1
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2024:S2090-1232(24)00245-5. [PMID: 38876192 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Alnakli AAA, Mohamedali A, Heng B, Chan C, Shin JS, Solomon M, Chapuis P, Guillemin GJ, Baker MS, Ahn SB. Protein prognostic biomarkers in stage II colorectal cancer: implications for post-operative management. BJC REPORTS 2024; 2:13. [PMID: 39516345 PMCID: PMC11523985 DOI: 10.1038/s44276-024-00043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) poses a significant threat to many human lives worldwide and survival following resection is predominantly stage dependent. For early-stage cancer, patients are not routinely advised to undergo additional post-operative adjuvant chemotherapy. Acceptable clinical management guidelines are well established for patients in pTNM stages I, III and IV. However, recommendations for managing CRC stage II patients remain controversial and many studies have been conducted to segregate stage II patients into low- and high-risk of recurrence using genomic, transcriptomic and proteomic molecular markers. As proteins provide valuable insights into cellular functions and disease state and have a relatively easy translation to the clinic, this review aims to discuss potential prognostic protein biomarkers proposed for predicting tumour relapse in early-stage II CRC. It is suggested that a panel of markers may be more effective than a single marker and further evaluation is required to translate these into clinical practice.
Collapse
Affiliation(s)
- Aziz A A Alnakli
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Abidali Mohamedali
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Charles Chan
- Department of Anatomical Pathology, NSW Health Pathology, Concord Hospital, Sydney, NSW, Australia
- Concord Institute of Academic Surgery, Concord Clinical School, Faculty of Medicine and Health, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | - Joo-Shik Shin
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Michael Solomon
- Department of Colorectal Surgery RPAH & Institute of Academic Surgery at Sydney Medical School, University of Sydney, Sydney, Australia
| | - Pierre Chapuis
- Concord Institute of Academic Surgery, Concord Clinical School, Faculty of Medicine and Health, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Mark S Baker
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Yamada A, Wake K, Imaoka S, Motoyoshi M, Yamamoto T, Asano M. Analysis of the effects of importin α1 on the nuclear translocation of IL-1α in HeLa cells. Sci Rep 2024; 14:1322. [PMID: 38225348 PMCID: PMC10789739 DOI: 10.1038/s41598-024-51521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024] Open
Abstract
Interleukin-1α (IL-1α), a cytokine released by necrotic cells, causes sterile inflammation. On the other hand, IL-1α is present in the nucleus and also regulates the expression of many proteins. A protein substrate containing a classical nuclear localization signal (cNLS) typically forms a substrate/importin α/β complex, which is subsequently transported to the nucleus. To the best of our knowledge, no study has directly investigated whether IL-1α-which includes cNLS-is imported into the nucleus in an importin α/β-dependent manner. In this study, we noted that all detected importin α subtypes interacted with IL-1α. In HeLa cells, importin α1-mediated nuclear translocation of IL-1α occurred at steady state and was independent of importin β1. Importin α1 not only was engaged in IL-1α nuclear transport but also concurrently functioned as a molecule that regulated IL-1α protein level in the cell. Furthermore, we discussed the underlying mechanism of IL-1α nuclear translocation by importin α1 based on our findings.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Kiyotaka Wake
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Saya Imaoka
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Takenori Yamamoto
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
4
|
Pan Y, Zhang Y, Lu Z, Jin D, Li S. The role of KPNA2 as a monotonically changing differentially expressed gene in the diagnosis, risk stratification, and chemotherapy sensitivity of chronic hepatitis B-liver cirrhosis-hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13753-13771. [PMID: 37526663 DOI: 10.1007/s00432-023-05213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Chronic hepatitis B-liver cirrhosis-hepatocellular carcinoma (CLH), commonly called the "liver cancer trilogy", is a crucial evolutionary phase in the emergence of hepatocellular carcinoma (HCC) in China. Previous studies on early diagnostic biomarkers of HCC were limited to the end-stage of HCC and did not focus on the evolutionary process of CLH. METHODS 11 monotonically changing differentially expressed genes (MCDEGs) highly correlated with CLH were screened through bioinformatic analysis and KPNA2 was identified for further research. The serum KPNA2 expression in different CLH states was detected by Enzyme linked immunosorbent assay (ELISA). A nomogram model was constructed using univariate and multivariate Cox regression methods. RESULTS The single-cell RNA-seq and bulk RNA-seq revealed that KPNA2 related to immune infiltration in HCC and may participate in cell cycle pathways in HCC. The serum KPNA2 expression was monotonically upregulated in CLH and was valuable for diagnosing different CLH states. Besides, chronic hepatitis B(CHB) patients, liver cirrhosis (LC) patients, and HCC patients were classified into subgroups with distinct serum KPNA2 expressions. Accordingly, patients with different serum KPNA2 expressions displayed various clinicopathological features. The AUC value of the nomogram model was 0.959 in predicting the likelihood of developing HCC in CHB patients or LC patients. Finally, we found that KPNA2 expression was negatively correlated with the IC50 of four chemotherapeutic drugs in HCC. CONCLUSION KPNA2 was a novel serum biomarker for diagnosing different CLH states, monitoring the dynamic evolution of CLH, and a new therapeutic target for intervening in the progression of CLH.
Collapse
Affiliation(s)
- Yong Pan
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, 739 Dingshen Rd, Zhoushan City, 316021, China
| | - Yiru Zhang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, 739 Dingshen Rd, Zhoushan City, 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Zhengmei Lu
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, 739 Dingshen Rd, Zhoushan City, 316021, China
| | - Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital, Wenzhou Medical University, 739 Dingshen Rd, Zhoushan City, 316021, China
| | - Shibo Li
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, 739 Dingshen Rd, Zhoushan City, 316021, China.
| |
Collapse
|
5
|
Yang X, Wang H, Zhang L, Yao S, Dai J, Wen G, An J, Jin H, Du Q, Hu Y, Zheng L, Chen X, Yi Z, Tuo B. Novel roles of karyopherin subunit alpha 2 in hepatocellular carcinoma. Biomed Pharmacother 2023; 163:114792. [PMID: 37121148 DOI: 10.1016/j.biopha.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Hepatocellular carcinoma is the most common type of liver cancer and associated with a high fatality rate. This disease poses a major threat to human health worldwide. A considerable number of genetic and epigenetic factors are involved in the development of hepatocellular carcinoma. However, the molecular mechanism underlying the progression of hepatocellular carcinoma remains unclear. Karyopherin subunit alpha 2 (KPNA2), also termed importin α1, is a member of the nuclear transporter family. In recent years, KPNA2 has been gradually linked to the nuclear transport pathway for a variety of tumor-associated proteins. Furthermore, it promotes tumor development by participating in various pathophysiological processes such as cell proliferation, apoptosis, immune response, and viral infection. In hepatocellular carcinoma, it has been found that KPNA2 expression is significantly higher in liver cancer tissues versus paracancerous tissues. Moreover, it has been identified as a marker of poor prognosis and early recurrence in patients with hepatocellular carcinoma. Nevertheless, the role of KPNA2 in the development of hepatocellular carcinoma remains to be determined. This review summarizes the current knowledge on the pathogenesis and role of KPNA2 in hepatocellular carcinoma, and provides new directions and strategies for the diagnosis, treatment, and prediction of prognosis of this disease.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China; The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Geng X, Qiu X, Gao J, Gong Z, Zhou X, Liu C, Luo H. CREB1 regulates KPNA2 by inhibiting mir-495-3p transcription to control melanoma progression. BMC Mol Cell Biol 2022; 23:57. [DOI: 10.1186/s12860-022-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Melanoma is a common type of skin cancer, and its incidence is increasing gradually. Exploring melanoma pathogenesis helps to find new treatments.
Objective
We aimed to explore the potential molecular mechanisms by which CREB1 regulates melanoma.
Methods
TransmiR and ALGGEN were used to predict targets of CREB1 in the promoter of miR-495-3p or miR-495-3p and KPNA2, and a dual-luciferase reporter assay was performed to detect binding of CREB1 to these promoters. In addition, binding of CREB1 to the miR-495-3p promoter was confirmed by a ChIP assay. qRT‒PCR was carried out to detect mRNA levels of miR-495-3p, CREB1 and KPNA2. An EdU assay was conducted to detect cell viability. Transwell assays and flow cytometry were performed to assess cell migration and invasion and apoptosis, respectively. Moreover, factors associated with overall survival were analysed by using the Cox proportional hazards model.
Results
Our results show miR-495-3p to be significantly decreased in melanoma. Additionally, miR-495-3p overexpression inhibited melanoma cell viability. CREB1 targeted miR-495-3p, and CREB1 overexpression enhanced melanoma cell viability by inhibiting miR-495-3p transcription. Moreover, miR-495-3p targeted KPNA2, and CREB1 regulated KPNA2 by inhibiting miR-495-3p transcription to enhance melanoma cell viability.
Conclusion
CREB1 regulates KPNA2 by inhibiting miR-495-3p transcription to control melanoma progression. Our results indicate the molecular mechanism by which the CREB1/miR-495-3p/KPNA2 axis regulates melanoma progression.
Collapse
|
7
|
Okpara MO, Hermann C, van der Watt PJ, Garnett S, Blackburn JM, Leaner VD. A mass spectrometry-based approach for the identification of Kpnβ1 binding partners in cancer cells. Sci Rep 2022; 12:20171. [PMID: 36418423 PMCID: PMC9684564 DOI: 10.1038/s41598-022-24194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Karyopherin beta 1 (Kpnβ1) is the principal nuclear importer of cargo proteins and plays a role in many cellular processes. Its expression is upregulated in cancer and essential for cancer cell viability, thus the identification of its binding partners might help in the discovery of anti-cancer therapeutic targets and cancer biomarkers. Herein, we applied immunoprecipitation coupled to mass spectrometry (IP-MS) to identify Kpnβ1 binding partners in normal and cancer cells. IP-MS identified 100 potential Kpnβ1 binding partners in non-cancer hTERT-RPE1, 179 in HeLa cervical cancer, 147 in WHCO5 oesophageal cancer and 176 in KYSE30 oesophageal cancer cells, including expected and novel interaction partners. 38 binding proteins were identified in all cell lines, with the majority involved in RNA metabolism. 18 binding proteins were unique to the cancer cells, with many involved in protein translation. Western blot analysis validated the interaction of known and novel binding partners with Kpnβ1 and revealed enriched interactions between Kpnβ1 and select proteins in cancer cells, including proteins involved in cancer development, such as Kpnα2, Ran, CRM1, CCAR1 and FUBP1. Together, this study shows that Kpnβ1 interacts with numerous proteins, and its enhanced interaction with certain proteins in cancer cells likely contributes to the cancer state.
Collapse
Affiliation(s)
- Michael O. Okpara
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Clemens Hermann
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J. van der Watt
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D. Leaner
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Alnoumas L, van den Driest L, Apczynski Z, Lannigan A, Johnson CH, Rattray NJW, Rattray Z. Evaluation of the role of KPNA2 mutations in breast cancer prognosis using bioinformatics datasets. BMC Cancer 2022; 22:874. [PMID: 35948941 PMCID: PMC9364282 DOI: 10.1186/s12885-022-09969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer, comprising of several sub-phenotypes, is a leading cause of female cancer-related mortality in the UK and accounts for 15% of all cancer cases. Chemoresistant sub phenotypes of breast cancer remain a particular challenge. However, the rapidly-growing availability of clinical datasets, presents the scope to underpin a data-driven precision medicine-based approach exploring new targets for diagnostic and therapeutic interventions.We report the application of a bioinformatics-based approach probing the expression and prognostic role of Karyopherin-2 alpha (KPNA2) in breast cancer prognosis. Aberrant KPNA2 overexpression is directly correlated with aggressive tumour phenotypes and poor patient survival outcomes. We examined the existing clinical data available on a range of commonly occurring mutations of KPNA2 and their correlation with patient survival.Our analysis of clinical gene expression datasets show that KPNA2 is frequently amplified in breast cancer, with differences in expression levels observed as a function of patient age and clinicopathologic parameters. We also found that aberrant KPNA2 overexpression is directly correlated with poor patient prognosis, warranting further investigation of KPNA2 as an actionable target for patient stratification or the design of novel chemotherapy agents.In the era of big data, the wealth of datasets available in the public domain can be used to underpin proof of concept studies evaluating the biomolecular pathways implicated in chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Layla Alnoumas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lisa van den Driest
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Zoe Apczynski
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
9
|
Jiang L, Li D, Wang C, Liao J, Liu J, Wei Q, Wang Y. Decreased Expression of Karyopherin-α 1 is Related to the Malignant Degree of Cervical Cancer and is Critical for the Proliferation of Hela Cells. Pathol Oncol Res 2022; 28:1610518. [PMID: 35991835 PMCID: PMC9385962 DOI: 10.3389/pore.2022.1610518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022]
Abstract
Karyopherin α (KPNA) proteins are involved in nucleocytoplasmic trafficking and are critical for protein subcellular localization. Recent studies have suggested that KPNA proteins are abnormally expressed in various solid tumors. The objective of this study was to investigate the expression of KPNA1 and KPNA2 in cervical cancer tissue with different histologic grades and cell lines, as well as the effects of the KPNA1 expression level on Hela cell proliferation. We collected the medical data of 106 patients with cervical cancer and investigated the protein expression of KPNA1 and KPNA2 by immunohistochemistry and western blot. The results revealed a significantly lower expression of KPNA1 in cervical cancer compared to normal tissue. Conversely, stronger staining intensity for KPNA2 was observed in cervical tumor samples. The expression levels of KPNA1 and KPNA2 were significantly associated with the tumor histologic grade. The weakest KPNA1 expression and strongest staining for KPNA2 were observed in grade III tumor tissue. The expression levels of KPNA1 were lower in Hela and C33A cells compared with normal human cervical epithelial cells; however, the expression of KPNA2 exhibited an opposite trend. The up-regulation of KPNA1 significantly suppressed the proliferation of Hela cells and relevant proteins expression, as well as promoted transportation of IRF3 into nucleus. Our results suggest the downregulation of KPNA1 expression is related to the malignant degree of cervical cancer and is closely associated with the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dan Li
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qingzhu Wei, ; Yiyang Wang,
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Qingzhu Wei, ; Yiyang Wang,
| |
Collapse
|
10
|
Wang J, Dong X, Wu HY, Bu WH, Cong R, Wang X, Shang LX, Jiang W. Relationship of Placental and Serum Lipoprotein-Associated Phospholipase A2 Levels with Hypertensive Disorders of Pregnancy. Int J Womens Health 2022; 14:797-804. [PMID: 35747524 PMCID: PMC9211801 DOI: 10.2147/ijwh.s361859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background A series of studies has shown that lipoprotein-associated phospholipase A2 (Lp-PLA2) is closely associated with abnormal lipid metabolism and vascular endothelial cell injury, but its role in hypertensive disorders of pregnancy (HDP) remains unclear. This study aims to determine the relationship between placental and serum LP-PLA2 levels and HDP, and to provide a feasible method for predicting HDP. Methods The placental and serum Lp-PLA2 levels of 63 patients with HDP (20, 25, and 18 cases with gestational hypertension, mild preeclampsia, and severe preeclampsia, respectively) and 20 women with normal pregnancies (control group) were measured via a combination of tissue microarray and immunohistochemistry, real-time quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA). Results 1) The gene and protein expression levels of placental LP-PLA2: the HDP group had significantly higher levels than those of the control group (P < 0.05). The mild preeclampsia group had significantly higher levels than those of the control group (P < 0.05); the severe preeclampsia group had significantly higher levels than those of the mild preeclampsia group (P < 0.05). 2) Serum levels of Lp-PLA2: the HDP group had significantly higher levels than those of the control group (P < 0.05). The Lp-PLA2 levels increased gradually with the progression of the HDP; there were significant differences in the four groups using pair-wise comparisons (P < 0.05). 3) Serum levels of LP-PLA2 were positively correlated with placental LP-PLA2 levels in the HDP group (r = 0.435, P < 0.05). Conclusion Elevated Lp-PLA2 levels may be associated with the occurrence of HDP, and changes of Lp-PLA2 levels in the maternal blood may be regarded as a monitoring indicator for this disease.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xing Dong
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hong-Yan Wu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wen-Hua Bu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Rong Cong
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Li-Xin Shang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wen Jiang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
11
|
van der Watt PJ, Okpara MO, Wishart A, Parker MI, Soares NC, Blackburn JM, Leaner VD. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. Int J Cancer 2021; 150:347-361. [PMID: 34591985 DOI: 10.1002/ijc.33832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNβ1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael O Okpara
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew Wishart
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Liang YC, Su Q, Liu YJ, Xiao H, Yin HZ. Centromere Protein A (CENPA) Regulates Metabolic Reprogramming in the Colon Cancer Cells by Transcriptionally Activating Karyopherin Subunit Alpha 2 (KPNA2). THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2117-2132. [PMID: 34508688 DOI: 10.1016/j.ajpath.2021.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
The karyopherin α2 subunit gene (KPNA2) has been reported as an oncogene and is involved in metabolic reprogramming in cancer. This study aimed to explore the function of KPNα2 in the growth and glycolysis in colon cancer (CC) cells. Genes from the Oncomine database that were differentially expressed in multiple CC types were screened. Bioinformatics analysis suggested that KPNA2 was highly expressed in CC: High expression of KPNA2 was detected in the CC cell lines. Down-regulation of KPNA2 reduced viability and DNA-replication ability, and it increased apoptosis of HCT116 and LoVo cells. It also reduced glucose consumption, extracellular acidification rate, and the ATP production in cells. Centromere protein A (CENPA) was confirmed as an upstream transcription activator of KPNA2. There was significant H3K27ac modification in the promoter region of KPNA2. CENPA mainly recruited histone acetyltransferase general control of amino acid synthesis (GCN)-5 to the promoter region of KPNA2 to induce transcription activation. Overexpression of either CENPA or GCN-5 blocked the role of short hairpin KPNα2 and restored growth and glycolysis in CC cells. To conclude, the findings from this study suggest that CENPA recruits GCN-5 to the promoter region of KPNA2 to induce KPNα2 activation, which strengthens growth and glycolysis in, and augments the development of, CC.
Collapse
Affiliation(s)
- Yi-Chao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Jie Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Xiao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Zheng S, Li X, Deng T, Liu R, Bai J, Zuo T, Guo Y, Chen J. KPNA2 promotes renal cell carcinoma proliferation and metastasis via NPM. J Cell Mol Med 2021; 25:9255-9267. [PMID: 34469024 PMCID: PMC8500977 DOI: 10.1111/jcmm.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Karyopherin α2 (KPNA2), involved in nucleocytoplasmic transport, has been reported to be up‐regulated in tumorigenesis. However, comprehensive studies of KPNA2 functions in renal cell carcinoma (RCC) are still lacking. In this study, we aim to investigate the roles of KPNA2 in kidney tumour development. Our results showed that down‐regulation of KPNA2 inhibited the proliferation and invasion of kidney tumour cell cells in vitro, while the cell cycle arrest and cellular apoptosis were induced once KPNA2 was silenced. Repression of KPNA2 was proved to be efficient to repress tumorigenesis and development of kidney tumour in in nude mice. Furthermore, one related participator, NPM, was identified based on Co‐IP/MS and bioinformatics analyses. The up‐regulation of NPM attenuates the efficiency of knockdown KPNA2. These results indicated that KPNA2 may regulate NPM to play a crucial role for kidney tumour development.
Collapse
Affiliation(s)
- Song Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofan Li
- Department of Hematology, Fujian Institute of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory on Hematology, Fujian Medical University, Fuzhou, China
| | - Ting Deng
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Rong Liu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjie Bai
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Teng Zuo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinan Guo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
Gao Z, Shi Y, Wang J, Li W, Bao Y, Wu D, Gu Y. Long non-coding RNA NEAT1 absorbs let-7 g-5p to induce epithelial-mesenchymal transition of colon cancer cells through upregulating BACH1. Dig Liver Dis 2021:S1590-8658(21)00216-4. [PMID: 34238666 DOI: 10.1016/j.dld.2021.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are critical regulators in diverse human cancers. However, the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in colon cancer remains to be further investigated. We aimed to verify the role of NEAT1/let-7 g-5p/BTB and CNC homology 1 (BACH1) axis in colon cancer development. METHODS Expression of NEAT1, let-7 g-5p and BACH1 in colon cancer tissues and cells was determined. The interactions between NEAT1 and let-7 g-5p, and between let-7 g-5p and BACH1 were assessed. The colon cancer cell lines were treated with plasmids or oligonucleotides to alter NEAT1, BACH1 and let-7 g-5p expression. Then, viability, migration, invasion, and apoptosis of colon cells were evaluated, and the cell growth in vivo was observed as well. RESULTS NEAT1 and BACH1 were upregulated while let-7 g-5p was downregulated in colon cancer tissues and cells. NEAT1/BACH1 silencing or let-7 g-5p elevation suppressed colon cancer cell growth in vivo and in vitro. The effects of silenced NEAT1 on colon cancer cells and xenografts were reversed by downregulating let-7 g-5p. Down-regulation of BACH1 reversed the effect of NEAT1 overexpression on colon cancer cells. NEAT1 directly bound to let-7 g-5p and let-7 g-5p targeted BACH1. CONCLUSION Downregulated NEAT1 elevated let-7 g-5p to suppress EMT of colon cancer cells through inhibiting BACH1. This research may contribute to treatment of colon cancer.
Collapse
Affiliation(s)
- Zhenzhen Gao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, zhejiang Province, China; Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jiawei Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Bao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, zhejiang Province, China
| | - Dongjuan Wu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, zhejiang Province, China
| | - Yanhong Gu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
15
|
He J, Yang L, Chang P, Yang S, Lin S, Tang Q, Wang X, Zhang YJ. Zika virus NS2A protein induces the degradation of KPNA2 (karyopherin subunit alpha 2) via chaperone-mediated autophagy. Autophagy 2020; 16:2238-2251. [PMID: 32924767 PMCID: PMC7751636 DOI: 10.1080/15548627.2020.1823122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
KPNA2/importin-alpha1 (karyopherin subunit alpha 2) is the primary nucleocytoplasmic transporter for some transcription factors to activate cellular proliferation and differentiation. Aberrant increase of KPNA2 level is identified as a prognostic marker in a variety of cancers. Yet, the turnover mechanism of KPNA2 remains unknown. Here, we demonstrate that KPNA2 is degraded via the chaperone-mediated autophagy (CMA) and that Zika virus (ZIKV) enhances the KPNA2 degradation. KPNA2 contains a CMA motif, which possesses an indispensable residue Gln109 for the CMA-mediated degradation. RNAi-mediated knockdown of LAMP2A, a vital component of the CMA pathway, led to a higher level of KPNA2. Moreover, ZIKV reduced KPNA2 via the viral NS2A protein, which contains an essential residue Thr100 for inducing the CMA-mediated KPNA2 degradation. Notably, mutant ZIKV with T100A alteration in NS2A replicates much weaker than the wild-type virus. Also, knockdown of KPNA2 led to a higher ZIKV viral yield, which indicates that KPNA2 mediates certain antiviral effects. These data provide insights into the KPNA2 turnover and the ZIKV-cell interactions.
Collapse
Affiliation(s)
- Jia He
- College of Veterinary Medicine, Jilin University, Jilin, China,Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Peixi Chang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Shixing Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA,CONTACT Xinping Wang
| | - Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington DC, USA
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Jilin, China,Yan-Jin Zhang
Present address of Shixing Yang is School of Medicine, Jiangsu University, Jiangsu, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA,Yan-Jin Zhang
Present address of Shixing Yang is School of Medicine, Jiangsu University, Jiangsu, China.
| |
Collapse
|
16
|
Jiang L, Liu J, Wei Q, Wang Y. KPNA2 expression is a potential marker for differential diagnosis between osteosarcomas and other malignant bone tumor mimics. Diagn Pathol 2020; 15:135. [PMID: 33176814 PMCID: PMC7661224 DOI: 10.1186/s13000-020-01051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Karyopherin α2 (KPNA2), a member of the karyopherin α family, has been studied in several cancers but has not yet been substantially investigated in malignant bone tumors. The purpose of the current study was to evaluate the KPNA2 expression level and its utility as a novel diagnostic biomarker in osteosarcomas and malignant bone tumor mimics, such as chondrosarcomas and Ewing sarcomas (ESs). METHOD We investigated the expression of KPNA2 protein by immunohistochemistry on paraffin-embedded surgical specimens from 223 patients with malignant and benign bone tumors, including 81 osteosarcomas, 42 chondrosarcomas, 15 ESs, 28 osteoid osteomas, 20 osteochondromas and 37 chondroblastomas. Immunoreactivity was scored semiquantitatively based on staining extent and intensity. RESULTS Sixty-seven of 81 (82.7%) osteosarcoma, zero of 42 (0%) chondrosarcoma and one of 15 (6.7%) ES samples showed immunoreactivity for KPNA2. Negative KPNA2 expression was observed in all benign bone tumors. The expression of KPNA2 in osteosarcoma samples was much higher than that in chondrosarcoma and ES samples (P < 0.001). The sensitivity and specificity of KPNA2 immunoexpression for detecting osteosarcoma were 82.7 and 100%, respectively. Several subtypes of osteosarcoma were analyzed, and immunostaining of KPNA2 was frequent in osteoblastic samples (90.9%), with 39 samples (70.9%) showing strong-intensity staining. KPNA2 positivity was observed in ten of 13 (76.9%) chondroblastic, two of 6 (33.3%) fibroblastic, three of 4 (75%) telangiectatic and two of 3 (66.7%) giant cell-rich osteosarcoma samples. The strongest intensity staining was observed in osteoblastic osteosarcoma. CONCLUSION KPNA2 is frequently expressed in osteosarcomas, particularly in osteoblastic and chondroblastic tumors, but is rarely positive in chondrosarcomas and ESs. This feature may aid in distinguishing between osteosarcoma and other bone sarcoma mimics. This report supports KPNA2 as a novel marker for the diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
17
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
18
|
Han Y, Wang X. The emerging roles of KPNA2 in cancer. Life Sci 2019; 241:117140. [PMID: 31812670 DOI: 10.1016/j.lfs.2019.117140] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Karyopherin α2 (KPNA2, also known as importinα-1), a member of the nuclear transporter family, is involved in the nucleocytoplasmic transport pathway of a variety of tumor-associated proteins. Recent studies have found that KPNA2 is overexpressed in various cancers, which is associated with poor prognosis. In addition, it has been shown to promote tumor formation and progression by participating in cell differentiation, proliferation, apoptosis, immune response, and viral infection. It is indicated that KPNA2 also plays an important role in the diagnosis, treatment and prognosis of tumors. Herein, we provide an overview of the function and mechanism of KPNA2 in cancer and the prospects in the diagnosis and treatment of cancer. In the future, KPNA2 provides new ideas for the early diagnosis of malignant tumors, the development of molecularly targeted drugs, and prognosis evaluation.
Collapse
Affiliation(s)
- Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021, China; Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong 250021, China.
| |
Collapse
|
19
|
Leo R, Therachiyil L, Siveen SK, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M, Krishnankutty AR. Protein Expression Profiling Identifies Key Proteins and Pathways Involved in Growth Inhibitory Effects Exerted by Guggulsterone in Human Colorectal Cancer Cells. Cancers (Basel) 2019; 11:E1478. [PMID: 31581454 PMCID: PMC6826505 DOI: 10.3390/cancers11101478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a leading killer cancer worldwide and one of the most common malignancies with increasing incidences of mortality. Guggulsterone (GS) is a plant sterol used for treatment of various ailments such as obesity, hyperlipidemia, diabetes, and arthritis. In the current study, anti-cancer effects of GS in human colorectal cancer cell line HCT 116 was tested, potential targets identified using mass spectrometry-based label-free shotgun proteomics approach and key pathways validated by proteome profiler antibody arrays. Comprehensive proteomic profiling identified 14 proteins as significantly dysregulated. Proteins involved in cell proliferation/migration, tumorigenesis, cell growth, metabolism, and DNA replication were downregulated while the protein with functional role in exocytosis/tumor suppression was found to be upregulated. Our study evidenced that GS treatment altered expression of Bcl-2 mediated the mitochondrial release of cytochrome c which triggered the formation of apoptosome as well as activation of caspase-3/7 leading to death of HCT 116 cells via intrinsic apoptosis pathway. GS treatment also induced expression of p53 protein while p21 expression was unaltered with no cell cycle arrest. In addition, GS was found to inhibit NF-kB signaling in colon cancer cells by quelling the expression of its regulated gene products Bcl-2, cIAP-1, and survivin.
Collapse
Affiliation(s)
- Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha 2713, Qatar.
| | - Sivaraman K Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha 24144, Qatar.
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- College of Medicine, Qatar University, Doha 2713, Qatar.
| | - And Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
20
|
Zhang W, Lu Y, Li X, Zhang J, Lin W, Zhang W, Zheng L, Li X. IPO5 promotes the proliferation and tumourigenicity of colorectal cancer cells by mediating RASAL2 nuclear transportation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:296. [PMID: 31288861 PMCID: PMC6617704 DOI: 10.1186/s13046-019-1290-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Background Karyopherin nuclear transport receptors play important roles in tumour development and drug resistance and have been reported as potential biomarkers and therapeutic targets for tumour treatment. However, IPO5, one of the karyopherin nuclear transport receptor family members, remains largely uncharacterized in tumour progression. Methods The TCGA data, quantitative reverse transcription-PCR (qRT-PCR), western blotting, and IHC analyses were used to detect IPO5 expression in CRC tissues. A series of in vivo and in vitro experiments was utilized to demonstrate the function of IPO5 in CRC tissues. Mass spectrometry (MS), CO-IP technology, subcellular fractionation, and immunofluorescence were utilized to investigate the possible mechanisms of CRC. Results IPO5 was highly expressed and positively correlated with the clinicopathological characteristics of colorectal cancer tissues. Functional experiments indicated that IPO5 could promote the development of CRC. Mechanistically, we screened RASAL2, one cargo of IPO5, and further confirmed that IPO5 bound to the NLS sequence of RASAL2, mediating RASAL2 nuclear translocation and inducing RAS signal activation, thereby promoting the progression of CRC. Conclusions Together, our results indicate that IPO5 is overexpressed in colorectal cancer cells. By transporting RASAL2, IPO5 may play a crucial role in CRC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1290-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
21
|
Wang P, Zhao Y, Liu K, Liu X, Liang J, Zhou H, Wang Z, Zhou Z, Xu N. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner. J Cell Biochem 2019; 120:15709-15718. [PMID: 31127650 DOI: 10.1002/jcb.28840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Due to the increasing incidence and mortality, the early diagnosis, specific targeted therapies, and prognosis for colorectal cancer (CRC) attract more and more attention. Wild-type p53-induced phosphatase 1 (Wip1) and karyopherin α2 (KPNA2) have been regarded as oncogenes in many cancers, including CRC. Wip1 dephosphorylates p53 to inactivate it. TP53 activator and Wip1 inhibitor downregulate KPNA2 expression. Therefore, we speculate that Wip1 may co-operate with KPNA2 to modulate CRC progression in a p53-dependent manner. Here, Wip1 and KPNA2 messenger RNA expression and protein levels are significantly increased in CRC tissues and cell lines and are positively correlated with each other. Wip1 silence increases p53 phosphorylation while decreases KPNA2 protein. Wip1 knockdown remarkably suppresses CRC cell proliferation and migration while KPNA2 overexpression exerts an opposing effect. KPNA2 overexpression could partially rescue Wip1 silence-inhibited CRC cell proliferation and migration. Finally, Wip1 interacts with KPNA2 to modulate the activation of AKT/GSK-3β signaling and metastasis-related factors. In summary, Wip1 could co-operate with KPNA2 to modulate CRC cell proliferation and migration, possibly via a p53-dependent manner, through downstream AKT/GSK-3β pathway. We provided a novel mechanism of Wip1 interacting with KPNA2, therefore modulating CRC cell proliferation and migration.
Collapse
Affiliation(s)
- Peng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Liang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Li L, Wang Y, Wang Q, Qu J, Wei X, Xu J, Wang Y, Suo F, Zhang Y. High developmental pluripotency‑associated 4 expression promotes cell proliferation and glycolysis, and predicts poor prognosis in non‑small‑cell lung cancer. Mol Med Rep 2019; 20:445-454. [PMID: 31180527 PMCID: PMC6580026 DOI: 10.3892/mmr.2019.10272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
The developmental pluripotency‑associated 4 (Dppa4) gene serves critical roles in cell self‑renewal, as well as in cancer development and progression. However, the regulatory role of Dppa4 in non‑small‑cell lung cancer (NSCLC) and its underlying mechanisms remain elusive. The aim of the present study was to investigate the biological function of Dppa4 in NSCLC and its underlying mechanism of action. Dppa4 expression was measured in NSCLC tissue samples and cell lines, and its effect on cell proliferation and the expression of glycolytic enzymes was determined. In addition, the underlying mechanisms of Dppa4‑induced alterations in glycolysis were analyzed. Univariate and multivariate analyses were also performed to analyze the prognostic significance of clinicopathological characteristics. Dppa4 was found to be highly expressed in NSCLC tissues and cell lines. Furthermore, it was observed that Dppa4 was correlated with the degree of tumor differentiation and TNM stage. Univariate and multivariate analyses identified Dppa4 expression and clinical stage as prognostic factors for NSCLC patients. Kaplan‑Meier analysis further revealed that patients with lower Dppa4 expression exhibited a better prognosis. In NSCLC cells, Dppa4 knockdown inhibited cell proliferation, while Dppa4 overexpression enhanced cell proliferation, which was likely mediated by glycolysis promotion. Dppa4 knockdown had no evident effect on the majority of enzymes examined; however, glucose transporter type 4 (GLUT‑4) and pyruvate kinase isozyme M2 were significantly upregulated, and hexokinase II (HK‑II) and lactate dehydrogenase B (LDHB) were downregulated following Dppa4 knockdown. By contrast, Dppa4 overexpression resulted in downregulation of GLUT‑4, and upregulation of HK‑II, enolase and LDHB, whereas it had no effect on other enzymes. Since the most evident effect was observed on LDHB, further functional experiments demonstrated that this enzyme reversed the promoting effects of Dppa4 in NSCLC. In conclusion, Dppa4 promotes NSCLC progression, partly through glycolysis by LDHB. Thus, the Dppa4‑LDHB axis critically contributes to glycolysis in NSCLC cells, thereby promoting NSCLC development and progression.
Collapse
Affiliation(s)
- Longfei Li
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yufeng Wang
- Department of Nuclear Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Qiang Wang
- Department of Radiotherapy and Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jingming Qu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiangju Wei
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Jilei Xu
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yuanjin Wang
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Feng Suo
- Department of Cardiothoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yangjie Zhang
- Department of Orthopedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
23
|
Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5268031. [PMID: 31240215 PMCID: PMC6556321 DOI: 10.1155/2019/5268031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Ankaferd hemostat (ABS), a traditional herbal extract, is a hemostatic agent used for wound healing and bleeding treatment. A standardized form of plants contains many biomolecules. In recent years, previous studies have demonstrated the antineoplastic effect of ABS. In the present work, we focused on the mechanism of its antineoplastic effect over Caco-2 colon cancer cells. The LC/MS-based proteomics method was used to understand the effect of ABS at the protein level. The results were evaluated with gene ontology, protein interaction, and pathway analysis. As shown by our results, ABS altered glucose, fatty acids, and protein metabolism. Moreover, ABS affects the cell cycle machinery. Moreover, we found that ABS induced critical cancer target and suppressor proteins such as carboxyl-terminal hydrolase 1, 60S ribosomal protein L5, Tumor protein D52-like2, karyopherin alpha 2, and protein deglycase DJ-1. In conclusion, the proteomics results indicated that ABS affects various cancer targets and suppressor proteins. Moreover ABS has systematical effect on cell metabolism and cell cycle in Caco-2 cells, suggesting that it could be used as an antineoplastic agent.
Collapse
|
24
|
Guo X, Wang Z, Zhang J, Xu Q, Hou G, Yang Y, Dong C, Liu G, Liang C, Liu L, Zhou W, Liu H. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types. Acta Biochim Biophys Sin (Shanghai) 2019; 51:285-292. [PMID: 30883648 DOI: 10.1093/abbs/gmz003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide. Identification of the molecular mechanisms underlying the development and progression of HCC is particularly important. Here, we demonstrated the expression pattern, clinical significance, and function of Karyopherin α2 (KPNA2) in HCC. The expression of KPNA2 was upregulated in tumor tissue and negatively associated with the survival time, and a significant correlation between KPNA2 expression and aggressive clinical characteristics was established. Both in vitro and in vivo experiments demonstrated that knockdown of KPNA2 reduced migration and proliferation capacities of HCC cells, while over-expression of KPNA2 increased these malignant characteristics. The analysis of the Cancer Genome Atlas cohorts also reveals that high-KPNA2 expression is associated with poor outcome in multiple cancer types. In addition, gene sets enrichment analysis exhibited cell cycle and DNA replication as the top altered pathways in the high-KPNA2 expression group in HCC and other two cancer types. Overall, this study identified KPNA2 as a potential diagnostic and prognostic biomarker in HCC and other neoplasms, probably by regulating cell cycle and DNA replication.
Collapse
Affiliation(s)
- Xinggang Guo
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhiheng Wang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jianing Zhang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qingguo Xu
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guojun Hou
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chuanpeng Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gang Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenhua Liang
- Division of Scientific Research, Second Military Medical University, Shanghai, China
| | - Lei Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiping Zhou
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hui Liu
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
25
|
Müller T, Tolkach Y, Stahl D, Steiner S, Hauser S, Ellinger J, Rabien A, Ralla B, Jung K, Stephan C, Kristiansen G. Karyopherin Alpha 2 Is an Adverse Prognostic Factor in Clear-Cell and Papillary Renal-Cell Carcinoma. Clin Genitourin Cancer 2018; 17:e167-e175. [PMID: 30448104 DOI: 10.1016/j.clgc.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Karyopherin α2 (KPNA2) is involved in the nucleocytoplasmic transport system and is functionally involved in the pathogenesis of various solid tumors by the translocation of cancer associated cargo proteins. However, the role of KPNA2 in renal-cell carcinoma (RCC) is still unknown. The aim of the present study was to investigate the protein expression of KPNA2 in cancerous and healthy renal tissues to evaluate its prognostic value in RCC. PATIENTS AND METHODS We assessed KPNA2 protein expression via immunohistochemistry in a well-characterized cohort of 240 RCC patients by using a quantitative image analysis software. In addition, we analyzed publicly available gene expression data from The Cancer Genome Atlas (TCGA). RESULTS A subgroup of clear-cell RCC (ccRCC) showed elevated protein expression levels of KPNA2. Most remarkably, we detected a correlation between high KPNA2 protein expression and shorter overall survival times as well as higher tumor stage and International Society of Urologic Pathology grade in ccRCC. However, the prognostic value of KPNA2 was not confirmed by multivariate Cox regression analysis when tested together with strong prognostic factors like tumor stage, lymph node metastasis, International Society of Urologic Pathology grade, and resection status. The results of the TCGA gene expression data analysis confirmed the prognostic value of KPNA2 in ccRCC. Additionally, KPNA2 expression was identified as an adverse factor in papillary RCC at the transcript level. CONCLUSION KPNA2 appears to be involved in the carcinogenesis of RCC and functions as a novel prognostic indicator.
Collapse
Affiliation(s)
- Tim Müller
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - David Stahl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Susanne Steiner
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Stefan Hauser
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Anja Rabien
- Berlin Institute for Urologic Research, Berlin, Germany; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Berlin Institute for Urologic Research, Berlin, Germany; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Stephan
- Berlin Institute for Urologic Research, Berlin, Germany; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Qian K, Huang H, Jiang J, Xu D, Guo S, Cui Y, Wang H, Wang L, Li K. Identifying autophagy gene-associated module biomarkers through construction and analysis of an autophagy-mediated ceRNA‑ceRNA interaction network in colorectal cancer. Int J Oncol 2018; 53:1083-1093. [PMID: 29916526 PMCID: PMC6065403 DOI: 10.3892/ijo.2018.4443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Autophagy is crucial in cellular homeostasis and has been implicated in the development of malignant tumors. However, the regulatory function of autophagy in cancer remains to be fully elucidated. In the present study, the autophagy-mediated competing endogenous RNA (ceRNA)-ceRNA interaction networks in colorectal cancer (CRC) were constructed by integrating systematically expression profiles of long non-coding RNAs and mRNAs. It was found that a large proportion of autophagy genes were inclined to target hub nodes, including a fraction of autophagy genes, by comparing with other genes within ceRNA networks, and showed preferential interaction with themselves. The present study also revealed that autophagy genes may be used as prognostic markers for cancer therapy. A risk score model based on multivariable Cox regression analysis was then used to capture novel biomarkers in connection with lncRNA for the prognosis of CRC. These biomarkers were confirmed in the test dataset and an additional independent dataset. Furthermore, the prognostic value of biomarkers is independent of conventional clinical factors. These results provide improved understanding of autophagy-mediated ceRNA regulatory mechanisms in CRC and provide novel potential molecular therapeutic targets for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Kun Qian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Huiying Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Jiang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dahua Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shengnan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hao Wang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Kongning Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
27
|
Zhao J, Xu W, He M, Zhang Z, Zeng S, Ma C, Sun Y, Xu C. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent copy number variation in IPO11 and prognostic significance of importin-11 overexpression on poor survival. Oncotarget 2018; 7:75648-75658. [PMID: 27689332 PMCID: PMC5342767 DOI: 10.18632/oncotarget.12315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Non-muscle-invasive bladder cancer (NMIBC) often has a worse prognosis following its progression to muscle-invasive bladder cancer (MIBC), despite radical cystectomy with pelvic lymph node dissection combined with chemotherapy. Therefore, the discovery of novel biomarkers for predicting the progression of this disease and of therapeutic targets for preventing it is crucial. We performed whole-exome sequencing to analyze superficial tumor tissues (Tsup) and basal tumor tissues (Tbas) from 3 MIBC patients and identified previously unreported copy number variations in IPO11 that warrants further investigation as a molecular target. In addition, we identified a significant association between the absolute copy number and mRNA expression of IPO11 and found that high importin-11 expression was correlated with poor 3-year overall survival (OS), cancer-specific survival (CSS) and cancer-free survival (CFS) compared with low expression in the BCa patients. Importin-11 overexpression was also an independent risk factor for CSS and CFS in the BCa patients. Our study has revealed that IPO11 copy number amplification contributes to its overexpression and that these changes are unfavorable prognostic factors in NMIBC. Thus, IPO11 copy number amplification and importin-11 overexpression are promising biomarkers for predicting the progression and poor prognosis of patients with NMIBC.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Urology, Yantai Yuhuangding Hospital, Yantai 264000, China.,Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Weidong Xu
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Minghui He
- Cancer Research Department, BGI-Shenzhen, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chong Ma
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Zhou LN, Tan Y, Li P, Zeng P, Chen MB, Tian Y, Zhu YQ. Prognostic value of increased KPNA2 expression in some solid tumors: A systematic review and meta-analysis. Oncotarget 2018; 8:303-314. [PMID: 27974678 PMCID: PMC5352121 DOI: 10.18632/oncotarget.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Background Karyopherin α2 (KPNA2), a member of the Karyopherin α family, has recently been reported to play an important role in tumor progression. However, the association between KPNA2 expression and prognosis in cancer remains controversial. So we performed this meta-analysis to evaluate whether expression of KPNA2 was associated with prognosis in patients with solid tumor. Methods/Findings 24 published eligible studies, including 6164 cases, were identified and included in this meta-analysis through searching of PubMed, EMBASE and Web of Science. We found that KPNA2 expression was an independent predictor for the prognosis of solid tumor with primary outcome (overall survival [OS]: pooled HR=1.767, 95% CI=1.503-2.077, P<0.001) and secondary outcomes (time to recurrence [TTR], recurrence free survival [RFS] and progression free survival [PFS]). However, the association between KPNA2 overexpression and disease free survival [DFS] in solid tumors was not significant (pooled HR=1.653, 95% CI=0.903-3.029, P=0.104). Furthermore, the subgroup analysis revealed that KPNA2 overexpression was associated with poor OS in East-Asian patients and European patients, as well as patients with gastric and colorectal cancer. Conclusion KPNA2 expression may be a useful prognostic biomarker to monitor cancer prognosis. Further prospective studies with larger sample sizes are required to confirm our findings.
Collapse
Affiliation(s)
- Li-Na Zhou
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.,Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yue Tan
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.,Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Li
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.,Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China
| | - Ya-Qun Zhu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
29
|
The role and gene expression profile of SOCS3 in colorectal carcinoma. Oncotarget 2017; 9:15984-15996. [PMID: 29662621 PMCID: PMC5882312 DOI: 10.18632/oncotarget.23477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
SOCS3 has been postulated to play a role in the occurrence and progression of malignancies. However, the relationship of SOCS3 with colorectal carcinoma remains poorly understood. The purpose of the study was to explore the role of SOCS3 in colorectal carcinoma and its underlying mechanisms. Protein and mRNA expression of SOCS3 in colorectal carcinoma and normal colorectal mucosa was detected using immunohistochemistry and real-time quantitative PCR. SOCS3 expression was significantly lower in colorectal carcinoma tissue than in normal colorectal mucosa, and was negatively correlated with tumor invasion depth, lymph node metastasis, differentiation degree, and TNM stage. A stably transfected colorectal carcinoma cell line (8348SOCS3) with high expression of SOCS3 was established. The effects of SOCS3 overexpression on the growth, proliferation, invasion and tumor formation of colorectal carcinoma cells were examined by CCK-8 assay, transwell method and tumorigenicity assays in nude mice. Then we found SOCS3 overexpression significantly decreased proliferation and invasion capability of 8348 cells in vitro and in vivo. Furthermore, the effect of SOCS3 overexpression on the gene expression profile of colorectal carcinoma cells was analyzed using human genome arrays. The results revealed 369 genes that were differentially expressed in 8348SOCS3 cells. 193 genes was significantly increased and 176 genes was significantly decreased. Bioinformatics analysis demonstrated that high SOCS3 expression affected multiple signaling pathways in colorectal carcinoma including TGF-β/Smads, NF-κB, and HIF-MAPK pathways. Especially for the TGF-β/Smads pathways, high SOCS3 expression could inhibit TGF-β1 expression and activate Smad4 expression. These data suggested that low expression of SOCS3 was associated with the occurrence and progression of colorectal carcinoma. SOCS3 protein may be a useful indicator for malignancy and prognosis of colorectal carcinoma and also a new target for gene therapy.
Collapse
|
30
|
Karyopherin α-2 is a reliable marker for identification of patients with high-risk stage II colorectal cancer. J Cancer Res Clin Oncol 2017; 143:2493-2503. [DOI: 10.1007/s00432-017-2512-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|
31
|
Development of a pipeline for automated, high-throughput analysis of paraspeckle proteins reveals specific roles for importin α proteins. Sci Rep 2017; 7:43323. [PMID: 28240251 DOI: 10.1038/srep43323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/20/2017] [Indexed: 12/23/2022] Open
Abstract
We developed a large-scale, unbiased analysis method to measure how functional variations in importin (IMP) α2, IMPα4 and IMPα6 each influence PSPC1 and SFPQ nuclear accumulation and their localization to paraspeckles. This addresses the hypothesis that individual IMP protein activities determine cargo nuclear access to influence cell fate outcomes. We previously demonstrated that modulating IMPα2 levels alters paraspeckle protein 1 (PSPC1) nuclear accumulation and affects its localization into a subnuclear domain that affects RNA metabolism and cell survival, the paraspeckle. An automated, high throughput, image analysis pipeline with customisable outputs was created using Imaris software coupled with Python and R scripts; this allowed non-subjective identification of nuclear foci, nuclei and cells. HeLa cells transfected to express exogenous full-length and transport-deficient IMPs were examined using SFPQ and PSPC1 as paraspeckle markers. Thousands of cells and >100,000 nuclear foci were analysed in samples with modulated IMPα functionality. This analysis scale enabled discrimination of significant differences between samples where paraspeckles inherently display broad biological variability. The relative abundance of paraspeckle cargo protein(s) and individual IMPs each influenced nuclear foci numbers and size. This method provides a generalizable high throughput analysis platform for investigating how regulated nuclear protein transport controls cellular activities.
Collapse
|
32
|
Relationship of Liver X Receptors α and Endoglin Levels in Serum and Placenta with Preeclampsia. PLoS One 2016; 11:e0163742. [PMID: 27736929 PMCID: PMC5063368 DOI: 10.1371/journal.pone.0163742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Background Liver X receptor alpha (LXRα) and endoglin have been postulated to play roles in trophoblast invasion and lipid metabolic disturbances. However, the relationship between LXRα and endoglin levels in serum and placenta of patients with preeclampsia remains poorly understood. The objective of this study was to identify correlations between LXRα, endoglin and preeclampsia and provide new feasible methods of clinical prediction and treatment for preeclampsia. Methods We enrolled 45 patients with preeclampsia (24 with moderate preeclampsia and 21 with severe preeclampsia) and 15 normal pregnant women (control group) who were admitted to the Department of Obstetrics of the General Hospital of Beijing Command between October 2012 and July 2013 in this study. Serum and placental LXRα and endoglin levels were analyzed by enzyme-linked immunosorbent assay, real-time quantitative PCR, tissue microarray and immunohistochemistry. Results Serum and placental LXRα and endoglin levels were significantly higher in patients with preeclampsia than those in control group (P<0.05, each). Moreover, patients with severe preeclampsia displayed significantly higher LXRα and endoglin levels than those with moderate preeclampsia (P<0.05, each). The LXRα sensitivity, specificity and positive and negative predictive values were 66.00%, 80.00%, 89.19% and 48.48%, respectively, while those of endoglin levels were 62.00%, 85.00%, 91.18% and 47.22%, respectively. LXRα and endoglin levels in serum and placenta from patients with preeclampsia were positively correlated (serum: r = 0.486, P<0.01; placenta: r = 0.569, P<0.01). Conclusions Elevated LXRα and endoglin levels may be associated with preeclampsia pathogenesis and development and could be used as potential predictors for this disorder.
Collapse
|