1
|
Arab I, Lim SG, Suk K, Lee WH. LINC01270 Regulates the NF-κB-Mediated Pro-Inflammatory Response via the miR-326/LDOC1 Axis in THP-1 Cells. Cells 2024; 13:2027. [PMID: 39682774 DOI: 10.3390/cells13232027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Long intergenic noncoding (LINC)01270 is a 2278 bp transcript belonging to the intergenic subset of long noncoding (lnc)RNAs. Despite increased reports of LINC01270's involvement in different diseases, evident research on its effects on inflammation is yet to be achieved. In the present study, we investigated the potential role of LINC01270 in modulating the inflammatory response in the human monocytic leukemia cell line THP-1. Lipopolysaccharide treatment upregulated LINC01270 expression, and siRNA-mediated suppression of LINC01270 enhanced NF-κB activity and the subsequent production of cytokines IL-6, IL-8, and MCP-1. Interestingly, the knockdown of LINC01270 downregulated expression of leucine zipper downregulated in cancer 1 (LDOC1), a novel NF-κB suppressor. An analysis of the LINC01270/micro-RNA (miRNA)/protein interactome profile identified miR-326 as a possible mediator. Synthetic RNA agents that perturb the interaction among LINC01270, miR-326, and LDOC1 mRNA mitigated the changes caused by LINC01270 knockdown in THP-1 cells. Additionally, a luciferase reporter assay in HEK293 cells further confirmed that LINC01270 knockdown enhances NF-κB activation, while its overexpression has the opposite effect. This study provides insight into LINC01270's role in modulating inflammatory responses to lipopolysaccharide stimulation in THP-1 cells via the miR-326/LDOC1 axis, which negatively regulates NF-κB activation.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Li W, Zhang Y, Zhuang Y, Chen R, Xiong Z, Li K, Liu F, Xu H, Li D, Peng J. Effects of Simvastatin on Inflammatory Response and Biological Behaviour of Adamantinomatous Craniopharyngioma. Neuroendocrinology 2024; 114:934-949. [PMID: 38964285 DOI: 10.1159/000539821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION The aim of this study was to investigate the autoinflammatory effect and biological behaviour of simvastatin (SIM) on adamantinomatous craniopharyngioma (ACP) cells. METHODS Craniopharyngiomas imaging, intraoperative observations, and tumour histopathology were employed to investigate the correlation between esters and craniopharyngiomas. Filipin III fluorescent probe verified the validity of SIM on the alternations of synthesized cholesterol in craniopharyngioma cells. The cell counting kit-8 (CCK8) assay detected the impacts of SIM on cell proliferation and determined the IC50 value of tumour cells. Reverse transcription polymerase chain reaction (RT-PCR) measured the expression of inflammatory factors. Flow cytometry technique detected the cell cycle and apoptosis, and cell scratch assay judged the cell migration. Meanwhile, Western blot was adopted to determine the expression of proteins related to inflammation, proliferation, and apoptosis signalling pathways. RESULTS In the ACP tumour parenchyma, many cholesterol crystalline clefts were observed, and the deposition of esters was closely associated with craniopharyngioma inflammation. After SIM intervention, a reduction in cholesterol synthesis within ACP was noted. RT-PCR analysis revealed SIM inhibited the transcription of inflammatory factors in ACP cells. Western blot analysis demonstrated SIM inhibited nuclear factor-kappa B p65 activation expression while promoted the expressions of Cl-caspase-3 and P38 MAPK. CCK8 assay indicated a decrease in ACP cell activity upon SIM treatment. Scratch assay signified that SIM hindered ACP cell migration. Flow cytometry results suggested that the drug promoted ACP cell apoptosis. CONCLUSION SIM suppressed the inflammatory response to craniopharyngiomas by inhibiting craniopharyngioma cholesterol synthesis, inhibited proliferation of ACP cells, and promoted their apoptosis.
Collapse
Affiliation(s)
- Weizhao Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Yunxiao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yishan Zhuang
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Rongjun Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Xiong
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danling Li
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxiang Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
4
|
Chen C, Shen Z. FN1 Promotes Thyroid Carcinoma Cell Proliferation and Metastasis by Activating the NF-Κb Pathway. Protein Pept Lett 2023; 30:54-64. [PMID: 36278453 DOI: 10.2174/0929866530666221019162943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Thyroid cancer (THCA) is a common endocrine tumor. This study aims to identify the THCA-related key gene Fibronectin 1 (FN1) by bioinformatics methods and explore its function and regulatory mechanism. METHODS Gene Expression Omnibus database (GSE3678, GSE33630, and GSE53157 datasets) was searched for the analysis of differentially expressed genes (DEGs) in THCA tissues v.s. (normal tissues). The enrichment of DEGs was investigated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways using the DAVID database. Screening the hub gene was performed with the STRING database and Cytoscape software. The expression and survival analyses of these hub genes in THCA were studied with the Gene Expression Profiling Interactive Analysis database. LinkedOmics database was searched for the related signaling pathways regulated by FN1 in THCA. Real-time quantitative reverse transcriptase polymerase chain reaction was adopted to detect the mRNA expression of Fibromodulin, microfibril-associated protein 4, Osteoglycin, and FN1. The cell viability, growth, migration and aggressiveness were examined by Cell counting kit-8, 5-Ethynyl-2 '- deoxyuridine assay, scratch assay, and Transwell assay. The expression levels of NF-κB signaling pathway-related proteins (p-IκB-α, p-IKK-β, NF-κB p65) were detected by Western blot. RESULTS FN1 mRNA was up-regulated in THCA tissues and cell lines (MDA-T85 and MDA-T41). The high expression of FN1 is relevant to larger tumor diameters and lymph node metastasis in sufferers with THCA. Functional experiments showed that overexpression of FN1 in the MDA-T85 cell line promoted growth, migration and aggressiveness; knockdown of FN1 in MDA-T41 cells inhibited these malignant behaviors. In mechanism, FN1 promoted the expression levels of proteins related with NF-κB signaling pathway and activated NF-κB signaling pathway. CONCLUSION FN1 is up-regulated in THCA and facilitates cell growth, migration and invasion by activating the NF-κB signaling pathway. FN1 will be a promising biomarker of THCA and may become a molecular target for THCA treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhijun Shen
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan 430033, Hubei, China
| |
Collapse
|
5
|
Chen H, Chen S, Chen C, Li A, Wei Z. Leucine zipper downregulated in cancer 1 may serve as a favorable prognostic biomarker by influencing proliferation, colony formation, cell cycle, apoptosis, and migration ability in hepatocellular carcinoma. Front Genet 2022; 13:900951. [PMID: 35957693 PMCID: PMC9358146 DOI: 10.3389/fgene.2022.900951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: Leucine zipper downregulated in cancer 1 (LDOC1) inhibits tumor growth in several cancers. However, the expression and function of LDOC1 in hepatocellular carcinoma (HCC) remain unknown. In this study, we aimed to investigate how LDOC1 influenced tumor progression and the biological functions of HCC. Methods: The transcription levels of LDOC1 were determined using the GEPIA and UALCAN online databases and a real-time polymerase chain reaction. Western blot and immunohistochemistry were used to validate the protein levels of LDOC1. The online Kaplan-Meier Plotter was applied for survival analysis. Then lentivirus transfection was used to construct LDOC1 exogenous overexpression cell lines. Proliferation, clone formation, cell cycle, apoptosis, and migration assays were performed with the LDOC1-upregulated Huh7 and Hep3B cell lines. The phosphorylated and total levels of AKT and mTOR were determined using a Western blot to explore the potential molecular mechanism of LDOC1. Results: In the GEPIA and UALCAN analyses, LDOC1 was lowly expressed in tumors, had high expression in normal tissue samples (p < 0.05), and negatively correlated with tumor grade progression. The down-regulation of LDOC1 in HCC was validated with real-time polymerase chain reaction, Western blot, and immunohistochemistry (all p < 0.05). LDOC1 transcription levels were negatively associated with overall, progression-free, recurrence-free, and disease-specific survival (all p < 0.05). The functional experiments suggested that the overexpression of LDOC1 contributed to increased G1 and G2 stages in Huh7, while increased G2 stage in Hep3B, and decreased cell proliferation, clone formation, and migration, as well as increased the apoptosis rate compared with the control group (all p < 0.05). Furthermore, LDOC1 up-regulation reduced the p-AKT/AKT and p-mTOR/mTOR, which indicates an inactivation of the AKT/mTOR pathway. Conclusion: The tumor-suppressor LDOC1 varied in HCC and non-HCC tissues, which can serve as a candidate prognostic biomarker. LDOC1 influenced survival by affecting proliferation, colony formation, cell cycle, apoptosis, and migration ability, which might be attributed to the AKT/mTOR inhibition in HCC.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Siyuan Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Chen Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Aifeng Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Zhixiao Wei
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
- *Correspondence: Zhixiao Wei,
| |
Collapse
|
6
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
8
|
Han J, Yu X, Wang S, Wang Y, Liu Q, Xu H, Wang X. IGF2BP2 Induces U251 Glioblastoma Cell Chemoresistance by Inhibiting FOXO1-Mediated PID1 Expression Through Stabilizing lncRNA DANCR. Front Cell Dev Biol 2022; 9:659228. [PMID: 35141227 PMCID: PMC8819069 DOI: 10.3389/fcell.2021.659228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022] Open
Abstract
Glioma is the most common type of malignant tumor of the nervous system and is characterized by high mortality and poor outcome. This study aims to investigate the mechanism underlying IGF2 mRNA-binding protein 2 (IGF2BP2) and long noncoding RNA DANCR in etoposide resistance of glioblastoma (GBM) cells. Bioinformatics analysis identified the IGF2BP2-related regulators and DANCR target genes, which were subsequently evaluated by RNA pull-down and RIP assays. We exposed GBM cells to etoposide and thus established etoposide-resistant cells. Through functional experiments, we evaluated the interrelationship among IGF2BP2, DANCR, phosphotyrosine interaction domain containing 1 (PID1), and forkhead box protein O1 (FOXO1) and further assessed their impact on the sensitivity of GBM cells to etoposide. IGF2BP2 and DANCR were highly expressed in glioma cells and tissues, whereas PID1 and FOXO1 were poorly expressed. Mechanistically, overexpression of IGF2BP2 promoted DANCR stability and reduced DANCR methylation, whereas silencing of IGF2BP2 reduced survival of GBM cells and etoposide-resistant cells. Besides, DANCR interacted with FOXO1 to promote the ubiquitination of FOXO1. FOXO1 promoted the transcriptional expression of PID1, enhancing the chemotherapy sensitivity of GBM cells, but overexpression of PID1 reversed the impact of IGF2BP2. Collectively, IGF2BP2 inhibits PID1 expression through the DANCR/FOXO1 axis, inducing drug resistance in GBM cells, and promoting glioma progression.
Collapse
Affiliation(s)
- Junfei Han
- Department of Neurosurgery, Huizhou Third People’s Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Xiaojun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qikun Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Wang
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, China
- Department of Neurosurgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
- *Correspondence: Xiaosong Wang,
| |
Collapse
|
9
|
LI Y, WEN X, WU J, XIANG D, QUAN J. Expression and correlation of cycde-2 protein and nuclear factor kB in serum of patients with papillary thyroid carcinoma. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.125521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuanjing LI
- Chongqing Jiangjin District Central Hospital, China
| | - Xing WEN
- Chongqing Jiangjin District Central Hospital, China
| | - Jie WU
- The Ninth People's Hospital of Chongqing, China
| | - Debing XIANG
- Chongqing Jiangjin District Central Hospital, China
| | - Jin QUAN
- Chongqing Jiangjin District Central Hospital, China
| |
Collapse
|
10
|
Peng D, Li W, Zhang B, Liu X. Overexpression of lncRNA SLC26A4-AS1 inhibits papillary thyroid carcinoma progression through recruiting ETS1 to promote ITPR1-mediated autophagy. J Cell Mol Med 2021; 25:8148-8158. [PMID: 34378314 PMCID: PMC8419164 DOI: 10.1111/jcmm.16545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), accounting for approximately 85% cases of thyroid cancer, is a common endocrine tumour with a relatively low mortality but an alarmingly high rate of recurrence or persistence. Long non‐coding RNAs (lncRNAs) is emerging as a critical player modulating diverse cellular mechanisms correlated with the progression of various cancers, including PTC. Herein, we aimed to investigate the role of lncRNA SLC26A4‐AS1 in regulating autophagy and tumour growth during PTC progression. Initially, ITPR1 was identified by bioinformatics analysis as a differentially expressed gene. Then, Western blot and RT‐qPCR were conducted to determine the expression of ITPR1 and SLC26A4‐AS1 in PTC tissues and cells, both of which were found to be poorly expressed in PTC tissues and cells. Then, we constructed ITPR1‐overexpressing cells and revealed that ITPR1 overexpression could trigger the autophagy of PTC cells. Further, we performed a series of gain‐ and loss‐of function experiments. The results suggested that silencing of SLC26A4‐AS1 led to declined ITPR1 level, up‐regulation of ETS1 promoted ITPR1 expression, and either ETS1 knockdown or autophagy inhibitor Bafilomycin A1 could mitigate the promoting effects of SLC26A4‐AS1 overexpression on PTC cell autophagy. In vivo experiments also revealed that SLC26A4‐AS1 overexpression suppressed PTC tumour growth. In conclusion, our study elucidated that SLC26A4‐AS1 overexpression promoted ITPR1 expression through recruiting ETS1 and thereby promotes autophagy, alleviating PTC progression. These finding provides insight into novel target therapy for the clinical treatment of PTC.
Collapse
Affiliation(s)
- Dong Peng
- Department of Nuclear Medicine, Chongqing Rongchang People's Hospital, Chongqing, China
| | - Wenfa Li
- Department of Cardiac Macrovascular Surgery, Chongqing University, Three Gorges Hospital/Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Bojuan Zhang
- Department of Oncology, Chongqing University, Three Gorges Hospital/Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Xuefen Liu
- Department of Oncology, Chongqing Rongchang People's Hospital, Chongqing, China
| |
Collapse
|
11
|
Yi J, Tian M, Hu L, Kang N, Ma W, Zhi J, Zheng X, Ruan X, Gao M. The mechanisms of celastrol in treating papillary thyroid carcinoma based on network pharmacology and experiment verification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:866. [PMID: 34164500 PMCID: PMC8184492 DOI: 10.21037/atm-21-1854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Celastrol, a triterpene present in the traditional Chinese medicine (TCM) Triptergium wilfordii, has been demonstrated to have remarkable anticancer activity. However, its specific mechanism on papillary thyroid carcinoma (PTC) remains to be elucidated. Methods Potential targets of celastrol were screened from public databases. Through the Gene Expression Omnibus (GEO) online database, we obtained the bioinformatics analysis profile of PTC, GSE33630, and analyzed the differentially expressed genes (DEGs). Then, a protein-protein interaction (PPI) network was constructed by utilizing the STRING database. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. Finally, drug interactions between hub genes and celastrol were verified by molecular docking. Results Four core nodes (MMP9, JUN, ICAM1, and VCAM1) were discerned via constructing a PPI network of 47 common targets. Through functional enrichment analysis, it was confirmed that the above target genes were basically enriched in the interleukin-17 (IL-17), nuclear factor kappa-B (NF-κB), and tumor necrosis factor (TNF) signaling pathways, which are involved in the inflammatory microenvironment to inhibit the development and progression of tumors. Molecular docking results demonstrated that celastrol has a strong binding efficiency with the 4 key proteins. Conclusions In this research, it was demonstrated that celastrol can regulate a variety of proteins and signaling pathways against PTC, providing a theoretical basis for future clinical applications.
Collapse
Affiliation(s)
- Jiaoyu Yi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mengran Tian
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ning Kang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weike Ma
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingtai Zhi
- Department of Otolaryngology-Head and Neck Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Hantak MP, Einstein J, Kearns RB, Shepherd JD. Intercellular Communication in the Nervous System Goes Viral. Trends Neurosci 2021; 44:248-259. [PMID: 33485691 PMCID: PMC8041237 DOI: 10.1016/j.tins.2020.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Viruses and transposable elements are major drivers of evolution and make up over half the sequences in the human genome. In some cases, these elements are co-opted to perform biological functions for the host. Recent studies made the surprising observation that the neuronal gene Arc forms virus-like protein capsids that can transfer RNA between neurons to mediate a novel intercellular communication pathway. Phylogenetic analyses showed that mammalian Arc is derived from an ancient retrotransposon of the Ty3/gypsy family and contains homology to the retroviral Gag polyproteins. The Drosophila Arc homologs, which are independently derived from the same family of retrotransposons, also mediate cell-to-cell signaling of RNA at the neuromuscular junction; a striking example of convergent evolution. Here we propose an Arc 'life cycle', based on what is known about retroviral Gag, and discuss how elucidating these biological processes may lead to novel insights into brain plasticity and memory.
Collapse
Affiliation(s)
- Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jenifer Einstein
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Rachel B Kearns
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Wanka G, Schmoeckel E, Mayr D, Fuerst S, Kuhn C, Mahner S, Knabl J, Karsten MM, Dannecker C, Heidegger HH, Vattai A, Jeschke U, Jueckstock J. LDOC1 as Negative Prognostic Marker for Vulvar Cancer Patients. Int J Mol Sci 2020; 21:ijms21239287. [PMID: 33291445 PMCID: PMC7730493 DOI: 10.3390/ijms21239287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
So far, studies about targeted therapies and predictive biomarkers for vulva carcinomas are rare. The leucine zipper downregulated in cancer 1 gene (LDOC1) has been identified in various carcinomas as a tumor-relevant protein influencing patients' survival and prognosis. Due to the lack of information about LDOC1 and its exact functionality, this study focuses on the expression of LDOC1 in vulvar carcinoma cells and its surrounding immune cells as well as its correlation to clinicopathological characteristics and prognosis. Additionally, a possible regulation of LDOC1 in vulvar cancer cell lines via the NF-κB signaling pathway was analyzed. Vulvar carcinoma sections of 157 patients were immunohistochemically stained and examined regarding LDOC1 expression by using the immunoreactive score (IRS). To characterize LDOC1-positively stained immune cell subpopulations, immunofluorescence double staining was performed. The effect of the NF-κB inhibitor C-DIM 12 (3,3'-[(4-chlorophenyl)methylene]bis[1 H-indole]) on vulvar cancer cell lines A431 and SW 954 was measured according to MTT and BrdU assays. Baseline expression levels of LDOC1 in the vulvar cancer cell lines A431 and SW 954 was analyzed by real-time PCR. LDOC1 was expressed by about 90% of the cancer cells in the cytoplasm and about half of the cells in the nucleus. Cytoplasmatic expression of LDOC1 was associated with decreased ten-year overall survival of the patient, whereas nuclear staining showed a negative association with disease-free survival. Infiltrating immune cells were mainly macrophages followed by regulatory T cells. Incubation with C-DIM 12 decreased the cell viability and proliferation of vulvar cancer cell line A431, but not of cell line SW 954. LDOC1 expression on mRNA level was twice as high in the cell line A431 compared to the cell line SW 954. Overexpression of LDOC1 was associated with unfavorable overall and disease-free survival. Tumor growth could be inhibited by C-DIM 12 in vitro if the expressed LDOC1 level was high enough.
Collapse
Affiliation(s)
- Giulia Wanka
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 142, 80337 Munich, Germany; (E.S.); (D.M.)
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Str. 142, 80337 Munich, Germany; (E.S.); (D.M.)
| | - Sophie Fuerst
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| | - Julia Knabl
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
- Department of Obstetrics, Klinik Hallerwiese, Sankt-Johannis-Mühlgasse 19, 90419 Nürnberg, Germany
| | - Maria Margarete Karsten
- Department of Gynecology and Gynecologic Oncology, Charité University, Charitéplatz 1, 10117 Berlin, Germany;
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglin Street 2, 86156 Augsburg, Germany;
| | - Helene H. Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglin Street 2, 86156 Augsburg, Germany;
- Correspondence: ; Tel.: +49-821-400-165505
| | - Julia Jueckstock
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (G.W.); (S.F.); (C.K.); (S.M.); (J.K.); (H.H.H.); (A.V.); (J.J.)
| |
Collapse
|
14
|
Feng L, Wang R, Yang Y, Shen X, Shi Q, Lian M, Ma H, Fang J. KPNA4 regulated by miR-548b-3p promotes the malignant phenotypes of papillary thyroid cancer. Life Sci 2020; 265:118743. [PMID: 33188837 DOI: 10.1016/j.lfs.2020.118743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
AIM Karyopherin α4 (KPNA4, importin α3) has been verified to be an oncogene in many cancers. However, its role in papillary thyroid cancer (PTC), the most frequent endocrine malignancy, is still unclear. MATERIALS AND METHODS KPNA4 expression was analyzed in PTC tissues and cells. The effects of KPNA4 on the proliferation, invasion, and apoptosis of PTC cells were evaluated after overexpression or downregulation of KPNA4. The influence of KPNA4 on NF-κB activation was evaluated by nuclear NF-κB p65 expression and NF-κB-luciferase reporter assays. Moreover, we also explored whether KPNA4 was regulated by miR-548b-3p. Additionally, the roles of miR-548b-3p and KPNA4 were explored in a xenograft mouse model. KEY FINDINGS KPNA4 expression was increased in PTC tissues and cells, and its expression was significantly related to patients' clinicopathologic features and overall survival. Overexpression of KPNA4 significantly promoted PTC cell proliferation and invasion, enhanced nuclear p65 expression and augmented NF-κB luciferase activity. However, KPNA4 silencing showed opposite effects on the above indexes, and induced apoptosis of PTC cells. KPNA4 was a target of miR-548b-3p, which was downregulated in PTC and inhibited proliferation and invasion, but promoted apoptosis of PTC cells. KPNA4 overexpression abrogated the suppression of miR-548b-3p on the malignant phenotypes of PTC cells. Both miR-548b-3p overexpression and KPNA4 downregulation inhibited tumor growth and Ki-67 expression, elevated numbers of Tunel-positive cells, and deceased nuclear p65 expression in mouse tumor tissues. SIGNIFICANCE KPNA4 was negatively regulated by miR-548b-3p and promoted the development of PTC via activating the NF-κB pathway.
Collapse
Affiliation(s)
- Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yifan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Qian Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China.
| |
Collapse
|
15
|
Botman O, Hibaoui Y, Giudice MG, Ambroise J, Creppe C, Feki A, Wyns C. Modeling Klinefelter Syndrome Using Induced Pluripotent Stem Cells Reveals Impaired Germ Cell Differentiation. Front Cell Dev Biol 2020; 8:567454. [PMID: 33117798 PMCID: PMC7575714 DOI: 10.3389/fcell.2020.567454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Klinefelter syndrome (KS), with an incidence between 1/600 and 1/1,000, is the main genetic cause of male infertility. Due to the lack of an accurate study model, the detailed pathogenic mechanisms by which this X chromosome aneuploidy leads to KS features remain unknown. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from a patient with KS: 47XXY-iPSCs. In order to compare the potentials of both 47XXY-iPSCs and 46XY-iPSCs to differentiate into the germ cell lineage, we developed a directed differentiation protocol by testing different combinations of factors including bone morphogenetic protein 4 (BMP4), glial-derived neurotrophic factor (GDNF), retinoic acid (RA) and stem cell factor (SCF) for 42 days. Importantly, we found a reduced ability of 47XXY-iPSCs to differentiate into germ cells when compared to 46XY-iPSCs. In particular, upon germ cell differentiation of 47XXY-iPSCs, we found a reduced proportion of cells positive for BOLL, a protein required for germ cell development and spermatogenesis, as well as a reduced proportion of cells positive for MAGEA4, a spermatogonia marker. This reduced ability to generate germ cells was not associated with a decrease of proliferation of 47XXY-iPSC-derived cells but rather with an increase of cell death upon germ cell differentiation as revealed by an increase of LDH release and of capase-3 expression in 47XXY-iPSC-derived cells. Our study supports the idea that 47XXY-iPSCs provides an excellent in vitro model to unravel the pathophysiology and to design potential treatments for KS patients.
Collapse
Affiliation(s)
- Olivier Botman
- Gynecology Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland.,Department of Obstetrics and Gynecology, Hôpital Fribourgeois (HFR) Fribourg, Hôpital Cantonal, Fribourg, Switzerland
| | - Maria G Giudice
- Gynecology Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Catherine Creppe
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Signal Transduction, C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Anis Feki
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland.,Department of Obstetrics and Gynecology, Hôpital Fribourgeois (HFR) Fribourg, Hôpital Cantonal, Fribourg, Switzerland
| | - Christine Wyns
- Gynecology Unit, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
16
|
Mu X, Wu H, Liu J, Hu X, Wu H, Chen L, Liu W, Luo S, Zhao Y. Long noncoding RNA TMPO-AS1 promotes lung adenocarcinoma progression and is negatively regulated by miR-383-5p. Biomed Pharmacother 2020; 125:109989. [PMID: 32062549 DOI: 10.1016/j.biopha.2020.109989] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the pathogenesis of various diseases, including a variety of tumors. Nevertheless, its functional roles and underlying molecular basis for their dysregulation in lung adenocarcinoma (LUAD) are largely unknown. Herein, in our study, we identified that lncRNA TMPO-AS1 is significantly upregulated in LUAD tissues and cell lines. Knockdown of TMPO-AS1 remarkably suppressed LUAD cell growth, induced apoptosis as well as G1/S arrest, and inhibited LUAD cell invasion, whereas overexpression of TMPO-AS1 exerts the opposite effects. Next, we implemented online database analysis tools to find that mir-383-5p could target TMPO-AS1, and our data showed that TMPO-AS1 was negatively correlated with mir-383-5p in LUAD specimens. We found that inhibiting miR-383-5p expression led to a marked upregulation of TMPO-AS1 level, while overexpression of miR-383-5p markedly suppressed TMPO-AS1's expression and function, suggesting that TMPO-AS1 is negatively regulated by miR-383-5p. In addition, we confirmed that miR-383-5p directly targeted TMPO-AS1 by binding to microRNA binding sites in the TMPO-AS1 sequence with a luciferase reporter and RIP assays. Besides, the inhibition of TMPO-AS1 significantly suppressed the tumorigenesis ability of LUAD cells in vivo. Together, these results demonstrate that TMPO-AS1 could be considered as a potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Xiaoqian Mu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongbo Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jie Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiufeng Hu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huijuan Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lijuan Chen
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenjing Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Yanqiu Zhao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
17
|
Zhao S, Zhao Y, Wang Q, Li Z, Ma X, Wu L, Li W, Du M, Ji H, Qin G. LDOC1 is differentially expressed in thyroid cancer and display tumor-suppressive function in papillary thyroid carcinoma. Cell Biol Int 2020; 44:985-997. [PMID: 31889386 DOI: 10.1002/cbin.11295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/27/2019] [Indexed: 11/10/2022]
Abstract
The leucine zipper downregulated in cancer 1 (LDOC1) has been proposed as a regulator of transcription and cell signaling. We have previously demonstrated that LDOC1 is differentially expressed in papillary thyroid carcinoma (PTC), this study was designed to characterize LDOC1 expression in thyroid follicle originated cancer tissues and to specifically evaluate its function in thyroid carcinogenesis. LDOC1 expression was performed in human normal thyroid and thyroid cancer. LDOC1 function was characterized, in two PTC cell lines (TPC1 and BCPAP), through the analysis of in vitro cell proliferation, apoptosis, migration, and invasion along with in vivo tumor xenograft growth. Transduced BCPAP cells were stimulated with tumor necrosis factor α, and the levels of nuclear P65, Bax, Bcl-2, c-Myc, and XIAP were assessed. A luciferase reporter assay was used to measure nuclear factor-κB (NF-κB) activity, and the functional connection between LDOC1 effect and NF-κB activity was determined using a specific NF-κB inhibitor. Our results revealed that LDOC1 was translocated from the nucleus to the cytoplasm in human thyroid cancer, and was significantly downregulated in PTC compared with normal thyroid. LDOC1 overexpression in TPC1 resulted in a significant suppression of the malignant phenotype, whereas LDOC1 ablation in BCPAP promoted this phenotype. Additional studies demonstrated that LDOC1 ablation facilitated nuclear P65 expression and NF-κB activity. NF-κB inhibition reversed the effects of LDOC1 ablation on proliferation, apoptosis, migration, and invasion. Our findings confirmed that LDOC1 is a novel therapeutic target in PTC and provides new insight into the role of LDOC1 in PTC progression, through NF-κΒ signaling suppression.
Collapse
Affiliation(s)
- Shuiying Zhao
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Yanyan Zhao
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Qingzhu Wang
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Zhizhen Li
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xiaojun Ma
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lina Wu
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Wen Li
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Mengmeng Du
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Hongfei Ji
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Guijun Qin
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| |
Collapse
|
18
|
Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, Sheng P, Dai W, Jiang H. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res 2020; 10:78-94. [PMID: 32064154 PMCID: PMC7017743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common cancer of the endocrine system, which is usually associated with a favorable therapeutic response and prognosis. However, metastatic spreading occurs in around 5% of the PTC patients. Identification of molecular markers could early predict the metastatic potential, which is essential for reducing the patient's overtreatment. Baculoviral IAP Repeat Containing 7 (BIRC7) is an inhibitor of apoptosis protein (IAP) family gene that is known to be linked to tumor progression, but its role in the setting of PTC metastasis remains unknown. This study, therefore, aims to explore the role of BIRC7 in the metastasis and autophagy of PTC and elucidate its underlying molecular mechanisms. BIRC7 expression was assessed in fresh samples of human PTC and normal tissues via qRT-PCR and immunohistochemistry. In addition, BIRC7 was overexpressed and silenced in PTC cell lines followed by transmission electron microscopy, western blotting, immunofluorescence microscopy, wound healing and invasion assays. We further explored the relevance of BIRC7 in vivo using a tumor xenograft model. Our results demonstrated that BIRC7 plays a pro-invasive role in PTC. BIRC7 expression is significantly upregulated in PTC compared with matched thyroid normal tissues. In addition, we found that BIRC7 knockdown induced a significant reduction in PTC cell EMT and metastasis in vitro and in vivo, while overexpression of BIRC7 markedly enhanced PTC cell migration and invasion. Moreover, our data showed that BIRC7 was able to suppress autophagy through modulating the expression of ATG5 and BECN1, and that this suppression is responsible for BIRC7 silence induced suppression of EMT and metastasis of PTC cell. We further found that targeting both BIRC7 and mTOR enhances autophagy in PTC cells and to achieve synergistic antimetastatic efficacy in vitro and in vivo. These findings indicate that the suppression of autophagy by BIRC7 drives the invasion and metastasis of PTC cells, thus suggesting that the activation of autophagy may inhibit metastasis of PTC with high BIRC7 expression.
Collapse
Affiliation(s)
- Kunpeng Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Qingan Yu
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Hao Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Changming Xie
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Yaohua Wu
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Dakun Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Ping Sheng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Wenjie Dai
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Hongchi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| |
Collapse
|
19
|
Zhou B, Xu J, Chen Y, Gao S, Feng X, Lu X. miR-200b/c-RAP1B axis represses tumorigenesis and malignant progression of papillary thyroid carcinoma through inhibiting the NF-κB/Twist1 pathway. Exp Cell Res 2019; 387:111785. [PMID: 31877303 DOI: 10.1016/j.yexcr.2019.111785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with an increasing occurrence and recurrence. MicroRNAs (miRNAs) have been widely acknowledged to be participated in human cancers. However, how these miRNAs exert roles and potential mechanisms in PTC regulatory networks is still lacking. The purpose of our study lies in discovering the regulatory basis of miR-200b/c and Rap1b for PTC tumorigenesis and malignant progression, as well as the underlying molecular mechanisms. Herein, miR-200b/c expression was sharply dropped and Rap1b expression was up-regulated in PTC cells and tissues samples when compared to normal thyroid epithelial cells and normal tissues. miR-200b/c targeted Rap1 directly and negatively regulated its expression. miR-200b/c overexpression suppressed proliferative, colony forming, migratory and invasive capabilities and EMT as well as elevated apoptosis of PTC cells through inhibiting Rap1b. Furthermore, xenograft experiments showed miR-200b/c overexpression constrained growth of PTC xenograft and EMT. miR-200b/c inhibited NF-κB/Twist1 signals via regulating the Rap1b expression in cells and animal models. Taken together, our study suggested that upregulation of miR-200b/c-RAP1B axis constrained PTC cell proliferation, invasion, migration and EMT. Also, the upregulation of miR-200b/c-RAP1B leaded to elevated apoptosis through inhibiting the NF-κB/Twist1 pathway, thus inhibiting PTC tumorigenesis and malignant progression.
Collapse
Affiliation(s)
- Bo Zhou
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China; Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, PR China
| | - Jing Xu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, Henan, PR China
| | - Ye Chen
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, PR China
| | - Shegan Gao
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, PR China
| | - Xiaoshan Feng
- Department of Oncology Surgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, PR China
| | - Xiubo Lu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, PR China.
| |
Collapse
|
20
|
Zhao C, Du F, Zhao Y, Wang S, Qi L. Acute myeloid leukemia cells secrete microRNA-4532-containing exosomes to mediate normal hematopoiesis in hematopoietic stem cells by activating the LDOC1-dependent STAT3 signaling pathway. Stem Cell Res Ther 2019; 10:384. [PMID: 31842997 PMCID: PMC6915875 DOI: 10.1186/s13287-019-1475-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND MicroRNA (miR)-containing exosomes released by acute myeloid leukemia (AML) cells can be delivered into hematopoietic progenitor cells to suppress normal hematopoiesis. Herein, our study was performed to evaluate the effect of exosomal miR-4532 secreted by AML cells on hematopoiesis of hematopoietic stem cells. METHODS Firstly, differentially expressed miRs related to AML were identified using microarray analysis. Subsequently, AML cell lines were collected, and CD34+ HSCs were isolated from healthy pregnant women. Then, miR-4532 expression was measured in AML cells and AML cell-derived exosomes and CD34+ HSCs, together with evaluation of the targeting relationship between miR-4532 and LDOC1. Then, AML cells were treated with miR-4532 inhibitor, and exosomes were separated from AML cells and co-cultured with CD34+ HSCs. Gain- and loss-function approaches were employed in CD34+ HSCs. Colony-forming units (CFU) and expression of dickkopf-1 (DKK1), a hematopoietic inhibiting factor associated with pathogenesis of AML, were determined in CD34+ HSCs, as well as the extents of JAK2 and STAT3 phosphorylation and LDOC1 expression. RESULTS miR-4532 was found to be upregulated in AML cells and AML cell-derived exosomes, while being downregulated in CD34+ HSCs. In addition, exosomes released by AML cells targeted CD34+ HSCs to decrease the expression of CFU and increase the expression of DKK1. miR-4532 was delivered into CD34+ HSCs to target LDOC1 via AML cell-released exosomes. AML cell-derived exosomes containing miR-4532 inhibitor increased CFU but reduced DKK1 in CD34+ HSCs. Inhibition of miR-4532 or JAK2, or ectopic expression of LDOC1 upregulated CFU and downregulated DKK1 expression as well as the extents of JAK2 and STAT3 phosphorylation in CD34+ HSCs. CONCLUSION In conclusion, AML cell-derived exosomes carrying miR-4532 repress normal HSC hematopoiesis via activation of the LDOC1-dependent STAT3 signaling pathway.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Clinical Hematology, Jilin Medical University, Jilin, 132013 People’s Republic of China
| | - Feng Du
- Department of Pathogenic Biology, Jining Medical University, Jining, Jining, 272067 People’s Republic of China
| | - Yang Zhao
- Department of Infectious Disease, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013 People’s Republic of China
| | - Shanshan Wang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of precision medicine, Jining Medical University, Jining, 272067 People’s Republic of China
| | - Ling Qi
- Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013 Jilin Province People’s Republic of China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, B24 Yinquan South Road, Qingyuan, 511518 Guangdong Province People’s Republic of China
| |
Collapse
|
21
|
Jiang J, Li Y, Jiang Z. Effects of LDOC1 on colorectal cancer cells via downregulation of the Wnt/β-catenin signaling pathway. Oncol Rep 2019; 41:3281-3291. [PMID: 31002361 PMCID: PMC6488979 DOI: 10.3892/or.2019.7126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumor types of the digestive tract. Its incidence and mortality rates are among the highest of all gastrointestinal tumor types. The expression of leucine zipper downregulated in cancer 1 (LDOC1) is decreased in numerous cancer types. In the present study, the aim was to investigate the role of LDOC1 and determine the potential molecular mechanisms of its action in CRC. The expression of LDOC1 in CRC tissues and adjacent normal tissues was detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. LDOC1 expression in four CRC cell lines, compared with normal colorectal tissue, was determined by reverse transcription- polymerase chain reaction (RT-PCR), and two cell lines with relatively low expression were screened. Human LDOC1 cDNA was inserted into a lentiviral vector, and transfected into HCT-116 and Caco2 cell lines. The transfection efficiency was identified by RT-PCR and western blot analysis. Cell proliferation was detected by Cell Counting Kit-8 and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry assay. Migration and invasion were assessed using Transwell and Matrigel assays, respectively. Additionally, whether LDOC1 regulates the Wnt/β-catenin pathway was investigated by western blot analysis, and the expression and localization of β-catenin in CRC cells were demonstrated by cellular immunofluorescence. LDOC1 expression was downregulated in CRC tissues and cells. LDOC1 overexpression inhibited cell proliferation, migration and invasion, but promoted cells apoptosis. Furthermore, LDOC1 downregulated the Wnt/β-catenin pathway in CRC. In conclusion, LDOC1 is a tumor suppressor in CRC and it inhibits cell proliferation and promotes cell apoptosis. Additionally, it inhibits CRC cell metastasis by downregulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - You Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
22
|
Lee CH, Yang JR, Chen CY, Tsai MH, Hung PF, Chen SJ, Chiang SL, Chang H, Lin P. Novel STAT3 Inhibitor LDOC1 Targets Phospho-JAK2 for Degradation by Interacting with LNX1 and Regulates the Aggressiveness of Lung Cancer. Cancers (Basel) 2019; 11:cancers11010063. [PMID: 30634502 PMCID: PMC6356782 DOI: 10.3390/cancers11010063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
Meta-analysis revealed that Leucine Zipper Down-Regulated In Cancer 1 (LDOC1) increased methylation more in people with lung tumors than in those who were healthy and never smoked. Quantitative methylation-specific PCR revealed that cigarette smoke condensate (CSC) exposure drives LDOC1 promoter hypermethylation and silence in human bronchial cells. Immunohistochemistry studies showed that LDOC1 downregulation is associated with poor survival of patients with lung cancer. Loss and gain of LDOC1 functions enhanced and attenuated aggressive phenotypes in lung adenocarcinoma A549 and non⁻small cell lung carcinoma H1299 cell lines, respectively. We found that LDOC1 deficiency led to reinforcing a reciprocal loop of IL-6/JAK2/STAT3, through which LDOC1 mediates the cancer progression. LDOC1 knockdown considerably augmented tumorigenesis and the phosphorylation of JAK2 and STAT3 in vivo. Results from immunoprecipitation and immunofluorescent confocal microscopy indicated that LDOC1 negatively regulates JAK2 activity by forming multiple protein complexes with pJAK2 and E3 ubiquitin-protein ligase LNX1, and in turn, LDOC1 targets pJAK2 to cause ubiquitin-dependent proteasomal degradation. LDOC1 deficiency attenuates the interactions between LNX1 and pJAK2, leading to ineffective ubiquitination of pJAK2, which activates STAT3. Overall, our results elucidated a crucial role of LDOC1 in lung cancer and revealed how LDOC1 acts as a bridge between tobacco exposure and the IL-6/JAK2/STAT3 loop in this human malignancy.
Collapse
Affiliation(s)
- Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Ji-Rui Yang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Chih-Yu Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Ming-Hsien Tsai
- National Institute of Environmental Health Science, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Pin-Feng Hung
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Shin-Jih Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Shang-Lun Chiang
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung 40402, Taiwan.
| | - Han Chang
- Department of Pathology, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 40447, Taiwan.
| | - Pinpin Lin
- National Institute of Environmental Health Science, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
23
|
Xu J, Shen W, Pei B, Wang X, Sun D, Li Y, Xiu L, Liu X, Lu Y, Zhang X, Yue X. Xiao Tan He Wei Decoction reverses MNNG-induced precancerous lesions of gastric carcinoma in vivo and vitro: Regulation of apoptosis through NF-κB pathway. Biomed Pharmacother 2018; 108:95-102. [PMID: 30218863 DOI: 10.1016/j.biopha.2018.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years, Chinese medicine has played an important role in the prognosis of gastric cancer. Precancerous lesions of gastric carcinoma (PLGC) is a class of gastric cancer which is closely related to the gastric mucosal pathology changes in the role of carcinogenic incentives, and plays key role in the progression of normal gastric mucosal cells into gastric cancerous cells. In current experiment, we explore the relationship between Chinese traditional medicine (Xiao Tan He Wei Decoction) and gastric cancer in the PLGC rat animal models and epithelial-mesenchymal transitioned GES-1 cells which were induced useing 1- Methyl-3-nitro-1-nitrosoguanidine (MNNG). PLGC rat model showed significant deterioration in the gastric mucosa with terrible growth rate in body weight and more atypical hyperplasia in gastric mucosa. MC cells, MNNG induced GES-1 cells which epithelial- mesenchymal-transition (EMT)-related proteins have a great change compare with normal GES-1 cells. The cells had characteristics of malignant cells including proliferation, invasion and metastasis ability. Our research founds that Xiao Tan He Wei Decoction could inhibit cell proliferation and increased apoptosis by increase the level of pro-apoptotic proteins like Bax and caspase-3 and decreased the level of anti-apoptotic protein Bcl-2, block the cells in G0/G1 phase simultaneously. Furthermore, Xiao Tan He Wei Decoction could inhibit nuclear factor kappa-light-chain-enhancer (NF-kB) activity and inhibit its transfer from the cytoplasm to the nucleus. However, when we incubated with NF-κB activator PMA, the effect of Xiao Tan He Wei Decoction was reversed. These results suggested that Xiao Tan He Wei Decoction could be used as a method for the treatment of gastric precancerous lesions, and possibly provide a theoretical basis for the clinical treatment of gastric cancer and gastric precancerous lesions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wei Shen
- Changjiang Road Community Health Service Center, NO. 639, Tonghe Road, Zhangmiao Street, Baoshan Qv, Shanghai, 200431, China
| | - Bei Pei
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiaowei Wang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Dazhi Sun
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yongjin Li
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - LiJuan Xiu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ye Lu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - XiaoQiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
24
|
Yilmaz E, Gul M, Melekoglu R, Koleli I. Immunhistochemical analysis of Nuclear Factor Kappa Beta expression in etiopathogenesis of ovarian tumors1. Acta Cir Bras 2018; 33:641-650. [PMID: 30110065 DOI: 10.1590/s0102-865020180070000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the place of the transcription factor nuclear kappa B (NF-kB), which is a marker of chronic inflammation, in the etiology of the ovarian carcinoma. METHODS NFkB analysis with the immunohistochemical method has been performed. To evaluate immunohistochemical NF-kB expression in the ovarian tissue, the H-score method. H-score = ∑ Pi (i+1), where ''Pi'' is the percentage of stained cells in each intensity category (0-100%) and ''i'' is the intensity indicating weak (i=1), moderate (i=2) or strong staining (i=3). RESULTS It has been seen that, the mean H score is statistically significantly higher in the patient group with serous and musinous adenocarcinoma diagnosis than the two other patient groups (p<0.005). CONCLUSIONS Factor nuclear kappa B is an important mediator that acts in the chronic inflammation. The highest expression rates are determined by the immunohistochemical method in the ovarian cancer group.
Collapse
Affiliation(s)
- Ercan Yilmaz
- Associate Professor, Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Turkey. Manuscript writing
| | - Mehmet Gul
- Full Professor, Department of Histology and Embriyology, Faculty of Medicine, Inonu University, Malatya, Turkey. Histopathological examinations
| | - Rauf Melekoglu
- Assistant Professor, Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Turkey. Acquisition of data
| | - Isil Koleli
- Assistant Professor, Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Turkey. Statistical analysis
| |
Collapse
|
25
|
Griesinger AM, Witt DA, Grob ST, Georgio Westover SR, Donson AM, Sanford B, Mulcahy Levy JM, Wong R, Moreira DC, DeSisto JA, Balakrishnan I, Hoffman LM, Handler MH, Jones KL, Vibhakar R, Venkataraman S, Foreman NK. NF-κB upregulation through epigenetic silencing of LDOC1 drives tumor biology and specific immunophenotype in Group A ependymoma. Neuro Oncol 2018; 19:1350-1360. [PMID: 28510691 DOI: 10.1093/neuonc/nox061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Inflammation has been identified as a hallmark of high-risk Group A (GpA) ependymoma (EPN). Chronic interleukin (IL)-6 secretion from GpA tumors drives an immune suppressive phenotype by polarizing infiltrating monocytes. This study determines the mechanism by which IL-6 is dysregulated in GpA EPN. Methods Twenty pediatric GpA and 21 pediatric Group B (GpB) EPN had gene set enrichment analysis for MSigDB Hallmark gene sets performed. Protein and RNA from patients and cell lines were used to validate transcriptomic findings. GpA cell lines 811 and 928 were used for in vitro experiments performed in this study. Results The nuclear factor-kappaB (NF-κB) pathway is a master regulator of IL-6 and a signaling pathway enriched in GpA compared with GpB EPN. Knockdown of NF-κB led to significant downregulation of IL-6 in 811 and 928. NF-κB activation was independent of tumor necrosis factor alpha (TNF-α) stimulation in both cell lines, suggesting that NF-κB hyperactivation is mediated through an alternative mechanism. Leucine zipper downregulated in cancer 1 (LDOC1) is a known transcriptional repressor of NF-κB. In many cancers, LDOC1 promoter is methylated, which inhibits gene transcription. We found decreased LDOC1 gene expression in GpA compared with GpB EPN, and in other pediatric brain tumors. EPN cells treated with 5AZA-DC, demethylated LDOC1 regulatory regions, upregulated LDOC1 expression, and concomitantly decreased IL-6 secretion. Stable knockdown of LDOC1 in EPN cell lines resulted in a significant increase in gene transcription of v-rel avian reticuloendotheliosis viral oncogene homolog A, which correlated to an increase in NF-κB target genes. Conclusion These results suggest that epigenetic silencing of LDOC1 in GpA EPN regulates tumor biology and drives inflammatory immune phenotype.
Collapse
Affiliation(s)
- Andrea M Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Davis A Witt
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Sydney T Grob
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Sabrina R Georgio Westover
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Randall Wong
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Daniel C Moreira
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - John A DeSisto
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Ilango Balakrishnan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Lindsey M Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Michael H Handler
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
26
|
Xin Z, Hua L, Shi TT, Tuo X, Yang FY, Li Y, Cao X, Yang JK. A genome-wide DNA methylation analysis in peripheral blood from patients identifies risk loci associated with Graves' orbitopathy. J Endocrinol Invest 2018; 41:719-727. [PMID: 29190000 DOI: 10.1007/s40618-017-0796-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/14/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Graves' orbitopathy (GO) is an inflammatory orbital disease of autoimmune origin with the potential to cause severe functional and psychosocial effects. The pathogenesis has not been fully elucidated. We investigated whether DNA methylation was associated with GO incidence in Chinese patients. MATERIALS AND METHODS Six GO patients and six age-matched controls were recruited, and genome-wide DNA methylation patterns were analyzed in their peripheral blood. t tests were performed to determine differential methylated sites in genomic regions and the univariable logistic regression analyses was performed to evaluate their risk with GO incidence. Cluster analysis and principal component analysis (PCA) were performed to determine the effects of the extracted differentially methylated sites. RESULTS One hundred and forty-eight differentially methylated sites were identified, including CD14 (fold change = 4.31, p = 0.005), IL17RE (fold change = 2.128, p = 0.005), and DRD4 (fold change = 0.25, p = 0.004), and were supported by cluster and PCA analyses. Univariable logistic regression analyses showed that the methylation patterns at 12 loci were associated with GO incidence. The relative risk per 1% decrease in methylation at ZCCHC6 and GLI3 was 0.15 (95% CI 0.03-0.91; p = 0.039) and 0.65 (95% CI 0.42-0.98; p = 0.042), respectively. Pearson correlation analyses demonstrated that methylation levels at IL17RE were positively associated with Clinical Activity Score (CAS) (r = 0.967, p < 0.05). CONCLUSIONS Our results demonstrate that differential methylation levels at analyzed sites (genes) may be risk markers of GO. DNA methylation analysis could provide new insights into understanding the disease and provide new treatment strategies for GO in Chinese patients.
Collapse
Affiliation(s)
- Z Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - L Hua
- Department of Mathematics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - T-T Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - X Tuo
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - F-Y Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Y Li
- Physical Examination Department, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - X Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - J-K Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X, Tang Y. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:173. [PMID: 29202848 PMCID: PMC5716366 DOI: 10.1186/s13046-017-0645-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
Background Clinically, prostate cancer (PCa) exhibits a high avidity to metastasize to bone. miR-141-3p is an extensively studied miRNA in cancers and downregulation of miR-141-3p has been widely reported to be involved in the progression and metastasis of several human cancer types. However, the clinical significance and biological roles of miR-141-3p in bone metastasis of PCa are still unclear. Methods miR-141-3p expression was examined in 89 non-bone metastatic and 52 bone metastatic PCa tissues by real-time PCR. Statistical analysis was performed to investigate the clinical correlation between miR-141-3p expression levels and clinicopathological characteristics in PCa patients. The biological roles of miR-141-3p in bone metastasis of PCa were evaluated both in vitro and a mouse intracardial model in vivo. Bioinformatics analysis, Western blot, luciferase reporter and miRNA immunoprecipitation assays were performed to explore and examine the relationship between miR-141-3p and its potential targets. Clinical correlation of miR-141-3p with its targets was examined in clinical PCa tissues. Results miR-141-3p expression is reduced in bone metastatic PCa tissues compared with non-bone metastatic PCa tissues. Low expression of miR-141-3p positively correlates with serum PSA levels, Gleason grade and bone metastasis status in PCa patients. Furthermore, upregulating miR-141-3p suppresses the EMT, invasion and migration of PCa cells in vitro. Conversely, silencing miR-141-3p yields an opposite effect. Importantly, upregulating miR-141-3p dramatically reduces bone metastasis of PC-3 cells in vivo. Our results further show that miR-141-3p inhibits the activation of NF-κB signaling via directly targeting tumor necrosis factor receptor-associated factor 5(TRAF5) and 6 (TRAF6), which further suppresses invasion, migration and bone metastasis of PCa cells. The clinical negative correlation of miR-141-3p expression with TRAF5, TRAF6 and NF-κB signaling activity is demonstrated in PCa tissues. Conclusion Our findings unravel a novel mechanism underlying the bone metastasis of PCa, suggesting that miR-141-3p mimics might represent a potential therapeutic avenue for the treatment of PCa bone metastasis. Electronic supplementary material The online version of this article (10.1186/s13046-017-0645-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, People's Republic of China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 563003, Zunyi, People's Republic of China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, People's Republic of China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
28
|
Yong BC, Lu JC, Xie XB, Su Q, Tan PX, Tang QL, Wang J, Huang G, Han J, Xu HW, Shen JN. LDOC1 regulates Wnt5a expression and osteosarcoma cell metastasis and is correlated with the survival of osteosarcoma patients. Tumour Biol 2017; 39:1010428317691188. [PMID: 28240050 DOI: 10.1177/1010428317691188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcomas are common bone malignancies in children and adolescents. LDOC1 (leucine zipper, down-regulated in cancer 1), a tumor suppressor, is down-regulated in many cancers. In this study, we investigated the role of LDOC1 in tumor metastasis and its prognostic significance in osteosarcomas. We established osteosarcoma cells stably expressing LDOC1, driven by an HIV-based lentiviral system. We investigated the impact of LDOC1 on migration and invasion abilities in these cells using a transwell assay. LDOC1-associated changes in expression of metastasis-promoting genes were analyzed with a quantitative real-time polymerase chain reaction primer array. A xenograft tumor model (n = 7 mice/group) was used to assess the effect of LDOC1 on osteosarcoma metastasis in vivo. The overall survival and disease-free survival of osteosarcoma patients (n = 74) were analyzed retrospectively based on immunohistochemical analysis of LDOC1 levels in tumors and Kaplan-Meier analysis. LDOC1-expressing osteosarcoma cells displayed decreased migration and invasion in vitro. The quantitative real-time polymerase chain reaction primer array data showed that increased LDOC1 expression up-regulated many metastasis-suppressor genes. In the xenograft model, micro-computed tomography imaging data indicated that increased LDOC1 expression is associated with weaker lung metastasis ability. The Wnt5a signaling pathway promotes osteosarcoma metastasis; LDOC1 expression decreased Wnt5a levels in osteosarcoma cells. Kaplan-Meier analysis showed that higher LDOC1 expression was associated with improved osteosarcoma patient overall survival and disease free survival (p = 0.022). Our data show that LDOC1 is a tumor suppressor in osteosarcoma, and that it regulates metastasis of osteosarcoma cells. Furthermore, LDOC1 might be a valuable prognostic marker in osteosarcomas.
Collapse
Affiliation(s)
- Bi-Cheng Yong
- 1 Department of Pediatric Orthopedics, Guangzhou Women and Children's Hospital, Guangzhou, China
| | - Jin-Chang Lu
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xian-Biao Xie
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiao Su
- 3 Animal Experiment Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping-Xian Tan
- 4 Department of Spine Surgery, Shen Zhen Long Gang Zhong Xin Hospital, Guangzhou, China
| | - Qing-Lian Tang
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Wang
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Huang
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ju Han
- 5 Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong-Wen Xu
- 1 Department of Pediatric Orthopedics, Guangzhou Women and Children's Hospital, Guangzhou, China
| | - Jing-Nan Shen
- 2 Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Li L, Wu J, Zheng F, Tang Q, Wu W, Hann SS. Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:112. [PMID: 27421653 PMCID: PMC4947306 DOI: 10.1186/s13046-016-0388-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Background Polyphyllin I (PPI), a bioactive phytochemical extracted from the Rhizoma of Paris polyphylla, has been reported to exhibit anti-cancer activity. However, the detailed mechanism underlying this remains to be elucidated. Methods Cell viability and cell cycle distribution were measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. The expression of enhancer of zeste homolog 2 (EZH2) mRNA was measured by quantitative real time PCR (qRT-PCR). Western blot analysis was performed to examine the phosphorylation and protein expression of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p65, DNA methyltransferase 1 (DNMT1) and EZH2. Exogenous expression of p65, DNMT1, and EZH2 were carried out by transient transfection assays. Promoter activity of EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. A xenografted tumor model in nude mice and bioluminescent imaging system were used to further test the effect of PPI in vivo. Results We showed that PPI significantly inhibited growth and induced cell cycle arrest of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Mechanistically, we found that PPI increased the phosphorylation of SAPK/JNK, reduced protein expression of p65 and DNMT1. The inhibitor of SAPK/JNK (SP600125) blocked the PPI-inhibited p65 and DNMT1 protein expression. Interestingly, exogenously expressed p65 overcame PPI-inhibited protein expression of DNMT1. Moreover, PPI reduced EZH2 protein, mRNA, and promoter activity; overexpression of EZH2 resisted the PPI-inhibited cell growth, and intriguingly, negative feedback regulation of SAPK/JNK signaling. Finally, exogenous expression of DNMT1 antagonized the PPI-suppressed EZH2 protein expression. Consistent with this, PPI inhibited tumor growth, protein expression levels of p65, DNMT1 and EZH2, and increased phosphorylation of SAPK/JNK in vivo. Conclusion Our results show that PPI inhibits growth of NSCLC cells through SAPK/JNK-mediated inhibition of p65 and DNMT1 protein levels, subsequently; this results in the reduction of EZH2 gene expression. The interactions among p65, DNMT1 and EZH2, and feedback regulation of SAPK/JNK by EZH2 converge on the overall responses of PPI. This study reveals a novel mechanism for regulating EZH2 gene in response to PPI and suggests a new strategy for NSCLC associated therapy.
Collapse
Affiliation(s)
- Longmei Li
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China.,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - JingJing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China. .,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
30
|
Zhou X, Zhu HQ, Ma CQ, Li HG, Liu FF, Chang H, Lu J. MiR-1180 promoted the proliferation of hepatocellular carcinoma cells by repressing TNIP2 expression. Biomed Pharmacother 2016; 79:315-20. [PMID: 27044843 DOI: 10.1016/j.biopha.2016.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs with post-transcriptional regulatory function, playing crucial roles in cancer development and progression of hepatocellular carcinoma (HCC). Previous studies have indicated that miR-1180 was implicated in diverse biological processes. However, the underlying mechanism of miR-1180 in HCC has not been intensively investigated. In this study, we aimed to investigate the role of miR-1180 and its target genes in HCC. We found that miR-1180 expression was significantly increased in HCC cells and clinical tissues compared with their corresponding controls. Overexpression of miR-1180 promoted cell proliferation in HCC cell line HepG2. TNFAIP3 interacting protein 2 (TNIP2), a potential target gene of miR-1180, and were validated by a luciferase assay. Further studies revealed that miR-1180 regulated cell proliferation of HCC by directly suppressing TNIP2 expression and the knockdown of TNIP2 expression reversed the effect of miR-1180-in on HCC cell proliferation. In summary, our data indicated that miR-1180 might act as a tumor promoter by targeting TNIP2 during development of HCC.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China
| | - Hua-Qiang Zhu
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China
| | - Chao-Qun Ma
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China
| | - Hong-Guang Li
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China
| | - Fang-Feng Liu
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University, East District, Jinan 250014, Shandong Province, China.
| |
Collapse
|
31
|
Liu L, Liu Y, Zhang T, Wu H, Lin M, Wang C, Zhan Y, Zhou Q, Qiao B, Sun X, Zhang Q, Guo X, Zhao G, Zhang W, Huang W. Synthetic Bax-Anti Bcl2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. J Exp Clin Cancer Res 2016; 35:3. [PMID: 26743236 PMCID: PMC4705585 DOI: 10.1186/s13046-015-0279-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The synthetic biology technology which enhances the specificity and efficacy of treatment is a novel try in biomedical therapy during recent years. A high frequency of somatic mutations was shown in the human telomerase reverse transcriptase (hTERT) promoter in bladder cancer, indicating that a mutational hTERT promoter might be a tumor-specific element for bladder cancer therapy. In our study, we aimed to construct a synthetic combination module driven by a super artificial hTERT promoter and to investigate its influence on the malignant phenotypes of bladder cancer. METHODS The dual luciferase assay system was used to verify the driven efficiency and tumor-specificity of the artificial hTERT promoter and to confirm the relationship between ETS-1 and the driven efficiency of the artificial hTERT promoter. CCK-8 assay and MTT assay were used to test the effects of the Bax-Anti Bcl2 combination module driven by the artificial hTERT promoter on cell proliferation. Simultaneously, the cell apoptosis was detected by the caspase 3ELISA assay and the flow cytometry analysis after transfection. The results of CCK-8 assay and MTT assay were analyzed by ANOVA. The independent samples t-test was used to analyze other data. RESULTS We demonstrated that the artificial hTERT promoter had a higher driven efficiency which might be regulated by transcription factor ETS-1 in bladder cancer cells, compared with wild-type hTERT promoter. Meanwhile, the artificial hTERT promoter showed a strong tumor-specific effect. The cell proliferation inhibition and apoptosis induction were observed in artificial hTERT promoter- Bax-Anti Bcl2 combination module -transfected bladder cancer 5637 and T24 cells, but not in the module -transfected normal human fibroblasts. CONCLUSION This module offers us a useful synthetic biology platform to inhibit the malignant phenotypes of bladder cancer in a more specific and effective way.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Shantou University Medical College, Shantou, China.
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Tianbiao Zhang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hanwei Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Muqi Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Chaoliang Wang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Shantou University Medical College, Shantou, China.
| | - Qing Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Baoping Qiao
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaojuan Sun
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Qiaoxia Zhang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Xiaoqiang Guo
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Guoping Zhao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Weixing Zhang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, 100034, China.
| |
Collapse
|