1
|
Zhang X, Zhang Y, Liu Q, Zeng A, Song L. Glycolysis-associated lncRNAs in cancer energy metabolism and immune microenvironment: a magic key. Front Immunol 2024; 15:1456636. [PMID: 39346921 PMCID: PMC11437524 DOI: 10.3389/fimmu.2024.1456636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
The dependence of tumor cells on glycolysis provides essential energy and raw materials for their survival and growth. Recent research findings have indicated that long chain non-coding RNAs (LncRNAs) have a key regulatory function in the tumor glycolytic pathway and offer new opportunities for cancer therapy. LncRNAs are analogous to a regulatory key during glycolysis. In this paper, we review the mechanisms of LncRNA in the tumor glycolytic pathway and their potential therapeutic strategies, including current alterations in cancer-related energy metabolism with lncRNA mediating the expression of key enzymes, lactate production and transport, and the mechanism of interaction with transcription factors, miRNAs, and other molecules. Studies targeting LncRNA-regulated tumor glycolytic pathways also offer the possibility of developing new therapeutic strategies. By regulating LncRNA expression, the metabolic pathways of tumor cells can be interfered with to inhibit tumor growth and metastasis, thus affecting the immune and drug resistance mechanisms of tumor cells. In addition, lncRNAs have the capacity to function as molecular markers and target therapies, thereby contributing novel strategies and approaches to the field of personalized cancer therapy and prognosis evaluation. In conclusion, LncRNA, as key molecules regulating the tumor glycolysis pathway, reveals a new mechanism of abnormal metabolism in cancer cells. Future research will more thoroughly investigate the specific mechanisms of LncRNA glycolysis regulation and develop corresponding therapeutic strategies, thereby fostering new optimism for the realization of precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhong X, Wang Y, He X, He X, Hu Z, Huang H, Chen J, Chen K, Wei P, Zhao S, Wang Y, Zhang H, Feng B, Li D. HIF1A-AS2 promotes the metabolic reprogramming and progression of colorectal cancer via miR-141-3p/FOXC1 axis. Cell Death Dis 2024; 15:645. [PMID: 39227375 PMCID: PMC11372083 DOI: 10.1038/s41419-024-06958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
lncRNA can regulate tumorigenesis development and distant metastasis of colorectal cancer (CRC). However, the detailed molecular mechanisms are still largely unknown. Using RNA-sequencing data, RT-qPCR, and FISH assay, we found that HIF1A-AS2 was upregulated in CRC tissues and associated with poor prognosis. Functional experiments were performed to determine the roles of HIF1A-AS2 in tumor progression and we found that HIF1A-AS2 can promote the proliferation, metastasis, and aerobic glycolysis of CRC cells. Mechanistically, HIF1A-AS2 can promote FOXC1 expression by sponging miR-141-3p. SP1 can transcriptionally activate HIF1A-AS2. Further, HIF1A-AS2 can be packaged into exosomes and promote the malignant phenotype of recipient tumor cells. Taken together, we discovered that SP1-induced HIF1A-AS2 can promote the metabolic reprogramming and progression of CRC via miR-141-3p/FOXC1 axis. HIF1A-AS2 is a promising diagnostic marker and treatment target in CRC.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xuefeng He
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zijuan Hu
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Keji Chen
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tiwari P, Tripathi LP. Long Non-Coding RNAs, Nuclear Receptors and Their Cross-Talks in Cancer-Implications and Perspectives. Cancers (Basel) 2024; 16:2920. [PMID: 39199690 PMCID: PMC11352509 DOI: 10.3390/cancers16162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various epigenetic and post-transcriptional events in the cell, thereby significantly influencing cellular processes including gene expression, development and diseases such as cancer. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that typically regulate transcription of genes involved in a broad spectrum of cellular processes, immune responses and in many diseases including cancer. Owing to their many overlapping roles as modulators of gene expression, the paths traversed by lncRNA and NR-mediated signaling often cross each other; these lncRNA-NR cross-talks are being increasingly recognized as important players in many cellular processes and diseases such as cancer. Here, we review the individual roles of lncRNAs and NRs, especially growth factor modulated receptors such as androgen receptors (ARs), in various types of cancers and how the cross-talks between lncRNAs and NRs are involved in cancer progression and metastasis. We discuss the challenges involved in characterizing lncRNA-NR associations and how to overcome them. Furthering our understanding of the mechanisms of lncRNA-NR associations is crucial to realizing their potential as prognostic features, diagnostic biomarkers and therapeutic targets in cancer biology.
Collapse
Affiliation(s)
- Prabha Tiwari
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Lokesh P. Tripathi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Kanagawa, Japan
- AI Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Kento Innovation Park NK Building, 3-17 Senrioka Shinmachi, Settsu 566-0002, Osaka, Japan
| |
Collapse
|
4
|
Shao W, Feng Y, Huang J, Li T, Gao S, Yang Y, Li D, Yang Z, Yao Z. Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma. Open Life Sci 2024; 19:20220936. [PMID: 39119480 PMCID: PMC11306965 DOI: 10.1515/biol-2022-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Weilin Shao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Jin Huang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tingyu Li
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shengguai Gao
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yihao Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| |
Collapse
|
5
|
Wang S, Zhao J, Wang C, Yao Y, Song Z, Li L, Jiang J. miR-206-3p Targets Brain-Derived Neurotrophic Factor and Affects Postoperative Cognitive Function in Aged Mice. Neurochem Res 2024; 49:2005-2020. [PMID: 38814357 DOI: 10.1007/s11064-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Postoperative cognitive dysfunction (POCD) occurs after surgery and severely impairs patients' quality of life. Finding POCD-associated variables can aid in its diagnosis and prognostication. POCD is associated with noncoding RNAs, such as microRNAs (miRNAs), involved in metabolic function, immune response alteration, and cognitive ability impairment; however, the underlying mechanisms remain unclear. The aim of this study was to investigate hub miRNAs (i.e., miRNAs that have an important regulatory role in diseases) regulating postoperative cognitive function and the associated mechanisms. Hub miRNAs were identified by bioinformatics, and their expression in mouse hippocampus tissues was determined using real-time quantitative polymerase chain reaction. Hub miRNAs were overexpressed or knocked down in cell and animal models to test their effects on neuroinflammation and postoperative cognitive function. Six differentially expressed hub miRNAs were identified. miR-206-3p was the only broadly conserved miRNA, and it was used in follow-up studies and animal experiments. Its inhibitors reduced the release of proinflammatory cytokines in BV-2 microglia by regulating its target gene, brain-derived neurotrophic factor (BDNF), and the downstream signaling pathways. miR-206-3p inhibition suppressed microglial activation in the hippocampi of mice and improved learning and cognitive decline. Therefore, miR-206-3p significantly affects POCD, implying its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shentong Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jia Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengran Wang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuhan Yao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhiyao Song
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
6
|
Ye L, Tong X, Pan K, Shi X, Xu B, Yao X, Zhuo L, Fang S, Tang S, Jiang Z, Xue X, Lu W, Guo G. Identification of potential novel N6-methyladenosine effector-related lncRNA biomarkers for serous ovarian carcinoma: a machine learning-based exploration in the framework of 3P medicine. Front Pharmacol 2024; 15:1351929. [PMID: 38895621 PMCID: PMC11185051 DOI: 10.3389/fphar.2024.1351929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Background Serous ovarian carcinoma (SOC) is considered the most lethal gynecological malignancy. The current lack of reliable prognostic biomarkers for SOC reduces the efficacy of predictive, preventive, and personalized medicine (PPPM/3PM) in patients with SOC, leading to unsatisfactory therapeutic outcomes. N6-methyladenosine (m6A) modification-associated long noncoding RNAs (lncRNAs) are effective predictors of SOC. In this study, an effective risk prediction model for SOC was constructed based on m6A modification-associated lncRNAs. Methods Transcriptomic data and clinical information of patients with SOC were downloaded from The Cancer Genome Atlas. Candidate lncRNAs were identified using univariate and multivariate and least absolute shrinkage and selection operator-penalized Cox regression analyses. The molecular mechanisms of m6A effector-related lncRNAs were explored via Gene Ontology, pathway analysis, gene set enrichment analysis, and gene set variation analysis (GSVA). The extent of immune cell infiltration was assessed using various algorithms, including CIBERSORT, Microenvironment Cell Populations counter, xCell, European Prospective Investigation into Cancer and Nutrition, and GSVA. The calcPhenotype algorithm was used to predict responses to the drugs commonly used in ovarian carcinoma therapy. In vitro experiments, such as migration and invasion Transwell assays, wound healing assays, and dot blot assays, were conducted to elucidate the functional roles of candidate lncRNAs. Results Six m6A effector-related lncRNAs that were markedly associated with prognosis were used to establish an m6A effector-related lncRNA risk model (m6A-LRM) for SOC. Immune microenvironment analysis suggested that the high-risk group exhibited a proinflammatory state and displayed increased sensitivity to immunotherapy. A nomogram was constructed with the m6A effector-related lncRNAs to assess the prognostic value of the model. Sixteen drugs potentially targeting m6A effector-related lncRNAs were identified. Furthermore, we developed an online web application for clinicians and researchers (https://leley.shinyapps.io/OC_m6A_lnc/). Overexpression of the lncRNA RP11-508M8.1 promoted SOC cell migration and invasion. METTL3 is an upstream regulator of RP11-508M8.1. The preliminary regulatory axis METTL3/m6A/RP11-508M8.1/hsa-miR-1270/ARSD underlying SOC was identified via a combination of in vitro and bioinformatic analyses. Conclusion In this study, we propose an innovative prognostic risk model and provide novel insights into the mechanism underlying the role of m6A-related lncRNAs in SOC. Incorporating the m6A-LRM into PPPM may help identify high-risk patients and personalize treatment as early as possible.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Shi
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linpei Zhuo
- Haiyuan College, Kunming Medical University, Kunming, Yunnan, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sangsang Tang
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiguo Lu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Uterine Cancer Diagnosis and Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Liu X, Lv C, Zheng J, Xiao J, He N, Du J, Yang X, Gu H. Identification and Validation of Basement Membrane Related LncRNA Signatures as a Novel Prognostic Model for Hepatocellular Carcinoma. Biochem Genet 2024:10.1007/s10528-024-10797-3. [PMID: 38684626 DOI: 10.1007/s10528-024-10797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant cancer with limited treatments and a poor prognosis, with the basement membrane (BM) playing a crucial role in its initiation and growth. This study utilized data from The Cancer Genome Atlas and the Gene Expression Omnibus (GEO) databases to identify basement membrane-related genes differentially expressed in HCC. Through gene co-expression analysis, BM-associated long non-coding RNAs (lncRNAs) were discovered. LncRNAs related to HCC survival were selected via univariate analysis, and a prognostic model was constructed using LASSO regression and multivariate analysis. This model effectively classified HCC patients into high and low-risk groups, uncovering significant differences in prognosis, immune response, mutation, and drug sensitivity. Six BM-related lncRNAs (GSEC, MIR4435-2HG, AC092614.1, AC127521.1, LINC02580, and AC008050.1) were validated in normal and HCC cell lines, and the key role of AC092614.1 in regulating proliferation, migration, and invasion of HCC cells in vitro was explored. This research emphasizes the prognostic and therapeutic relevance of BM-related lncRNAs in HCC, highlighting AC092614.1's role in disease progression and as a potential target for targeted therapy.
Collapse
Affiliation(s)
- Xuyang Liu
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chao Lv
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Zheng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jingjing Xiao
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Nan He
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Du
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianwu Yang
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huajian Gu
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
8
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Yu Y, Nie G, Ren YW, Ouyang L, Ni CM. Pumilio RNA binding family member 1 deficiency activates anti-tumor immunity in hepatocellular carcinoma via restraining M2 macrophage polarization. Cell Cycle 2024; 23:682-692. [PMID: 38794797 PMCID: PMC11229713 DOI: 10.1080/15384101.2024.2355825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.
Collapse
Affiliation(s)
- Yang Yu
- Department of General Surgery, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Nie
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi-Wei Ren
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liu Ouyang
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen-Ming Ni
- Department of Hepatobiliary and Pancreatic (HBP) Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Li T, Huang M, Sun N, Hua X, Chen R, Xie Q, Huang S, Du M, Zhao Y, Lin Q, Xu J, Han X, Zhao Y, Tian Z, Zhang Y, Chen W, Shen X, Huang C. Tumorigenesis of basal muscle invasive bladder cancer was mediated by PTEN protein degradation resulting from SNHG1 upregulation. J Exp Clin Cancer Res 2024; 43:50. [PMID: 38365726 PMCID: PMC10874020 DOI: 10.1186/s13046-024-02966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.
Collapse
Affiliation(s)
- Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengxiang Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yazhen Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyun Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Nakashima M, Suga N, Ikeda Y, Yoshikawa S, Matsuda S. Circular RNAs, Noncoding RNAs, and N6-methyladenosine Involved in the Development of MAFLD. Noncoding RNA 2024; 10:11. [PMID: 38392966 PMCID: PMC10893449 DOI: 10.3390/ncrna10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation in the body, which has recently become more prevalent and is the foremost risk factor for MAFLD. Causes of obesity may involve the interaction of genetic, behavioral, and social factors. m6A RNA methylation might add a novel inspiration for understanding the development of obesity and MAFLD with post-transcriptional regulation of gene expression. In particular, circRNAs, microRNAs (miRNAs), and m6A might be implicated in the progression of MAFLD. Interestingly, m6A modification can modulate the translation, degradation, and other functions of ncRNAs. miRNAs/circRNAs can also modulate m6A modifications by affecting writers, erasers, and readers. In turn, ncRNAs could modulate the expression of m6A regulators in different ways. However, there is limited evidence on how these ncRNAs and m6A interact to affect the promotion of liver diseases. It seems that m6A can occur in DNA, RNA, and proteins that may be associated with several biological properties. This study provides a mechanistic understanding of the association of m6A modification and ncRNAs with liver diseases, especially for MAFLD. Comprehension of the association between m6A modification and ncRNAs may contribute to the development of treatment tactics for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
12
|
Liu Y, Hu X, Xia W. Overexpression of Long Non-coding RNA uc.246 Facilitates Angiogenesis, Migration, and EMT Phenotype of Human Breast Cancer Cells. Appl Biochem Biotechnol 2024; 196:1142-1153. [PMID: 37351778 DOI: 10.1007/s12010-023-04572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Breast cancer is the most malignant subtype of gynecological tumors and with aggressive biological behavior and poor outcome. Ultra-conserved non-coding RNA (ucRNA) is a newly discovered class of long non-coding RNAs (lncRNAs) which involved in the regulation of interaction network of genes. However, the exact function and mechanism by which ucRNA modulates breast cancer aggressive has not yet to be completely elucidated. In the present study, we demonstrated that the expression of uc.246 was significantly upregulated in metastatic breast cancer patients and TNBC cell lines, compared with those in controls. Furthermore, overexpression of uc.246 in MCF-7 cell lines enhanced the capacity of breast cancer cells to induce tube formation and migration of HUVECs, and, finally, enhanced breast cancer cells metastasis. Meanwhile, uc.246 overexpressing enhances the EMT phenotype of TNBC cells. Mechanistically, we found that uc.246 promoted malignant progression of breast cancer via upregulating the levels of VEGF-C and increased the levels of mesenchymal marker protein. Our results demonstrated that uc.246 induced angiogenesis, migration, and EMT phenotype and may represent a novel prognostic biomarker and therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Yun Liu
- Department of ENT, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaopeng Hu
- Division of General Surgery, Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, China
| | - Wenfei Xia
- Division of General Surgery, Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Zuo X, Shao Y, Liang Y, Huo C, Wang S. MIR222HG/LIN28B/ATG5 Axis Drives M2 Macrophage Polarization and Proliferation of Hepatocellular Carcinoma Cells. Crit Rev Eukaryot Gene Expr 2024; 34:17-26. [PMID: 38305285 DOI: 10.1615/critreveukaryotgeneexpr.2023049637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the pathogenesis of hepatocellular carcinoma (HCC). This study aimed to investigate the potential of MIR222HG in HCC. HCC cells were co-cultured with U937 cells. Gene expression was determined using reverse transcription-quantitative (RT-q) PCR and western blot. Functional analysis was performed using Cell Counting Kit 8 (CCK-8), colony formation, and flow cytometry assays. We found that MIR222HG was overexpressed in HCC patients as well as HepG2 and Huh7 cells. MIR222HG-mediated upregulation of autophagy related 5 (ATG5) promoted tumor cell autophagy and the activation of M2-like tumor-associated macrophages (TAM2). Moreover, MIR222HG-mediated the activation of TAM2 drove the proliferation of HCC cells. Additionally, MIR222HG increased the mRNA expression as well as promoted the mRNA stability of ATG5 via binding to lin-28 homolog B (LIN28B). In conclusion, MIR222HG-mediated autophagy and the activation of TAM2 promote the aggressiveness of HCC cells via regulating LIN28B/ATG5 signaling.
Collapse
Affiliation(s)
- Xiao Zuo
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434020, China
| | - Yan Shao
- Jingzhou Hospital Affiliated to Yangtze University
| | - Yuhang Liang
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434020, China
| | - Chenglong Huo
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434020, China
| | - Shuai Wang
- Jingzhou Hospital Affiliated to Yangtze University
| |
Collapse
|
15
|
Bao H, Li J, Dong Q, Liang Z, Yang C, Xu Y. Circular RNAs in pancreatic cancer progression. Clin Chim Acta 2024; 552:117633. [PMID: 37949391 DOI: 10.1016/j.cca.2023.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic cancer (PC), typically diagnosed at relatively advanced stages with poor prognosis, is a dominant cause of cancer-related deaths worldwide. Accumulating evidence demonstrates that circular RNAs (circRNAs) are abnormally expressed in diverse tumors and affect tumorigenesis and progression. In this article, we examine the roles of circRNAs in regulation of PC progression. Additionally, circRNAs enriched in exosomes could be transferred among PC cells to modulate malignancy. Characterization of regulatory mechanisms involving circRNAs in general and PC specifically will enable earlier detection and potential development of therapeutic strategies.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361000, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu 224007, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310000, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou and Department of Pharmacy, Changxing People's Hospital, Changxing, Zhejiang 313000, China.
| |
Collapse
|
16
|
Li P, Jia L, Bian X, Tan S. Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities. Curr Treat Options Oncol 2023; 24:1703-1719. [PMID: 37962824 DOI: 10.1007/s11864-023-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OPINION STATEMENT The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs' function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.
Collapse
Affiliation(s)
- Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
17
|
Jiang Y, Liang F, Chen R, Huang Y, Xiao Z, Zeng H, Han P, Huang X. C2orf48 promotes the progression of nasopharyngeal carcinoma by regulating high mobility group AT-hook 2. Med Oncol 2023; 40:306. [PMID: 37755629 DOI: 10.1007/s12032-023-02179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Recurrence and metastasis are the major factors affecting the survival of nasopharyngeal carcinoma (NPC), and the mechanism remains unclear. Long non-coding RNA chromosome 2 open reading frame 48 (C2orf48) has been shown to influence the prognosis of many cancers. However, C2orf48's function in NPC has not been clarified. In this investigation, C2orf48 expression in NPC was measured by quantitative real-time PCR (qRT-PCR) at the cellular and tissue levels, and the association between C2orf48 expression and the prognosis of patients with NPC was examined. Additionally, the effects of C2orf48 and high mobility group AT-hook 2 (HMGA2) upon NPC proliferation, migration, and invasion were examined employing the MTT assay, colony formation assay, and transwell assay, respectively. Furthermore, the association between C2orf48 and HMGA2 in NPC was investigated. Our research demonstrated that C2orf48 was overexpressed in NPC tissues and cell lines, and compared to patients with lower levels of C2orf48 expression, those with higher levels had poorer 5-year overall survival and progression-free survival. Functionally, C2orf48 overexpression accelerated NPC cells proliferation, migration, and invasion. Besides, the tandem mass tag (TMT) quantitative proteomic analysis indicated that HMGA2 may be a target of C2orf48. Moreover, upregulation of C2orf48 could increase HMGA2 expression, and HMGA2 silencing could counteract the proliferation, migration, and invasion changes induced by C2orf48 in NPC cells. These results reveal that overexpression of C2orf48 can promote NPC cells proliferation, migration, and invasion via regulating the expression of HMGA2 and C2orf48 may be a potentially important prognostic marker for NPC.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
- The Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwen Xiao
- Department of Otorhinolaryngology, Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haicang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Haizhu District, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| |
Collapse
|
18
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Hjazi A, Obaid RF, Ali SS, Abdullaev B, Alsaab HO, Huldani H, Romero-Parra RM, Mustafa YF, Hussien BM, Saadoon SJ. The cross-talk between LncRNAs and JAK-STAT signaling pathway in cancer. Pathol Res Pract 2023; 248:154657. [PMID: 37451194 DOI: 10.1016/j.prp.2023.154657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that were transcribed from the human genome and have become important regulators in a number of cellular activities, mostly via controlling gene expression. A growing body of evidence shows that lncRNAs regulate various factors to impact various biological activities that are related to tumorigenesis, including the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. lncRNAs influence the JAK-STAT signaling pathway either by directly targeting or via indirectly modulating other upstream or downstream pathways' components like members of the suppressor of cytokine signaling (SOCS) family, and other genes that regulate cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition. Furthermore, lncRNAs can act as downstream effectors of the JAK-STAT pathway and mediates tumorigenesis. The relationship between JAK-STAT signaling and lncRNAs differs among various types of cancers. Besides, lncRNAs, as biological molecules, have been shown to play a dual role in either tumorigenesis or tumor suppression in various cancers. In this review, we focus on the reciprocated regulation and functions of lncRNAs and the JAK-STAT signaling pathway in cancer, as well as narrate the latest research progress on this association. A deeper understanding of this correlation may simplify the recognition of potential targets for clinical therapeutics.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq.
| | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq.
| | - Bekhzod Abdullaev
- Department of Strategic Developement, Innovation and Research, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Senior researcher, Editory LLC, Tashkent 100050, Uzbekistan; Department of R&D, Independent Agency for Research Strategy, Tashkent 100050, Uzbekistan.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia.
| | - Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia.
| | - Rosario Mireya Romero-Parra
- Universidad Continental, Lima, Perú; Department of General Studies, University of Universidad Continental, Lima, Perú.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| | | |
Collapse
|
20
|
Liu Y, Zhang H, Fang Y, Tang D, Luo Z. Non-coding RNAs in renal cell carcinoma: Implications for drug resistance. Biomed Pharmacother 2023; 164:115001. [PMID: 37315433 DOI: 10.1016/j.biopha.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a malignant tumor of the urinary system. Individuals with early-stage RCC could be cured by surgical treatment, but a considerable number of cases of advanced RCC progress to drug resistance. Recently, numerous reports have demonstrated that a variety of non-coding RNAs (ncRNAs) contribute to tumor occurrence and development. ncRNAs can act as oncogenic or tumor suppressor genes to regulate proliferation, migration, drug resistance and other processes in RCC cells through a variety of signaling pathways. Considering the lack of treatment options for advanced RCC after drug resistance, ncRNAs may be a good choice as biomarkers of drug resistance in RCC and targets to overcome drug resistance. In this review, we discussed the effects of ncRNAs on drug resistance in RCC and the great potential of ncRNAs as a biomarker of or a new therapeutic method in RCC.
Collapse
Affiliation(s)
- Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Dongshan Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhigang Luo
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
21
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
22
|
Xie Y, Song X, Du D, Ni Z, Huang H. Identification of cuproptosis-related lncRNAs to predict prognosis and immune infiltration characteristics in alimentary tract malignancies. BMC Bioinformatics 2023; 24:184. [PMID: 37142949 PMCID: PMC10161432 DOI: 10.1186/s12859-023-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alimentary tract malignancies (ATM) caused nearly one-third of all tumor-related death. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in ATM is unknown. METHOD Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to identify prognostic lncRNAs by Cox regression and LASSO. Then a predictive nomogram was constructed based on seven prognostic lncRNAs. In addition, the prognostic potential of the seven-lncRNA signature was verified via survival analysis, the receiver operating characteristic (ROC) curve, calibration curve, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score and immune landscape, and somatic gene mutation. RESULTS We identified 1211 cuproptosis-related lncRNAs and seven survival-related lncRNAs. Patients were categorized into high-risk and low-risk groups with significantly different prognoses. ROC and calibration curve confirmed the good prediction capability of the risk model and nomogram. Somatic mutations between the two groups were compared. We also found that patients in the two groups responded differently to immune checkpoint inhibitors and immunotherapy. CONCLUSION The proposed novel seven lncRNAs nomogram could predict prognosis and guide treatment of ATM. Further research was required to validate the nomogram.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xue Song
- Department of Pneumology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Danwei Du
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Zhongkai Ni
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Hai Huang
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
23
|
Tan S, Yang Y, Yang W, Han Y, Huang L, Yang R, Hu Z, Tao Y, Liu L, Li Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Cao D, Liao Q, Zhou Y. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:59. [PMID: 36899389 PMCID: PMC9999652 DOI: 10.1186/s13046-023-02634-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
24
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Epigenetic modifications of inflammation in intervertebral disc degeneration. Ageing Res Rev 2023; 87:101902. [PMID: 36871778 DOI: 10.1016/j.arr.2023.101902] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of joint-related chronic disability in elderly individuals worldwide. It seriously impacts the quality of life and inflicts a substantial social and economic burden. The pathological mechanisms underlying IDD have not been fully revealed, leading to less satisfactory clinical treatment outcomes. More studies are urgently needed to reveal its precise pathological mechanisms. Numerous studies have revealed that inflammation is closely related to various pathological processes of IDD, including the continuous loss of extracellular matrix, cell apoptosis, and senescence, indicating the important role of inflammation in the pathological mechanism of IDD. Epigenetic modifications affect the functions and characteristics of genes mainly through DNA methylation, histone modification, non-coding RNA regulation, and other mechanisms, thus having a major effect on the survival state of the body. Recently, the role of epigenetic modifications in inflammation during IDD has been attracting research interest. In this review, we summarize the roles of different types of epigenetic modifications in inflammation during IDD in recent years, to improve our understanding of the etiology of IDD and to transform basic research strategy into a clinically effective treatment for joint-related chronic disability in elderly individuals.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huaqing Zhang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chongyu Jia
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Renjie Zhang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Cailiang Shen
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
25
|
Han J, Chen X, Wang J, Liu B. Glycolysis-related lncRNA TMEM105 upregulates LDHA to facilitate breast cancer liver metastasis via sponging miR-1208. Cell Death Dis 2023; 14:80. [PMID: 36737428 PMCID: PMC9898275 DOI: 10.1038/s41419-023-05628-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Increased glycolysis is one of the key metabolic hallmarks of cancer cells. However, the roles of lncRNAs in energy metabolism and cancer metastasis remain unclear. Here, the expression of TMEM105 associated with glycolysis was dramatically elevated from normal to breast cancer to breast cancer liver metastasis tissues, and the survival analysis revealed that high TMEM105 expression was related to poor survival, especially in patients with liver metastasis. Moreover, TMEM105 facilitated the glycolysis of breast cancer cells and induced cell invasion and breast cancer liver metastasis (BCLM). Mechanistically, TMEM105 regulated LDHA expression by sponging miR-1208, which further promoted cell glycolysis and BCLM. Importantly, glycolytic production of lactate enhanced TMEM105 expression in breast cancer cells by activating the SHH-MAZ signaling pathway. These findings suggested that the lactate-responsive TMEM105 acted as a miRNA sponge, inducing BCLM via a glycolysis-mediated positive feedback loop, which might be a rational target for the treatment of BCLM patients.
Collapse
Affiliation(s)
- Jinzhu Han
- Department of Cancer, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuyi Chen
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Jianlong Wang
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Liu
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
26
|
Xu Y, Yu X, Guo W, He Y. Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Front Immunol 2023; 14:1129298. [PMID: 36875073 PMCID: PMC9982029 DOI: 10.3389/fimmu.2023.1129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
As a prevalent epigenetic modification, the role of m6A has been increasingly highlighted in the alteration of numerous RNAs implicated with multiple biological processes, such as formation, export, translation, and degradation. With further the understanding of m6A, accumulating evidence shows that m6A modification similarly affects metabolic process of non-coding genes. But the specifical interplay of m6A and ncRNAs (non-coding RNAs) in gastrointestinal cancers still lacks complete discussion. Thus, we analyzed and summarized how ncRNAs affect the regulators of m6A and by what means the expression of ncRNAs is altered via m6A in gastrointestinal cancers. We focused on the effect of the interaction of m6A and ncRNAs on the molecular mechanisms of malignant behavior in gastrointestinal cancers, revealing more possibilities of ncRNAs for diagnosis and treatment in term of epigenetic modification.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
A novel regulator in cancer initiation and progression: long noncoding RNA SHNG9. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1512-1521. [PMID: 36586065 DOI: 10.1007/s12094-022-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Cancer has become the most common life-threatening disease in the world. Cancers presenting with advanced stages and metastasis show poor prognosis, even with the application of radiotherapy, surgery, chemotherapy and immunotherapy. It is of great importance to explore novel, efficient biomarkers and their internal mechanisms. Recently, it has been reported that long noncoding RNAs (lncRNAs) play important roles in tumor initiation and progression, influencing downstream mRNAs by interacting with miRNAs and functioning as sponges in competing endogenous RNA (ceRNA) networks. Small nucleolar RNA host gene 9 (SNHG9) binds with miRNAs, inducing miRNA downregulation. The downregulated miRNAs enhance downstream target gene expression via ceRNA networks. Dysregulation of SNHG9 is widely observed in tumors and is associated with clinical prognosis features, which makes it a valuable target for cancer biomarkers and therapeutics. Dysregulated SNHG9 in tumor cells also functions in tumor proliferation, colony formation, migration, invasion and inhibition of apoptosis and tumor cell metabolism. This systematic review of SNHG9 in tumors provides new perspectives on cancer diagnosis and treatment.
Collapse
|
28
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Xu QS, Shen ZZ, Yuan LQ. Identification and validation of a novel cuproptosis-related lncRNA signature for prognosis and immunotherapy of head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:968590. [PMID: 36467424 PMCID: PMC9712781 DOI: 10.3389/fcell.2022.968590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 10/08/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and heterogeneous malignancy with a dismal overall survival rate. Nevertheless, the effective biomarkers remain ambiguous and merit further investigation. Cuproptosis is a novel defined pathway of programmed cell death that contributes to the progression of cancers. Meanwhile, long non-coding RNAs (lncRNAs) play a crucial role in the biological process of tumors. Nevertheless, the prognostic value of cuproptosis-related lncRNAs in HNSCC is still obscure. This study aimed to develop a new cuproptosis-related lncRNAs (CRLs) signature to estimate survival and tumor immunity in patients with HNSCC. Herein, 620 cuproptosis-related lncRNAs were identified from The Cancer Genome Atlas database through the co-expression method. To construct a risk model and validate the accuracy of the results, the samples were divided into two cohorts randomly and equally. Subsequently, a prognostic model based on five CRLs was constructed by the Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) algorithm. In addition, the prognostic potential of the five-CRL signature was verified via Cox regression, survival analysis, the receiver operating characteristic (ROC) curve, nomogram, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score (RS) and immune landscape, somatic gene mutation, and drug sensitivity. Finally, we gathered six clinical samples and different HNSCC cell lines to validate our bioinformatics results. Overall, the proposed novel five-CRL signature can predict prognosis and assess the efficacy of immunotherapy and targeted therapies to prolong the survival of patients with HNSCC.
Collapse
Affiliation(s)
- Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng-Zhong Shen
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
30
|
Yang Y, Luo D, Shao Y, Shan Z, Liu Q, Weng J, He W, Zhang R, Li Q, Wang Z, Li X. circCAPRIN1 interacts with STAT2 to promote tumor progression and lipid synthesis via upregulating ACC1 expression in colorectal cancer. Cancer Commun (Lond) 2022; 43:100-122. [PMID: 36328987 PMCID: PMC9859733 DOI: 10.1002/cac2.12380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) generated by back-splicing of precursor mRNAs (pre-mRNAs) are often aberrantly expressed in cancer cells. Accumulating evidence has revealed that circRNAs play a critical role in the progression of several cancers, including colorectal cancer (CRC). However, the current understandings of the emerging functions of circRNAs in CRC lipid metabolism and the underlying molecular mechanisms are still limited. Here, we aimed to explore the role of circCAPRIN1 in regulating CRC lipid metabolism and tumorigenesis. METHODS circRNA microarray was performed with three pairs of tumor and non-tumor tissues from CRC patients. The expression of circRNAs were determined by quantitative PCR (qPCR) and in situ hybridization (ISH). The endogenous levels of circRNAs in CRC cells were manipulated by transfection with lentiviruses overexpressing or silencing circRNAs. The regulatory roles of circRNAs in the occurrence of CRC were investigated both in vitro and in vivo using gene expression array, RNA pull-down/mass spectrometry, RNA immunoprecipitation assay, luciferase reporter assay, chromatin immunoprecipitation analysis, and fluorescence in situ hybridization (FISH). RESULTS Among circRNAs, circCAPRIN1 was most significantly upregulated in CRC tissue specimens. circCAPRIN1 expression was positively correlated with the clinical stage and unfavorable prognosis of CRC patients. Downregulation of circCAPRIN1 suppressed proliferation, migration, and epithelial-mesenchymal transition of CRC cells, while circCAPRIN1 overexpression had opposite effects. RNA sequencing and gene ontology analysis indicated that circCAPRIN1 upregulated the expressions of genes involved in CRC lipid metabolism. Moreover, circCAPRIN1 promoted lipid synthesis by enhancing Acetyl-CoA carboxylase 1 (ACC1) expression. Further mechanistic assays demonstrated that circCAPRIN1 directly bound signal transducer and activator of transcription 2 (STAT2) to activate ACC1 transcription, thus regulating lipid metabolism and facilitating CRC tumorigenesis. CONCLUSIONS These findings revealed the oncogenic role and mechanism of circCAPRIN1 in CRC. circCAPRIN1 interacted with STAT2 to promote CRC tumor progression and lipid synthesis by enhancing the expression of ACC1. circCAPRIN1 may be considered as a novel potential diagnostic and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Dakui Luo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yang Shao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Cancer InstituteFudan University Shanghai Cancer CenterShanghai200032P. R. China
| | - Zezhi Shan
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qi Liu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Junyong Weng
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Weijing He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ruoxin Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qingguo Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ziliang Wang
- Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Xinxiang Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
31
|
Huang L, Li Y, Wang P, Xie Y, Liu F, Mao J, Miao J. Integrated analysis of immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network in children with Henoch Schönlein purpura nephritis. Transl Pediatr 2022; 11:1682-1696. [PMID: 36345450 PMCID: PMC9636465 DOI: 10.21037/tp-22-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children. METHODS Differential analysis was employed to identify the differentially expressed lncRNAs, as well as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. Spearman's correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the peripheral blood samples of children with HSPN. RESULTS By intersecting the differentially expressed immune-related and apoptosis-related genes through GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the specific regulatory network may act as potential biomarkers with prognosis in children with HSPN. CONCLUSIONS LncRNAs may play essential regulatory roles in the occurrence and development of HSPN in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in children.
Collapse
Affiliation(s)
- Lingfei Huang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Yanhong Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Pu Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Construction of a ferroptosis-related five-lncRNA signature for predicting prognosis and immune response in thyroid carcinoma. Cancer Cell Int 2022; 22:296. [PMID: 36175889 PMCID: PMC9520852 DOI: 10.1186/s12935-022-02674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thyroid carcinoma (THCA) is the most common endocrine-related malignant tumor. Despite the good prognosis, some THCA patients may deteriorate into more aggressive diseases, leading to poor survival. This may be alleviated by developing a novel model to predict the risk of THCA, including recurrence and survival. Ferroptosis is an iron-dependent, oxidative, non-apoptotic form of cell death initially described in mammalian cells, and plays an important role in various cancers. To explore the potential prognostic value of ferroptosis in THCA, ferroptosis-related long non-coding RNAs (FRLs) were used to construct model for risk prediction of THCA. METHODS RNA-sequencing data of THCA patients and ferroptosis-related genes were downloaded from The Cancer Genome Atlas (TCGA) and FerrDb, respectively. A total of 502 patients with complete data were randomly separated into a training cohort and a validation cohort at the ratio of 2:1. The Pearson correlation coefficients were calculated to determine the correlation between ferroptosis-related genes (FRGs) and the corresponding lncRNAs, and those meeting the screening conditions were defined as FRLs. Gene Expression Omnibus (GEO) database and qRT-PCR were used to verify the expression level of FRLs in THCA tissues. Univariate and multivariate cox regression analysis were performed to construct a FRLs signature based on lowest Akaike information criterion (AIC) value in the training cohort, then further tested in the validation cohort and the entire cohort. Gene set enrichment analysis (GSEA) and functional enrichment analysis were used to analyze the biological functions and signal pathways related to differentially expressed genes between the high-risk and low-risk groups. Finally, the relative abundance of different tumor-infiltrating immune cells were calculated by CIBERSORT algorithm. RESULTS The patients were divided into high-risk group and low-risk group based on a 5-FRLs signature (AC055720.2, DPP4-DT, AC012038.2, LINC02454 and LINC00900) in training cohort, validation cohort and entire cohort. Through Kaplan-Meier analysis and area under ROC curve (AUC) value, patients in the high-risk group exhibited worse prognosis than patients in the low-risk group. GEO database and qRT-PCR confirmed that LINC02454 and LINC00900 were up-regulated in THCA. Univariate and multivariate cox regression analyses showed that the risk score was an independent prognostic indicator. GSEA and functional enrichment analysis confirmed that immune-related pathways against cancer were significantly activated in the low-risk THCA patients. Further analysis showed that the immune cells such as plasma cells, T cells CD8 and macrophages M1, and the expression of immune checkpoint molecules, including PD-1, PD-L1, CTLA4, and LAG3, were remarkably higher in the low-risk group. CONCLUSION Our study used the TCGA THCA dataset to construct a novel FRLs prognostic model which could precisely predict the prognosis of THCA patients. These FRLs potentially mediate anti-tumor immunity and serve as therapeutic targets for THCA, which provided the novel insight into treatment of THCA.
Collapse
|
33
|
Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D, Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol 2022; 15:104. [PMID: 35948909 PMCID: PMC9364625 DOI: 10.1186/s13045-022-01322-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by the expression of the critical transcription factor forkhead box protein P3, regulatory T (Treg) cells are an essential part of the immune system, with a dual effect on the pathogenesis of autoimmune diseases and cancer. Targeting Tregs to reestablish the proinflammatory and immunogenic tumor microenvironment (TME) is an increasingly attractive strategy for cancer treatment and has been emphasized in recent years. However, attempts have been significantly hindered by the subsequent autoimmunity after Treg ablation owing to systemic loss of their suppressive capacity. Cellular metabolic reprogramming is acknowledged as a hallmark of cancer, and emerging evidence suggests that elucidating the underlying mechanisms of how intratumoral Tregs acquire metabolic fitness and superior immunosuppression in the TME may contribute to clinical benefits. In this review, we discuss the common and distinct metabolic profiles of Tregs in peripheral tissues and the TME, as well as the differences between Tregs and other conventional T cells in their metabolic preferences. By focusing on the critical roles of different metabolic programs, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, as well as their essential regulators in modulating Treg proliferation, migration, and function, we hope to provide new insights into Treg cell-targeted antitumor immunotherapies.
Collapse
Affiliation(s)
- Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
34
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|
35
|
Yan S, Wang S, Wang X, Dai W, Chu J, Cheng M, Guo Z, Xu D. Emerging role of non-coding RNAs in glucose metabolic reprogramming and chemoresistance in colorectal cancer. Front Oncol 2022; 12:954329. [PMID: 35978828 PMCID: PMC9376248 DOI: 10.3389/fonc.2022.954329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It contributes to CRC by shaping metabolic phenotypes and causing uncontrolled proliferation of CRC cells. Glucose metabolic reprogramming is common in carcinogenesis and cancer progression. Growing evidence has implicated the modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic reprogramming and chemoresistance in CRC. In this review, we have summarized currently published studies investigating the role of ncRNAs in glucose metabolic alterations and chemoresistance in CRC. Elucidating the interplay between ncRNAs and glucose metabolic reprogramming provides insight into exploring novel biomarkers for the diagnosis and prognosis prediction of CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shufeng Wang
- Medical Experimental Training Center, Weifang Medical University, Weifang, China
| | - Xinyi Wang
- Clinical Medicine of Basic Medical School, Shandong First Medical University, Jinan, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese People’s Liberation Army (PLA), Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| |
Collapse
|
36
|
El Khayari A, Bouchmaa N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond. Front Oncol 2022; 12:901951. [PMID: 35912242 PMCID: PMC9329787 DOI: 10.3389/fonc.2022.901951] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a highly invasive and incurable tumor, is the humans’ foremost, commonest, and deadliest brain cancer. As in other cancers, distinct combinations of genetic alterations (GA) in GBM induce a diversity of metabolic phenotypes resulting in enhanced malignancy and altered sensitivity to current therapies. Furthermore, GA as a hallmark of cancer, dysregulated cell metabolism in GBM has been recently linked to the acquired GA. Indeed, Numerous point mutations and copy number variations have been shown to drive glioma cells’ metabolic state, affecting tumor growth and patient outcomes. Among the most common, IDH mutations, EGFR amplification, mutation, PTEN loss, and MGMT promoter mutation have emerged as key patterns associated with upregulated glycolysis and OXPHOS glutamine addiction and altered lipid metabolism in GBM. Therefore, current Advances in cancer genetic and metabolic profiling have yielded mechanistic insights into the metabolism rewiring of GBM and provided potential avenues for improved therapeutic modalities. Accordingly, actionable metabolic dependencies are currently used to design new treatments for patients with glioblastoma. Herein, we capture the current knowledge of genetic alterations in GBM, provide a detailed understanding of the alterations in metabolic pathways, and discuss their relevance in GBM therapy.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Bouchra Taib
- Institute of Sport Professions (IMS), Ibn Tofail University, Avenida de l’Université, Kenitra, Morocco
- Research Unit on Metabolism, Physiology and Nutrition, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ailiang Zeng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Rachid El Fatimy,
| |
Collapse
|
37
|
Yang J, Liu F, Wang Y, Qu L, Lin A. LncRNAs in tumor metabolic reprogramming and immune microenvironment remodeling. Cancer Lett 2022; 543:215798. [PMID: 35738332 DOI: 10.1016/j.canlet.2022.215798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Evidence accumulated over the past decade has verified that long non-coding RNAs (lncRNAs) exert important functions in multiple cell programs. As a novel class of cellular regulatory molecules, lncRNAs interact with different molecules, such as DNA, RNA or proteins, depending on their subcellular distribution, to modulate gene transcription and kinase cascades. It has been widely clarified that lncRNAs play important roles in modulating metabolic reprogramming and reshaping the immune landscape and serve as hinges bridging tumor metabolism and anti-tumor immunity. Given these facts, lncRNAs, as putative regulators of tumor initiation and progression, have attracted extensive attention in recent years. In this review, we summarized the current research progress on the role of lncRNAs in tumor metabolic reprogramming and tumor-immune microenvironment remodeling, and conclude with our laboratory's contributions in advancing the clinical applications of lncRNAs.
Collapse
Affiliation(s)
- Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China; Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China; International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China; ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
38
|
Tan P, Li M, Liu Z, Li T, Zhao L, Fu W. Glycolysis-Related LINC02432/Hsa-miR-98–5p/HK2 Axis Inhibits Ferroptosis and Predicts Immune Infiltration, Tumor Mutation Burden, and Drug Sensitivity in Pancreatic Adenocarcinoma. Front Pharmacol 2022; 13:937413. [PMID: 35795552 PMCID: PMC9251347 DOI: 10.3389/fphar.2022.937413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant cancer with high incidence and mortality. Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of PAAD and contributes to tumorigenesis and progression through numerous mechanisms. This study aimed to identify a novel glycolysis-related lncRNA-miRNA-mRNA ceRNA signature in PAAD and explore its potential molecular function. We first calculated the glycolysis score for each PAAD patient by the ssGSEA algorithm and found that patients with higher hallmark glycolysis scores had poorer prognosis. Subsequently, we obtained a novel glycolysis-related LINC02432/hsa-miR-98–5p/HK2 axis from the TCGA and GEO databases using comprehensive bioinformatics analysis and developed a nomogram to predict overall survival. Furthermore, functional characterization analysis revealed that LINC02432/hsa-miR-98–5p/HK2 axis risk score was negatively correlated with ferroptosis. The tumor immune infiltration analysis suggested positive correlations between ceRNA risk score and infiltrated M0 macrophage levels in PAAD. Correlation analysis found that ceRNA risk scores were positively correlated with four chemokines (CXCL3, CXCL5, CXCL8 and CCL20) and one immune checkpoint gene (SIGLEC15). Meanwhile, tumor mutation burden (TMB), an indicator for predicting response to immunotherapy, was positively correlated with ceRNA risk score. Finally, the drug sensitivity analysis showed that the high-risk score patients might be more sensitive to EGFR, MEK and ERK inhibitors than low-risk score patients. In conclusion, our study suggested that LINC02432/hsa-miR-98–5p/HK2 axis may serve as a novel diagnostic, prognostic, and therapeutic target in PAAD treatment.
Collapse
Affiliation(s)
- Peng Tan
- Department of Cell Biology and Genetics / Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuoran Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics / Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lingyu Zhao, ; Wenguang Fu,
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Lingyu Zhao, ; Wenguang Fu,
| |
Collapse
|
39
|
Comprehensive Characterization of the Function of Metabolic Genes and Establishment of a Prediction Model in Breast Cancer. DISEASE MARKERS 2022; 2022:3846010. [PMID: 35493305 PMCID: PMC9042645 DOI: 10.1155/2022/3846010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Background Breast cancer (BC) is a highly heterogeneous disease with high morbidity and mortality. Its subtypes may have distinctly different biological behaviors, clinical outcomes, and therapeutic responses. The metabolic status of BC tissue is closely related to its progress. Therefore, we comprehensively characterized the function of metabolic genes in BC and identified new biomarkers to predict BC patients' prognoses. Methods Metabolic genes were identified by intersecting genes obtained from two published pieces of literature. The function of metabolic genes in BC was determined by extracting differentially expressed genes (DEGs), performing functional enrichment analyses, analyzing the infiltrating proportion of immune cells, and conducting metabolic subgroup analyses. A risk score model was constructed to assess the prognoses of BC patients by performing the univariate Cox regression, LASSO algorithm, multivariate Cox regression, Kaplan-Meier survival analyses, and ROC curve analyses in the training set. The prognostic model was then validated on the testing dataset, external dataset, the whole TCGA-BC database, and our clinical specimens. Finally, a nomogram was constructed for clinical prognostic prediction based on the risk score model and other clinicopathological parameters. Results 955 metabolic genes were obtained. Among these, 157 metabolic DEGs were identified between BC and normal tissues for subsequent GO and KEGG pathway enrichment analyses. 5 metabolic genes were negatively correlated with CD8+ T cells, while 49 genes were positively correlated with CD8+ T cells. Furthermore, 5 metabolic subgroups with varying proportions of PAM50 subtypes, TNM classification, and immune cell infiltration were obtained. Finally, a risk score model was constructed to predict the prognoses of BC patients, and a nomogram incorporating the risk score model was established for clinical application. Conclusion In this study, we elucidated tumor heterogeneity from metabolite profiling of BC. The roles of metabolic genes in the occurrence of BC were comprehensively characterized, clarifying the relationship between the tumor microenvironment (TME) and metabolic genes. Meanwhile, a concise prediction model was also constructed based on metabolic genes, providing a convenient and precise method for the individualized diagnosis and treatment of BC patients.
Collapse
|
40
|
Non-Coding RNAs in the Crosstalk between Breast Cancer Cells and Tumor-Associated Macrophages. Noncoding RNA 2022; 8:ncrna8010016. [PMID: 35202089 PMCID: PMC8874851 DOI: 10.3390/ncrna8010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a pivotal role in regulating the tumor microenvironment (TME) by controlling gene expression at multiple levels. In tumors, ncRNAs can mediate the crosstalk between cancer cells and other cells in the TME, such as immune cells, stromal cells, and endothelial cells, influencing tumor development and progression. Tumor-associated macrophages (TAMs) are among the most abundant inflammatory cells infiltrating solid cancers that promote tumorigenesis, and their infiltration correlates with a poor prognosis in many tumors. Cancer cells produce different ncRNAs that orchestrate TAM recruitment and polarization toward a tumor-promoting phenotype. Tumor-reprogrammed macrophages shape the TME by promoting angiogenesis and tissue remodeling, and suppressing the anti-tumor activity of adaptive immune cells. TAMs can also produce ncRNA molecules that boost cancer cell proliferation and direct their phenotype and metabolic changes facilitating cancer progression and metastasis. This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.
Collapse
|
41
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
42
|
The Function of circRNA-0047604 in Regulating the Tumor Suppressor Gene DACH1 in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6589651. [PMID: 35097124 PMCID: PMC8794664 DOI: 10.1155/2022/6589651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer among females. Dachshund Homolog 1 (DACH1) gene is regarded as an important tumor suppressor gene in breast cancer which plays an important regulatory role in the development disease progression, particularly in carcinomas. Circular RNAs (circRNAs) and microRNA (miRNA), regarded as a novel group of noncoding RNAs, are always involved in regulating gene expression. In this work, hsa_circ_0047604 expressed lower in breast cancer tissue and played the role of sponge of miR-548o. By this way, hsa_circ_0047604 could upregulate DACH1 to inhibit breast cancer. In conclusion, this study revealed that hsa_circ_0047604 acted as a tumor suppressor and regulated breast cancer progression via hsa_circ_0047604–miR-548o–DACH1 axis, which might provide a therapeutic method for breast cancer.
Collapse
|
43
|
Peng Y, Wang H, Huang Q, Wu J, Zhang M. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer. J Ovarian Res 2022; 15:8. [PMID: 35031063 PMCID: PMC8760785 DOI: 10.1186/s13048-021-00930-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are important regulators of gene expression and can affect a variety of physiological processes. Recent studies have shown that immune-related lncRNAs play an important role in the tumour immune microenvironment and may have potential application value in the treatment and prognosis prediction of tumour patients. Epithelial ovarian cancer (EOC) is characterized by a high incidence and poor prognosis. However, there are few studies on immune-related lncRNAs in EOC. In this study, we focused on immune-related lncRNAs associated with survival in EOC. METHODS We downloaded mRNA data for EOC patients from The Cancer Genome Atlas (TCGA) database and mRNA data for normal ovarian tissue from the Genotype-Tissue Expression (GTEx) database and identified differentially expressed genes through differential expression analysis. Immune-related lncRNAs were obtained through intersection and coexpression analysis of differential genes and immune-related genes from the Immunology Database and Analysis Portal (ImmPort). Samples in the TCGA EOC cohort were randomly divided into a training set, validation set and combination set. In the training set, Cox regression analysis and LASSO regression were performed to construct an immune-related lncRNA signature. Kaplan-Meier survival analysis, time-dependent ROC curve analysis, Cox regression analysis and principal component analysis were performed for verification in the training set, validation set and combination set. Further studies of pathways and immune cell infiltration were conducted through Gene Set Enrichment Analysis (GSEA) and the Timer data portal. RESULTS An immune-related lncRNA signature was identified in EOC, which was composed of six immune-related lncRNAs (KRT7-AS, USP30-AS1, AC011445.1, AP005205.2, DNM3OS and AC027348.1). The signature was used to divide patients into high-risk and low-risk groups. The overall survival of the high-risk group was lower than that of the low-risk group and was verified to be robust in both the validation set and the combination set. The signature was confirmed to be an independent prognostic biomarker. Principal component analysis showed the different distribution patterns of high-risk and low-risk groups. This signature may be related to immune cell infiltration (mainly macrophages) and differential expression of immune checkpoint-related molecules (PD-1, PDL1, etc.). CONCLUSIONS We identified and established a prognostic signature of immune-related lncRNAs in EOC, which will be of great value in predicting the prognosis of clinical patients and may provide a new perspective for immunological research and individualized treatment in EOC.
Collapse
Affiliation(s)
- Yao Peng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, P.R. China.,Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, P.R. China
| | - Hui Wang
- Department of Oncology, Lu'an People's Hospital of Anhui Province, No. 21, West Anhui Road, Lu'an, 237006, Anhui, P.R. China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, P.R. China
| | - Jingjing Wu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, P.R. China
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, P.R. China. .,Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, P.R. China.
| |
Collapse
|
44
|
Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li M, Liang J, Lu T, Zhan C, Lin Z, Sun F, Wang Q, Tan L. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/ glycolysis axis in lung adenocarcinoma. Int J Biol Sci 2022; 18:522-535. [PMID: 35002507 PMCID: PMC8741836 DOI: 10.7150/ijbs.67556] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD), the major subtype of lung cancer, is among the leading cause of cancer-related death worldwide. Energy-related metabolic reprogramming metabolism is a hallmark of cancer shared by numerous cancer types, including LUAD. Nevertheless, the functional pathways and molecular mechanism by which FAM83A-AS1 acts in metabolic reprogramming in lung adenocarcinoma have not been fully elucidated. Methods: We used transwell, wound-healing scratch assay, and metabolic assays to explore the effect of FAM83A-AS1 in LUAD cell lines. Western blotting, Co-IP assays, and ubiquitination assays were used to detect the effects of FAM83A-AS1 on HIF-1α expression, degradation, and its binding to VHL. Moreover, an in vivo subcutaneous tumor formation assay was used to detect the effect of FAM83A-AS1 on LUAD. Results: Herein, we identified FAM83A-AS1 as a metabolism-related lncRNA, which was highly correlated with glycolysis, hypoxia, and OXPHOS pathways in LUAD patients using bioinformatics analysis. In addition, we uncovered that FAM83A-AS1 could promote the migration and invasion of LUAD cells, as well as influence the stemness of LUAD cells in vivo and vitro. Moreover, FAM83A-AS1 was shown to promote glycolysis in LUAD cell lines in vitro and in vivo, and was found to influence the expression of genes related to glucose metabolism. Besides, we revealed that FAM83A-AS1 could affect glycolysis by regulating HIF-1α degradation. Finally, we found that FAM83A-AS1 knockdown could inhibit tumor growth and suppress the expression of HIF-1α and glycolysis-related genes in vivo. Conclusion: Our study demonstrates that FAM83A-AS1 contributes to LUAD proliferation and stemness via the HIF-1α/glycolysis axis, making it a potential biomarker and therapeutic target in LUAD patients.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| |
Collapse
|