Lei X, Li Z, Huang M, Huang L, Huang Y, Lv S, Zhang W, Chen Z, Ke Y, Li S, Chen J, Yang X, Deng Q, Liu J, Yu X. Gli1-mediated tumor cell-derived bFGF promotes tumor angiogenesis and pericyte coverage in non-small cell lung cancer. J Exp Clin Cancer Res 2024; 43:83. [PMID: 38493151 PMCID: PMC10944600 DOI: 10.1186/s13046-024-03003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.
Collapse
Affiliation(s)
- Xueping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Zhan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Manting Huang
- Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, PR, China
| | - Lijuan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Sha Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Weisong Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Zhuowen Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yuanyu Ke
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Songpei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jingfei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xiangyu Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Joint Laboratory for Cell Fate Regulation and Diseases, The Guangdong-Hong Kong-Macau, Guangzhou Medical University, Guangzhou, 511436, PR, China.
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, People's Republic of China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences &The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
39
|
Ding X, Li X, Jiang Y, Li Y, Li H, Shang L, Feng G, Zhang H, Xu Z, Yang L, Li B, Zhao RC. RGS20 promotes non-small cell lung carcinoma proliferation via autophagy activation and inhibition of the PKA-Hippo signaling pathway. Cancer Cell Int 2024; 24:93. [PMID: 38431606 PMCID: PMC10909273 DOI: 10.1186/s12935-024-03282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways. METHODS Immunohistochemistry and lung cancer tissue microarray were used to verify the expression of RGS20 between NSCLC patients. CCK8 and cell cloning were conducted to determine the proliferation ability of H1299 and Anip973 cells in vitro. Furthermore, Transcriptome sequencing was performed to show enrichment genes and pathways. Immunofluorescence was used to detect the translocation changes of YAP to nucleus. Western blotting demonstrated different expressions of autophagy and the Hippo-PKA signal pathway. In vitro and in vivo experiments verified whether overexpression of RGS20 affect the proliferation and autophagy of NSCLC through regulating the Hippo pathway. RESULTS The higher RGS20 expression was found to be significantly correlated with a poorer five-year survival rate. Further, RGS20 accelerated cell proliferation by increasing autophagy. Transcriptomic sequencing suggested the involvement of the Hippo signaling pathway in the action of RGS20 in NSCLC. RGS20 activation reduced YAP phosphorylation and facilitated its nuclear translocation. Remarkably, inhibiting Hippo signaling with GA-017 promoted cell proliferation and activated autophagy in RGS20 knock-down cells. However, forskolin, a GPCR activator, increased YAP phosphorylation and reversed the promoting effect of RGS20 in RGS20-overexpressing cells. Lastly, in vivo experiments further confirmed role of RGS20 in aggravating tumorigenicity, as its overexpression increased NSCLC cell proliferation. CONCLUSION Our findings indicate that RGS20 drives NSCLC cell proliferation by triggering autophagy via the inhibition of PKA-Hippo signaling. These insights support the role of RGS20 as a promising novel molecular marker and a target for future targeted therapies in lung cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Ding
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lipeng Shang
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Guilin Feng
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Ziyuan Xu
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Lina Yang
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
| | - Robert Chunhua Zhao
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
40
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
41
|
Abdalhadi A, Omar NE, Kohla S, Aakel H, Ekeibed Y, Mohsen R. Aplastic anemia secondary to adjuvant Osimertinib therapy: a case report and a review of literature. Front Oncol 2024; 14:1275275. [PMID: 38454933 PMCID: PMC10917982 DOI: 10.3389/fonc.2024.1275275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Aplastic anemia is a rare hematological disorder characterized by suppressed hematopoiesis and pancytopenia. Although several drugs have been associated with aplastic anemia, its occurrence in response to Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is extremely rare. We present a case report of a 63-year-old patient with locally advanced non-small cell lung cancer (NSCLC) who developed aplastic anemia following adjuvant treatment with Osimertinib. Extensive investigations ruled out infectious etiology, and the absence of bone marrow involvement or other identifiable causes suggested a drug-induced etiology, specifically Osimertinib. This case report emphasizes the importance of recognizing this adverse event and considering it as a potential complication of Osimertinib therapy. Vigilant monitoring and prompt management are essential for optimizing patient outcomes. Further studies are needed to better understand the risk factors, underlying mechanisms, and management strategies for Osimertinib-induced aplastic anemia in the adjuvant settings.
Collapse
Affiliation(s)
- Ahmed Abdalhadi
- Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Nabil E. Omar
- Pharmacy Department, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
- Health Sciences Program, Clinical and Population Health Research, College of Pharmacy, Qatar University, Doha, Qatar
| | - Samah Kohla
- Lab Medicine and Pathology, Hematopathology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
- Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Hassan Aakel
- Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Yeslem Ekeibed
- Clinical Hematology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| | - Reyad Mohsen
- Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
42
|
Zhao L, Wang Y, Sun X, Zhang X, Simone N, He J. ELK1/MTOR/S6K1 Pathway Contributes to Acquired Resistance to Gefitinib in Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:2382. [PMID: 38397056 PMCID: PMC10888698 DOI: 10.3390/ijms25042382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| | - Yifang Wang
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| | - Xin Sun
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| | - Xiujuan Zhang
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.Z.); (Y.W.); (X.S.)
| |
Collapse
|
43
|
Vahidian F, Lamaze FC, Bouffard C, Coulombe F, Gagné A, Blais F, Tonneau M, Orain M, Routy B, Manem VSK, Joubert P. CXCL13 Positive Cells Localization Predict Response to Anti-PD-1/PD-L1 in Pulmonary Non-Small Cell Carcinoma. Cancers (Basel) 2024; 16:708. [PMID: 38398098 PMCID: PMC10887067 DOI: 10.3390/cancers16040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized non-small cell lung cancers (NSCLCs) treatment, but only 20-30% of patients benefit from these treatments. Currently, PD-L1 expression in tumor cells is the only clinically approved predictor of ICI response in lung cancer, but concerns arise due to its low negative and positive predictive value. Recent studies suggest that CXCL13+ T cells in the tumor microenvironment (TME) may be a good predictor of response. We aimed to assess if CXCL13+ cell localization within the TME can predict ICI response in advanced NSCLC patients. Methods: This retrospective study included 65 advanced NSCLC patients treated with Nivolumab/Pembrolizumab at IUCPQ or CHUM and for whom a pretreatment surgical specimen was available. Good responders were defined as having a complete radiologic response at 1 year, and bad responders were defined as showing cancer progression at 1 year. IHC staining for CXCL13 was carried out on a representative slide from a resection specimen, and CXCL13+ cell density was evaluated in tumor (T), invasive margin (IM), non-tumor (NT), and tertiary lymphoid structure (TLS) compartments. Cox models were used to analyze progression-free survival (PFS) and overall survival (OS) probability, while the Mann-Whitney test was used to compare CXCL13+ cell density between responders and non-responders. Results: We showed that CXCL13+ cell density localization within the TME is associated with ICI efficacy. An increased density of CXCL13+ cells across all compartments was associated with a poorer prognostic (OS; HR = 1.22; 95%CI = 1.04-1.42; p = 0.01, PFS; HR = 1.16; p = 0.02), or a better prognostic when colocalized within TLSs (PFS; HR = 0.84, p = 0.03). Conclusion: Our results support the role of CXCL13+ cells in advanced NSCLC patients, with favorable prognosis when localized within TLSs and unfavorable prognosis when present elsewhere. The concomitant proximity of CXCL13+ and CD20+ cells within TLSs may favor antigen presentation to T cells, thus enhancing the effect of PD-1/PD-L1 axis inhibition. Further validation is warranted to confirm the potential relevance of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Fabien C. Lamaze
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
| | - Cédrik Bouffard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - François Coulombe
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Andréanne Gagné
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Florence Blais
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.T.)
| | - Michèle Orain
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (M.T.)
| | - Venkata S. K. Manem
- Centre de Recherche du CHU de Québec—Université Laval, Quebec City, QC G1V 4G5, Canada
- Department of Mathematics and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Philippe Joubert
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada (F.C.L.); (M.O.)
- Faculty of Medicine, Laval University, Quebec City, QC G1V 4G5, Canada (F.B.)
| |
Collapse
|
44
|
Kang J, Zhang J, Tian Z, Xu Y, Li J, Li M. The efficacy and safety of immune-checkpoint inhibitors plus chemotherapy versus chemotherapy for non-small cell lung cancer: An updated systematic review and meta-analysis. PLoS One 2024; 19:e0276318. [PMID: 38319920 PMCID: PMC10846740 DOI: 10.1371/journal.pone.0276318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Immune-checkpoint inhibitors(ICIs) combined with chemotherapy are emerging as an effective first-line treatment in advanced non-small cell lung cancer (NSCLC); however, reports on the magnitude of effectiveness and safety are conflicting. METHODS Relevant articles published before February 2022 were searched in PubMed, Embase, and the Cochrane Library. The study included all randomized controlled trials that evaluated ICIs with chemotherapy versus chemotherapy for the treatment of NSCLC. Among the outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events (TRAEs). RESULTS Our meta-analysis included a total of 12 studies. Overall analysis indicated that ICIs plus chemotherapy could significantly improve OS (HR = 0.79; 95% CI: 0.74-0.84; I2 = 44.4%, P = 0.055), PFS (HR = 0.62; 95% CI: 0.59-0.67; I2 = 75.3%, P = 0.000), and ORR (RR = 1.48; 95% CI: 1.27-1.73; I2 = 79.0%, P = 0.000) when compared to chemotherapy treatments. Subgroup analysis showed that PD-1/PD-L1 inhibitors combined with chemotherapy significantly improved OS, PFS, and ORR when compared with chemotherapy with decreased grade 1-2 TRAEs. In addition, female patients with nonsquamous histology might receive more OS benefit from ICIs plus chemotherapy when compared to chemotherapy alone. Despite the fact that CTLA-4 inhibitors combined with chemotherapy increased PFS, there were no benefits gained in OS nor ORR. When PD-L1/CTLA-4 inhibitors were added to chemotherapy, the risk of grade 3-5 adverse events increased whereas PD-1 inhibitors did not. CONCLUSIONS ICIs plus chemotherapy, compared with chemotherapy, were associated with significantly improved PFS, ORR, and OS in NSCLC therapy. However, PD-L1/CTLA-4 inhibitors plus chemotherapy could increase the risk of grade 3-5 adverse events, but not PD-1 inhibitors plus chemotherapy.
Collapse
Affiliation(s)
- Jing Kang
- First Hospital of Jilin University, Changchun, China
- Jilin Medical University, Jilin, China
- Laboratory of Tumor Targeted Therapy and Translational Medicine, Jilin, China
| | - Jun Zhang
- Laboratory of Tumor Targeted Therapy and Translational Medicine, Jilin, China
| | | | - Ye Xu
- Jilin Medical University, Jilin, China
- Laboratory of Tumor Targeted Therapy and Translational Medicine, Jilin, China
| | - Jiangbi Li
- First Hospital of Jilin University, Changchun, China
| | - Mingxian Li
- First Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Tian W, Ning J, Chen L, Zeng Y, Shi Y, Xiao G, He S, Tanzhu G, Zhou R. Cost-effectiveness of tumor-treating fields plus standard therapy for advanced non-small cell lung cancer progressed after platinum-based therapy in the United States. Front Pharmacol 2024; 15:1333128. [PMID: 38375030 PMCID: PMC10875105 DOI: 10.3389/fphar.2024.1333128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Tumor treating fields (TTF) was first approved for treatment of glioblastoma. Recently, the LUNAR study demonstrated that TTF + standard therapy (ST) extended survival in patients with advanced non-small cell lung cancer (NSCLC). This primary objective of this study is to analyze the cost-effectiveness of this treatment from the United States healthcare payers' perspective. Methods: A 3-health-state Markov model was established to compare the cost-effectiveness of TTF + ST and that of ST alone. Clinical data were extracted from the LUNAR study, supplemented by additional cost and utility data obtained from publications or online sources. One-way sensitivity analysis, probabilistic sensitivity analysis, and scenario analysis were conducted. The willingness-to-pay (WTP) threshold per quality-adjusted life-years (QALYs) gained was set to $150,000. The main results include total costs, QALYs, incremental cost-effectiveness ratio (ICER) and incremental net monetary benefit (INMB). Subgroup analyses were conducted for two types of ST, including immune checkpoint inhibitor, and docetaxel. Results: During a 10-year time horizon, the costs of TTF + ST and ST alone were $431,207.0 and $128,125.9, and the QALYs were 1.809 and 1.124, respectively. The ICER of TTF + ST compared to ST was $442,732.7 per QALY, and the INMB was -$200,395.7 at the WTP threshold. The cost of TTF per month was the most influential factor in cost-effectiveness, and TTF + ST had a 0% probability of being cost-effective at the WTP threshold compared with ST alone. Conclusion: TTF + ST is not a cost-effective treatment for advanced NSCLC patients who progressed after platinum-based therapy from the perspective of the United States healthcare payers.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yin Shi
- Department of Pharmacy, Xiangya Hospital, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang He
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Dailah HG, Hommdi AA, Koriri MD, Algathlan EM, Mohan S. Potential role of immunotherapy and targeted therapy in the treatment of cancer: A contemporary nursing practice. Heliyon 2024; 10:e24559. [PMID: 38298714 PMCID: PMC10828696 DOI: 10.1016/j.heliyon.2024.e24559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Immunotherapy and targeted therapy have emerged as promising therapeutic options for cancer patients. Immunotherapies induce a host immune response that mediates long-lived tumor destruction, while targeted therapies suppress molecular mechanisms that are important for tumor maintenance and growth. In addition, cytotoxic agents and targeted therapies regulate immune responses, which increases the chances that these therapeutic approaches may be efficiently combined with immunotherapy to ameliorate clinical outcomes. Various studies have suggested that combinations of therapies that target different stages of anti-tumor immunity may be synergistic, which can lead to potent and more prolonged responses that can achieve long-lasting tumor destruction. Nurses associated with cancer patients should have a better understanding of the immunotherapies and targeted therapies, such as their efficacy profiles, mechanisms of action, as well as management and prophylaxis of adverse events. Indeed, this knowledge will be important in establishing care for cancer patients receiving immunotherapies and targeted therapies for cancer treatment. Moreover, nurses need a better understanding regarding targeted therapies and immunotherapies to ameliorate outcomes in patients receiving these therapies, as well as management and early detection of possible adverse effects, especially adverse events associated with checkpoint inhibitors and various other therapies that control T-cell activation causing autoimmune toxicity. Nurses practice in numerous settings, such as hospitals, home healthcare agencies, radiation therapy facilities, ambulatory care clinics, and community agencies. Therefore, as compared to other members of the healthcare team, nurses often have better opportunities to develop the essential rapport in providing effective nurse-led patient education, which is important for effective therapeutic outcomes and continuance of therapy. In this article, we have particularly focused on providing a detailed overview on targeted therapies and immunotherapies used in cancer treatment, management of their associated adverse events, and the impact as well as strategies of nurse-led patient education.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Abdu Hommdi
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mahdi Dafer Koriri
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Essa Mohammed Algathlan
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
47
|
Buma AIG, Schuurbiers MMF, van Rossum HH, van den Heuvel MM. Clinical perspectives on serum tumor marker use in predicting prognosis and treatment response in advanced non-small cell lung cancer. Tumour Biol 2024; 46:S207-S217. [PMID: 36710691 DOI: 10.3233/tub-220034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The optimal positioning and usage of serum tumor markers (STMs) in advanced non-small cell lung cancer (NSCLC) care is still unclear. This review aimed to provide an overview of the potential use and value of STMs in routine advanced NSCLC care for the prediction of prognosis and treatment response. Radiological imaging and clinical symptoms have shown not to capture a patient's entire disease status in daily clinical practice. Since STM measurements allow for a rapid, minimally invasive, and safe evaluation of the patient's tumor status in real time, STMs can be used as companion decision-making support tools before start and during treatment. To overcome the limited sensitivity and specificity associated with the use of STMs, tests should only be applied in specific subgroups of patients and different test characteristics should be defined per clinical context in order to answer different clinical questions. The same approach can similarly be relevant when developing clinical applications for other (circulating) biomarkers. Future research should focus on the approaches described in this review to achieve STM test implementation in advanced NSCLC care.
Collapse
Affiliation(s)
- Alessandra I G Buma
- Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Milou M F Schuurbiers
- Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Huub H van Rossum
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Michel M van den Heuvel
- Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
48
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
49
|
Ge Y, Li J, Gong W, Wang J, Wei X, Liu J, Wang S, Wang L, Sun H, Cheng Q, Sun Y, Dang Q, Sun Y, Gao A. Efficacy of first-line treatment options beyond RET-TKIs in advanced RET-rearranged non-small cell lung cancer: A multi-center real-world study. Cancer Med 2024; 13:e6960. [PMID: 38349001 PMCID: PMC10832335 DOI: 10.1002/cam4.6960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Although RET-tyrosine kinase inhibitors (RET-TKIs) are the preferred first-line therapy for advanced RET-arranged NSCLC, most patients cannot afford them. In this population, bevacizumab, immunotherapy, and chemotherapy are the most commonly used regimens. However, the optimal scheme beyond RET-TKIs has not been defined in the first-line setting. METHODS This retrospective study included 86 stage IV NSCLC patients harboring RET rearrangement from six cancer centers between May 2017 and October 2022. RET-TKIs, chemotherapy, or one of the combination therapies (including immune checkpoint inhibitor (ICI) combined with chemotherapy (I + C), bevacizumab combined with chemotherapy (B + C), ICI and bevacizumab combined with chemotherapy (I + B + C)), were used as the first-line therapeutics. The clinical outcomes and safety were evaluated. RESULTS Fourteen of the 86 patients received RET-TKIs, 57 received combination therapies, and 15 received chemotherapy alone. Their medium PFS (mPFS) were 16.92 months (95% CI: 5.9-27.9 months), 8.7 months (95% CI: 6.5-11.0 months), and 5.55 months (95% CI: 2.4-8.7 months) respectively. Among all the combination schemes, B + C (p = 0.007) or I + B + C (p = 0.025) gave beneficial PFS compared with chemotherapy, while I + C treatment (p = 0.169) generated comparable PFS with chemotherapy. In addition, I + B + C treatment had a numerically longer mPFS (12.21 months) compared with B + C (8.74 months) or I + C (7.89 months) schemes. In terms of safety, I + B + C treatment led to the highest frequency of hematological toxicity (50%) and vomiting (75%), but no ≥G3 adverse effect was observed. CONCLUSIONS I + B + C might be a preferred option beyond RET-TKIs in the first-line therapy of RET-arranged NSCLC. Combination with Bevacizumab rather than with ICIs offered favorable survival compared with chemotherapy alone.
Collapse
Affiliation(s)
- Yihui Ge
- Phase I Clinical Research CenterShandong University Cancer CenterJinanChina
| | - Juan Li
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Wenjing Gong
- Medical DepartmentThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Jian Wang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiaojuan Wei
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jing Liu
- Department of OncologyAffiliated Hospital of Weifang Medical UniversityWeifangP. R. China
| | - Shuyun Wang
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Leirong Wang
- Phase I Clinical Research CenterShandong University Cancer CenterJinanChina
| | | | - Qinglei Cheng
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | | | - Qi Dang
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yuping Sun
- Phase I Clinical Research CenterShandong University Cancer CenterJinanChina
| | - Aiqin Gao
- Department of Thoracic Radiation OncologyShandong University Cancer CenterJinanChina
| |
Collapse
|
50
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|