1
|
Bret C, Desmots-Loyer F, Moreaux J, Fest T. BHLHE41, a transcriptional repressor involved in physiological processes and tumor development. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00973-3. [PMID: 39254779 DOI: 10.1007/s13402-024-00973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Collapse
Affiliation(s)
- Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
| | - Fabienne Desmots-Loyer
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
- Institut Universitaire de France, Paris, France.
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| |
Collapse
|
2
|
Xu L, Zhang X, Li G, Zhang L, Zhang S, Shi F, Hu Z. Inhibition of SIRT1 by miR-138-5p provides a mechanism for inhibiting osteoblast proliferation and promoting apoptosis under simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:59-69. [PMID: 36682830 DOI: 10.1016/j.lssr.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
Microgravity can inhibit osteoblast proliferation and promote apoptosis, which is related to a reduction in mechanical stress on the bones and results in disuse osteoporosis, but the detailed mechanism is still unclear. In this study, we first demonstrated that miR-138-5p was upregulated, inhibited osteoblast proliferation and induced osteoblast apoptosis under simulated microgravity. Moreover, miR-138-5p silencing partially mitigated the effects of proliferation and apoptosis of MC3T3-E1 cells. Our study further showed that sirtuin 1 (SIRT1) was downregulated and negatively correlated with the expression of miR-138-5p under simulated microgravity, which indicated that miR-138-5p inhibited osteoblast proliferation and promoted osteoblast apoptosis by targeting SIRT1. Thus, the miR-138-5p/SIRT1 pathway should be considered for preventative treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Jiang B, Kang X, Zhao G, Lu J, Wang Z. miR-138 Reduces the Dysfunction of T Follicular Helper Cells in Osteosarcoma via the PI3K/Akt/mTOR Pathway by Targeting PDK1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2895893. [PMID: 34950224 PMCID: PMC8691981 DOI: 10.1155/2021/2895893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the effect of miR-138 on the function of osteosarcoma (OS) T follicular helper cells (Tfh cells) and its mechanism. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from patients with osteosarcoma (OS group) and healthy volunteers (control group). CD4+CXCR5+ Tfh cells and CD9+ B cells were sorted by flow cytometry. qRT-PCR was used to detect the expression of miR-138 and PDK1 in the peripheral blood and CD4+CXCR5+ Tfh cells. Flow cytometry was employed to detect the proportion of CD4+CXCR5+ Tfh cells in CD4+ T cells, the level of CD40L in CD4+CXCR5+ Tfh cells, and the expression of CD27 and CD38 in B cells. Western blot was used to determine the protein expression of PDK1, PI3K, p-Akt, Akt, p-mTOR, and mTOR. In addition, dual-luciferase reporter assay was performed to verify the relationship between miR-138 and PDK1. ELISA method was used to determine the levels of IgM, IgG, IL-10, and IL-21. RESULTS Compared with that of the control group, the expression of miR-138 in PBMC and CD4+CXCR5+ Tfh cells of the OS group was lower; overexpression of miR-138 could promote the maturation of Tfh cells and immature B cells. The results of the dual-luciferase report experiment showed that miR-138 can target and negatively regulate PDK1, and PDK1 can reverse the effect of miR-138 on the function of Tfh cells and immature B cells. CONCLUSION miR-138 inhibits the PI3K/Akt/mTOR pathway by targeting and negatively regulating PDK1 to alleviate the dysfunction of T follicular helper cells in OS.
Collapse
Affiliation(s)
- Baoen Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, No. 317 Nanyi Road, Dongying District, Dongying, Shandong 257091, China
| | - Xiuqin Kang
- Department of Nursing, Dongying People's Hospital, No. 317 Nanyi Road, Dongying District, Dongying, Shandong 257091, China
| | - Gang Zhao
- Department of Traumatic Orthopaedics, Dongying People's Hospital, No. 317 Nanyi Road, Dongying District, Dongying, Shandong 257091, China
| | - Jianshu Lu
- Department of Traumatic Orthopaedics, Dongying People's Hospital, No. 317 Nanyi Road, Dongying District, Dongying, Shandong 257091, China
| | - Zhitao Wang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, No. 317 Nanyi Road, Dongying District, Dongying, Shandong 257091, China
| |
Collapse
|
4
|
Yang X, Wu JS, Li M, Zhang WL, Gao XL, Wang HF, Yu XH, Pang X, Zhang M, Liang XH, Tang YL. Inhibition of DEC2 is necessary for exiting cell dormancy in salivary adenoid cystic carcinoma. J Exp Clin Cancer Res 2021; 40:169. [PMID: 33990215 PMCID: PMC8120837 DOI: 10.1186/s13046-021-01956-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Background Patients were prone to have poor prognosis once dormant tumor cells being reactivated. However, the molecular mechanism of tumor cell dormancy remains poorly understood. This study aimed to investigate the function of DEC2 in the dormancy of salivary adenoid cystic carcinoma (SACC) in vitro and vivo. Methods The function of DEC2 in tumor dormancy of SACC was investigated in nude mice by establishing primary and lung metastasis model. Meanwhile, the interaction between hypoxia and SACC dormancy and the role of DEC2 were demonstrated through CoCl2 induced hypoxia–mimicking microenvironments. Furthermore, the expression of DEC2 was detected by immunohistochemical staining in primary SACC samples with and without recurrence. Results In the primary SACC, DEC2 overexpression inhibited cell proliferation, increased cell population arrested in G0/G1 phase, and participated in dormancy regulation, which limited tumor growth. Intriguingly, in the model of lung metastasis, the level of DEC2 was reduced significantly and resulted in dormancy exit and growth resumption of SACC cells. Then, we found that DEC2 may associate with hypoxia in contributing to tumor dormancy, which might provide a possible cue to explain the different roles of DEC2 in primary and metastasis lesions. And overexpression of DEC2 induced dormancy and promoted migration and invasion through activating EMT program. Finally, DEC2 positive expression was shown to be significantly correlated with recurrence and dormancy of SACC patients. Conclusions These findings provide a novel insight into the role of DEC2 gene in tumor dormancy and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01956-0.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.,Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Xiao-Lei Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hao-Fan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
5
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
6
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
7
|
Zhang Q, Wu J, Zhang X, Cao L, Wu Y, Miao X. Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade. Aging (Albany NY) 2021; 13:6804-6819. [PMID: 33621196 PMCID: PMC7993718 DOI: 10.18632/aging.202538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is a malignancy that primarily affects children and young adults. The poor survival is largely attributed to acquisition of chemoresistance. Thus, the current study aimed to elucidate the role of ELK1/miR-134/PTBP1 signaling cascade in osteosarcoma chemoresistance. Doxorubicin (DXR)-resistant human osteosarcoma cells were initially self-established by continuous exposure of MG-63, U2OS and HOS cells to increasing DXR doses. Osteosarcoma chemoresistance in vitro was evaluated using CCK-8 assays and EdU staining. Aerobic glycolysis was evaluated by lactic acid production, glucose consumption, ATP levels, and Western blot analysis of GLUT3, HK2 and PDK1 proteins. The nude mice were injected with 5.0 mg/kg DXR following the subcutaneous transplantation of osteosarcomas. PTBP1 was upregulated in tumor tissues derived from non-responders to DXR treatment and correlated with patient poor survival. PTBP1 enhanced chemoresistance in cultured osteosarcoma cells in vitro and in vivo by increasing aerobic glycolysis. Additionally, miR-134 inhibited translation of PTBP1. ELK1 bound to miR-134 promoter and inhibited its expression. Overexpressed ELK1 enhanced chemoresistance and increased aerobic glycolysis by downregulating miR-134 and upregulating PTBP1 in DXR-resistant cells. Altogether, the key findings of the present study highlight ELK1/miR-134/PTBP1 signaling cascade as a novel molecular mechanism underlying the acquisition of osteosarcoma chemoresistance.
Collapse
Affiliation(s)
- Qiang Zhang
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jiaqi Wu
- Trauma Group of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiangfeng Zhang
- Trauma Group of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Le Cao
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yongping Wu
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xudong Miao
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
8
|
Fu Y, Wang Y, Bi K, Yang L, Sun Y, Li B, Liu Z, Zhang F, Li Y, Feng C, Bi Z. MicroRNA-208a-3p promotes osteosarcoma progression via targeting PTEN. Exp Ther Med 2020; 20:255. [PMID: 33178353 PMCID: PMC7651880 DOI: 10.3892/etm.2020.9385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor with a poor prognosis. Accumulated evidence has suggested that microRNAs (miRNAs/miRs) may function as either oncogenes or tumor suppressors, which are associated with tumorigenesis and the progression of different types of cancer. In the present study, the role of miR-208a-3p in OS was investigated. The expression levels of miR-208a-3p in OS tissues and cell lines were determined via reverse transcription-quantitative PCR (RT-qPCR). MTT and colony formation assays were performed to verify the proliferation rate of OS cells. In addition, the effects of miR-208a-3p on the migration and invasion of OS cells were revealed using wound-healing and Transwell assays, respectively. Furthermore, the association between miR-208a-3p and phosphatase and tensin homolog (PTEN) 3'-untranslated region was determined via luciferase reporter assays, western blot and RT-qPCR analysis. The results indicated that miR-208a-3p was upregulated in OS tissues and cell lines compared with adjacent normal tissues and human osteoblastic cells, respectively. miR-208a-3p overexpression promoted and miR-208a-3p knockdown inhibited OS cells proliferation and metastatic potential. Additionally, PTEN was validated as a direct target of miR-208a-3p and its expression was negatively associate with that of miR-208a-3p in OS cells. Taken together, these results may suggest that miR-208a-3p promoted OS cells proliferation and metastatic potential via targeting PTEN. Therefore, miR-208a-3p may be considered as a diagnostic biomarker for OS.
Collapse
Affiliation(s)
- Yutuo Fu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China.,Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Yan Wang
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Ke Bi
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yi Sun
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Boyuan Li
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenzhong Liu
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Fulin Zhang
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Yuan Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Chao Feng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
9
|
Chen Z, Zhao F, Liang C, Hu L, Li D, Zhang Y, Yin C, Chen L, Wang L, Lin X, Su P, Ma J, Yang C, Tian Y, Zhang W, Li Y, Peng S, Chen W, Zhang G, Qian A. Silencing of miR-138-5p sensitizes bone anabolic action to mechanical stimuli. Theranostics 2020; 10:12263-12278. [PMID: 33204341 PMCID: PMC7667683 DOI: 10.7150/thno.53009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence is revealing that microRNAs (miRNAs) play essential roles in mechanosensing for regulating osteogenesis. However, no mechanoresponsive miRNAs have been identified in human bone specimens. Methods: Bedridden and aged patients, hindlimb unloaded and aged mice, and Random Positioning Machine and primary aged osteoblasts were adopted to simulate mechanical unloading conditions at the human, animal and cellular levels, respectively. Treadmill exercise and Flexcell cyclic mechanical stretching were used to simulate mechanical loading in vivo and in vitro, respectively. Results: Here, we found increased miR-138-5p levels with a lower degree of bone formation in bone specimens from bedridden and aged patients. Loss- and gain-of-function studies showed that miR-138-5p directly targeted microtubule actin crosslinking factor 1 (MACF1) to inhibit osteoblast differentiation under different mechanical conditions. Regarding translational medicine, bone-targeted inhibition of miR-138-5p attenuated the decrease in the mechanical bone anabolic response in hindlimb unloaded mice. Moreover, bone-targeted inhibition of miR-138-5p sensitized the bone anabolic response to mechanical loading in both miR-138-5p transgenic mice and aged mice to promote bone formation. Conclusion: These data suggest that miR-138-5p as a mechanoresponsive miRNA accounts for the mechanosensitivity of the bone anabolic response and that inhibition of miR-138-5p in osteoblasts may be a novel bone anabolic sensitization strategy for ameliorating disuse or senile osteoporosis.
Collapse
|
10
|
Zhang C, Wang Q, Zhou X, Zhang L, Yao Y, Gu J, Chen H, Qian J, Luo C, Bai Q, Hu G. MicroRNA‑138 modulates glioma cell growth, apoptosis and invasion through the suppression of the AKT/mTOR signalling pathway by targeting CREB1. Oncol Rep 2020; 44:2559-2568. [PMID: 33125147 PMCID: PMC7640360 DOI: 10.3892/or.2020.7809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Alterations in the expression of microRNA (miR)-138 have been demonstrated to result in the development of several malignant tumours. However, the possible function of miR-138 in human glioma cells remains unclear. The present study demonstrated that miR-138 was significantly downregulated in 48 human glioma specimens by quantitative PCR analysis. The upregulation of miR-138 exerted significant antiproliferative and anti-invasive effects on glioma cells and promoted their apoptosis. In addition, cAMP response element-binding protein 1 (CREB1) was confirmed as a direct target gene of miR-138 by luciferase gene reporter assay, and the antitumour effect of miR-138 on glioma cells was significantly reversed by CREB1 overexpression. Moreover, the molecular mechanisms underlying the tumour-suppressive role of miR-138 in malignant glioma may be associated with the dephosphorylation of AKT/mTOR caused by the miR-138 upregulation-induced decrease in CREB1 expression in glioma cells. The results of the present study indicated that miR-138 may affect CREB1/AKT/mTOR signalling to regulate the proliferation, apoptosis and invasion of glioma cells and the malignant progression of glioma, thereby suggesting that miR-138 may be a potential target for the treatment of gliomas.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Changzheng Hospital, Navy Medical University, Shanghai 200003, P.R. China
| | - Qi Wang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xiaowen Zhou
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai 200003, P.R. China
| | - Lei Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying Yao
- Department of Operating Room, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Juan Gu
- Department of Operating Room, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Huairui Chen
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jun Qian
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Chun Luo
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Qingke Bai
- Department of Neurology, Pudong People's Hospital, Shanghai 201200, P.R. China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Navy Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
11
|
Smith AM, Leeming A, Fang Z, Hatchard T, Mioduszewski O, Schneider MA, Ferdossifard A, Shergill Y, Khoo EL, Poulin P. Mindfulness-based stress reduction alters brain activity for breast cancer survivors with chronic neuropathic pain: preliminary evidence from resting-state fMRI. J Cancer Surviv 2020; 15:518-525. [PMID: 33000446 DOI: 10.1007/s11764-020-00945-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer continues to be the most commonly diagnosed cancer among Canadian women, with as many as 25-60% of women suffering from chronic neuropathic pain (CNP) as a pervasive consequence of treatment. While pharmacological interventions have shown limited efficacy for the management of CNP to date, psychological interventions, such as mindfulness-based stress reduction (MBSR), may be a promising alterative for improving pain-related problems. The purpose of this study was to use brain imaging methods to investigate this potential. METHODS Resting-state fMRI was used in female breast cancer survivors with CNP before and after an 8-week MBSR course (n = 13) and compared with a waitlist control group (n = 10). RESULTS Focusing on the default mode network, the most significant results show greater posterior cingulate connectivity with medial prefrontal regions post-MBSR intervention. Moreover, this change in connectivity correlated with reduced pain severity for the MBSR group. CONCLUSIONS These results provide empirical evidence of a change in the brain following MBSR intervention associated with changes in the subjective experience of pain. IMPLICATIONS FOR CANCER SURVIVORS This study gives hope for a non-invasive method of easing the struggle of CNP in women following breast cancer treatment.
Collapse
Affiliation(s)
- A M Smith
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2079, Ottawa, Ontario, K1N 6N5, Canada.
| | - A Leeming
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2079, Ottawa, Ontario, K1N 6N5, Canada
| | - Z Fang
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2079, Ottawa, Ontario, K1N 6N5, Canada
| | - T Hatchard
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - O Mioduszewski
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2079, Ottawa, Ontario, K1N 6N5, Canada
| | - M A Schneider
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - A Ferdossifard
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Y Shergill
- The Ottawa Health Research Institute, Ottawa, Canada
| | - E-L Khoo
- The Ottawa Health Research Institute, Ottawa, Canada
| | - P Poulin
- Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
12
|
Li C, Gao H, Feng X, Bi C, Zhang J, Yin J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J Biochem Mol Toxicol 2020; 34:e22597. [PMID: 32762018 DOI: 10.1002/jbt.22597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Ginsenoside Rh2 is a primary bioactive compound obtained from ginseng that indicated anticancer activities against several malignant tumors. However, previous studies have reported little about the inhibitory effect of Rh2 on osteosarcoma (OS). This study aims to explore whether Rh2 could exert anticancer effects in OS cells and further investigate the proliferation, migration, and apoptosis mechanisms induced by Rh2 in human OS U20S cell line. The viability of U20S cells was obtained by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell migration property was analyzed by wound-healing assay. Apoptosis was visualized using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI), and annexin V/propidium iodide (PI) staining. Relative protein expressed was confirmed through Western blot analysis. Mitochondrial membrane potential was evaluated by JC-1 staining. In this study, we used broad-spectrum anticancer drug cisplatin (CP) as a positive control. The results indicated that Rh2 remarkably inhibited cell viability of U20S cells in a dose- and time-dependent manner, and suppressed migration. TUNEL, DAPI, annexin V/PI, and JC-1 assay suggested that Rh2 could induce cellular apoptosis. Rh2 could reduce the levels of Bcl-2, caspase 3, and caspase 9, and promote the expression level of Bax in U20S cells. Moreover, Rh2 could induce apoptosis by promoting mitogen-activated protein kinase (MAPK) signaling pathway and inhibit PI3K/Akt/mTOR and nuclear factor-κB (NF-κB) signaling pathway in U20S cells. These findings indicated that Rh2 has an anticancer effect on U20S cells by regulating MAPK, PI3K/Akt/mTOR, and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Feng
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Chuyao Bi
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Zhang
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Song N, Li P, Song P, Li Y, Zhou S, Su Q, Li X, Yu Y, Li P, Feng M, Zhang M, Lin W. MicroRNA-138-5p Suppresses Non-small Cell Lung Cancer Cells by Targeting PD-L1/PD-1 to Regulate Tumor Microenvironment. Front Cell Dev Biol 2020; 8:540. [PMID: 32754587 PMCID: PMC7365935 DOI: 10.3389/fcell.2020.00540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is still challenging for treatment owing to immune tolerance and evasion. MicroRNA-138 (miR-138) not only acts as a tumor suppressor to inhibit tumor cell proliferation and migration but also regulates immune response. The regulatory mechanism of miR-138 in NSCLC remains not very clear. Herein, we demonstrated that miR-138-5p treatment decreased the growth of tumor cells and increased the number of tumor-infiltrated DCs. miR-138-5p not only down-regulated the expression of cyclin D3 (CCND3), CCD20, Ki67, and MCM in A549/3LL cells, but also regulated the maturation of DCs in A549-bearing nude mice and the 3LL-bearing C57BL/6 mouse model, and DCs’ capability to enhance T cells to kill tumor cells. Furthermore, miR-138-5p was found to target PD-L1 to down-regulate PD-L1 on tumor cells to reduce the expression of Ki67 and MCM in tumor cells and decrease the tolerance effect on DCs. miR-138-5p also directly down-regulates the expression of PD-L1 and PD-1 on DCs and T cells. Similar results were obtained from isolated human non-small cell lung cancer (NSCLC) cells and DCs. Thus, miR-138-5p inhibits tumor growth and activates the immune system by down-regulating PD-1/PD-L1 and it is a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Nannan Song
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Peng Li
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Pingping Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Yintao Li
- Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| | - Pengfei Li
- Departments of Medicine, Tibet Nationalities University, Xianyang, China
| | - Meng Feng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China.,School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan University, Jinan, China
| | - Min Zhang
- Departments of Medicine, Tibet Nationalities University, Xianyang, China
| | - Wei Lin
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical School, Jinan, China
| |
Collapse
|
14
|
Sato F, Bhawal UK, Sugiyama N, Osaki S, Oikawa K, Muragaki Y. Potential Role of DEC1 in Cervical Cancer Cells Involving Overexpression and Apoptosis. Clocks Sleep 2020; 2:26-38. [PMID: 33089188 PMCID: PMC7445836 DOI: 10.3390/clockssleep2010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Basic helix-loop-helix (BHLH) transcription factors differentiated embryonic chondrocyte gene 1 (DEC1) and gene 2 (DEC2) regulate circadian rhythms, apoptosis, epithelial mesenchymal transition (EMT), invasions and metastases in various kinds of cancer. The stem cell markers SOX2 and c-MYC are involved in the regulation of apoptosis and poor prognosis. In cervical cancer, however, their roles are not well elucidated yet. To determine the function of these genes in human cervical cancer, we examined the expression of DEC1, DEC2, SOX2 and c-MYC in human cervical cancer tissues. In immunohistochemistry, they were strongly expressed in cancer cells compared with in non-cancerous cells. Notably, the strong rate of DEC1 and SOX2 expressions were over 80% among 20 cases. We further examined the roles of DEC1 and DEC2 in apoptosis. Human cervical cancer HeLa and SiHa cells were treated with cisplatin-HeLa cells were sensitive to apoptosis, but SiHa cells were resistant. DEC1 expression decreased in the cisplatin-treated HeLa cells, but had little effect on SiHa cells. Combination treatment of DEC1 overexpression and cisplatin inhibited apoptosis and affected SOX2 and c-MYC expressions in HeLa cells. Meanwhile, DEC2 overexpression had little effect on apoptosis and on SOX2 and c-MYC expressions. We conclude that DEC1 has anti-apoptotic effects and regulates SOX2 and c-MYC expressions on apoptosis.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan; (N.S.); (S.O.); (K.O.); (Y.M.)
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto-gun 411-8777, Japan
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
| | - Nao Sugiyama
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan; (N.S.); (S.O.); (K.O.); (Y.M.)
| | - Shoko Osaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan; (N.S.); (S.O.); (K.O.); (Y.M.)
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan; (N.S.); (S.O.); (K.O.); (Y.M.)
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan; (N.S.); (S.O.); (K.O.); (Y.M.)
| |
Collapse
|
15
|
Zhang D, Zheng Q, Wang C, Zhao N, Liu Y, Wang E. BHLHE41 suppresses MCF-7 cell invasion via MAPK/JNK pathway. J Cell Mol Med 2020; 24:4001-4010. [PMID: 32073238 PMCID: PMC7171311 DOI: 10.1111/jcmm.15033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/16/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022] Open
Abstract
Deregulation of the basic helix‐loop‐helix family member e41 (BHLHE41) has been characterized as a marker of progression of several cancers. In this study, we aimed to explore the mechanism by which BHLHE41 regulates the invasion of breast cancer cells. BHLHE41 suppresses, whereas the silencing of BHLHE41 promotes tumour invasion of both MCF‐7 and MDA‐MB‐231 cells. Meanwhile, BHLHE41 down‐regulated the transcription and translation of SNAI1, SNAI2, VIM and CDH2, and up‐regulated those of CLDN1, CLDN4 and CDH1. Reporter assay indicated that silencing of BHLHE41 dramatically activated the MAPK/JNK signalling pathway in MCF‐7 cell line and the hypoxia signalling pathway in MDA‐MB‐231 cell line. Furthermore, silencing of BHLHE41 activated the MAPK/JNK signalling pathway by up‐regulating phosphorylated JNK and failed to affect the expression of HIF‐1 alpha in MCF‐7 cells. After blocking the MAPK/JNK signalling pathway by specific inhibitor SP600125, silencing of BHLHE41 failed to promote tumour cell invasion. These results suggest that BHLHE41 facilitates MCF‐7 cell invasion mainly via the activation of MAPK/JNK signalling pathway. In conclusion, although BHLHE41 suppresses tumour invasion in MCF‐7 and MDA‐MB‐231 cell lines, the specific regulatory mechanisms may be different.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qin Zheng
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chen Wang
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
17
|
Zheng Y, Zhang J, Ye B. miR-138 mediates sorafenib-induced cell survival and is associated with poor prognosis in cholangiocarcinoma cells. Clin Exp Pharmacol Physiol 2019; 47:459-465. [PMID: 31663629 DOI: 10.1111/1440-1681.13205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma is an aggressive malignancy with rapid invasion, metastasis and poor prognosis, however, the mechanism mediating its cholangiocarcinoma development needs further investigation. Here, we demonstrate that decreased miR-138 in tumor tissues is related to the poor prognosis in patients, and that miR-138 mediates sorafenib-induced cell survival in cholangiocarcinoma cells. Moreover, miR-138 negatively regulates SOX4 expression by specifically targeting its 3' untranslated region (3' UTR). As per our results, overexpression of SOX4 reversed sorafenib-induced changes in cell viability and apoptosis. Furthermore, the elevated levels of SOX4 in the tumor tissues that correlated with poor prognosis. Overall, the present study reveals that miR-138/SOX4 is involved in sorafinib-mediated cell survival in cholangiocarcinoma cells, and is associated with poor prognosis.
Collapse
Affiliation(s)
- Yingjie Zheng
- Department of Gastroenterology, Lianshui County People's Hospital, Huai'an, China
| | - Jingyu Zhang
- Department of Gastroenterology, Lianshui County People's Hospital, Huai'an, China
| | - Bin Ye
- Department of Gastroenterology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
18
|
Wang C, Zhao N, Zheng Q, Zhang D, Liu Y. BHLHE41 promotes U87 and U251 cell proliferation via ERK/cyclinD1 signaling pathway. Cancer Manag Res 2019; 11:7657-7672. [PMID: 31616182 PMCID: PMC6698591 DOI: 10.2147/cmar.s214697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The biological functions of BHLHE41 in the proliferation of glioblastoma remained unexplored. We aimed to investigate the biological roles and underlying molecular mechanisms of BHLHE41 in glioblastoma. Materials and methods We used multiple methods, including Western blot analysis, soft agar colony-formation assay, CCK8 assay, and flow cytometry, to evaluate the changes in multiple cellular functions after BHLHE41 knockdown or overexpression in U87 and U251 cell lines. The TCGA database was then used to analyze the associations between BHLHE41 expression with clinicopathological factors and the overall survival (OS) of glioma patients. Results This study determined that overexpression of BHLHE41 promoted glioma cell proliferation and colony formation. Besides, BHLHE41 upregulated cyclinD1, cyclinD3, and cyclinE1 expression and drove phase transition from G1 to S and G2 phases by upregulating these cyclins. In contrast, knockdown of BHLHE41 had an opposite effect on all of these parameters. However, BHLHE41 had no effect on apoptosis. Moreover, BHLHE41 activated MAPK/ERK signaling pathway to upregulate cyclinD1 expression. After the ERK signal pathway was blocked by a specific inhibitor, SCH772984, cyclinD1 upregulation was reversed. Furthermore, the median OS of low-grade glioma (LGG) patients with low to median level of BHLHE41 was 22.6 months, longer than that of the patients with high level of BHLHE41 (21.0 months). Conclusion BHLHE41 has an important role in the proliferation of glioblastoma and could serve as a novel candidate for targeted therapy of glioblastoma.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Pathology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Na Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Pathology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Qin Zheng
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Pathology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Di Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Pathology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, People's Republic of China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Pathology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
19
|
Qiu H, Chen F, Chen M. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis. Biol Open 2019; 8:8/8/bio042937. [PMID: 31371307 PMCID: PMC6737980 DOI: 10.1242/bio.042937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melanoma with rapid progression towards metastasis has become the deadliest form of skin cancer. However, the mechanism of melanoma growth and metastasis is still unclear. Here, we found that miRNA-138 was lowly expressed and hypoxia-inducible factor 1α (HIF1α) was highly expressed in patients’ melanoma tissue compared with the paracancerous tissues, and they had a significant negative correlation (r=−0.877, P<0.001). Patients with miRNA-138low/HIF1αhigh signatures were predominant in late stage III/IV of melanoma. Further, bioinformatic analysis demonstrated that miRNA-138 directly targeted HIF1α. We found that the introduction of pre-miRNA-138 sequences to A375 cells reduced HIF1α mRNA expression and suppressed cell proliferation, migration and invasion. Overexpression of miRNA-138 or inhibition of HIF1α significantly suppressed the growth and metastasis of melanoma in vivo. Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis. Summary: Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis.
Collapse
Affiliation(s)
- Haijiang Qiu
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Fangchao Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Minjun Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
20
|
Mutual suppression between BHLHE40/BHLHE41 and the MIR301B-MIR130B cluster is involved in epithelial-to-mesenchymal transition of endometrial cancer cells. Oncotarget 2019; 10:4640-4654. [PMID: 31384392 PMCID: PMC6659797 DOI: 10.18632/oncotarget.27061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors involved in multiple cell activities including epithelial-to-mesenchymal transition (EMT). However, the expression mechanism of BHLHE40/41 in EMT remains unclear. In the present study, we showed that the expression levels of BHLHE40/41 were negatively correlated with those of the microRNA (MIR) 130 family in endometrial cancer (EC) specimens. Our in vitro assays indicated that the expression of BHLHE40/41 was suppressed directly by the MIR130 family in a 3'-untranslated region-mediated manner. In EC cells, the MIR130 family promoted EMT and tumor cell invasion by suppressing the expression of BHLHE40/41. We identified the critical promoter region of the MIR301B-MIR130B cluster for its basal transcription by the transcription factor, SP1. We also found that BHLHE40/41 suppressed the expression of MIR301B and MIR130B, and we identified a binding site in the promoter region for BHLHE40/41. This study is the first to report that BHLHE40/41 and the MIR301B-MIR130B cluster suppressed each other to regulate EMT and invasion of EC cells. We propose that BHLHE40/41 and the MIR130 family are excellent markers to predict the progression of EC cases, and that molecular therapy targeting the MIR130 family-BHLHE40/41 axis may effectively control EC extension.
Collapse
|
21
|
Xu W, Gao P, Zhang Y, Piao L, Dong D. microRNA-138 induces cell survival and reduces WNT/β-catenin signaling of osteoarthritis chondrocytes through NEK2. IUBMB Life 2019; 71:1355-1366. [PMID: 31034758 DOI: 10.1002/iub.2050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by joint pain, stiffness, and function degeneration with high incidence. Recent studies have been inspired based on the association between microRNAs (miRs) and therapeutic research of OA. Hence, the present study evaluates the effects of miR-138 on chondrocyte proliferation, differentiation, and apoptosis through the WNT/β-catenin signaling pathway in mice with OA by binding to NIMA-related kinase 2 (NEK2). Appropriate dataset was selected from the Gene Expression Omnibus database, and differentially expressed genes and potential miRNAs that could regulate NEK2 were explored. A mouse model of OA was established. The expressions of miR-138, NEK2, β-catenin, GSK3β, Bcl-2, Bcl-2-associated X protein (Bax), p53, MMP-13, Col2, and Aggrecan and the phosphorylation levels of β-catenin were determined by the reverse transcription quantitative polymerase chain reaction and Western blot analysis. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry were employed to detect cell proliferation and apoptosis, respectively. The potential functional role of NEK2 was revealed to be related to the WNT/β-catenin signaling pathway, and miR-138 was the putative regulator of NEK2. miR-138 expression was downregulated while expressions of NEK2 and β-catenin as well as the phosphorylation levels of β-catenin were upregulated in mice with OA. The chondrocytes treated with miR-138 mimic and siRNA-NEK2 exhibited reduced expressions of NEK2, β-catenin, MMP-13, Bax, and p53 and elevated expressions of Col2, Aggrecan, and Bcl-2 as well as phosphorylation levels of β-catenin along with enhanced chondrocytes' proliferation and suppressed cell apoptosis. Overexpression of miR-138 induces cell survival and reduces WNT/β-catenin signaling of OA chondrocytes through NEK2. © 2019 IUBMB Life, 71(9):1355-1366, 2019.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Peihong Gao
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Zhang
- Jilin Province Population Life Science and Technology Research Institute, Changchun, People's Republic of China
| | - Li Piao
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
22
|
Li XF, Zhao GQ, Li LY. Ginsenoside impedes proliferation and induces apoptosis of human osteosarcoma cells by down-regulating β-catenin. Cancer Biomark 2019; 24:395-404. [PMID: 30909183 DOI: 10.3233/cbm-182046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is the most commonly occurred primary bone malignancy with high incident rates among children and adolescents. In pharmacologic treatment, the drug ginsenoside has been shown to exert anticancer effects on several malignant diseases. The purpose of this research was to investigate the effect of ginsenoside on the apoptosis and proliferation of human OS MG-63 and Saos-2 cells by regulating the expression of β-catenin. METHODS Human OS MG-63 and Saos-2 cells were assigned into control group, and four groups with treatment by varying concentrations (12.5 μg/mL, 25 μg/mL, 50 μg/mL and 100 μg/mL) of ginsenoside, respectively. Cell growth after treatment was observed through cell slides. The proliferation rate of MG-63 and Saos-2 cells in each group was detected by CCK-8. After cell transfection at 48 h, cell cycle and cell apoptosis were detected by FITC-Annexin V staining and flow cytometry. The protein and mRNA expressions of β-catenin, Cyclin D1, Bcl-2, Bax and cleaved caspase-3 were detected by RT-qPCR and western blot analysis. RESULTS With increased exposure and concentration of ginsenoside, the cell density, total cell numbers and the absorbance of MG-63 and Saos-2 cells gradually decreased. FITC-Annexin V and FITC-Annexin V/PI staining demonstrated that the cell proportion at S phase decreased, whereas the total apoptotic rate of MG-63 and Saos-2 cells was increased. Furthermore, RT-qPCR and western blot analysis highlighted a gradual decrease in protein and mRNA expressions of β-catenin, Bcl-2 and Cyclin D1, while an elevation in those of Bax and cleaved caspase-3. CONCLUSION The results of this study demonstrate that ginsenoside inhibits proliferation and promotes apoptosis of human OS MG-63 and Saos-2 cells by reducing the expressions of β-catenin, Bcl-2 and Cyclin D1 and increasing the expression of Bax and cleaved caspase-3.
Collapse
|
23
|
Roberto GM, Lira RC, Delsin LE, Vieira GM, Silva MO, Hakime RG, Yamashita ME, Engel EE, Scrideli CA, Tone LG, Brassesco MS. microRNA-138-5p as a Worse Prognosis Biomarker in Pediatric, Adolescent, and Young Adult Osteosarcoma. Pathol Oncol Res 2019; 26:877-883. [PMID: 30864107 DOI: 10.1007/s12253-019-00633-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor with two peaks of incidence, in early adolescence and the elderly. Patients affected with this malignancy often present metastatic disease at diagnosis, and despite multimodality therapy, survival has not improved substantially over the past 3 decades. Recently, miR-138-5p, proposed as a crucial intracellular mediator of invasion, has been recognized to target the Rho-associated coiled-coil containing protein kinase 2 (ROCK2). Dysregulation of ROCK1 and ROCK2 was also described in OS, being associated to higher metastasis incidence and worse prognosis. Nonetheless, the specific roles of miR-138-5p in pediatric and young adult OS and its ability to modulate these kinases remain to be established. Thus, in the present study, the expression levels miR-138-5p were evaluated in a consecutive cohort of exclusively pediatric and young adult primary OS samples. In contrast to previous reports that included adult tissues, our results showed upregulation of miR-138-5p associated with reduced event-free survival and relapsed cases. In parallel, ROCK1 mRNA levels were significantly reduced in tumor samples and negatively correlated with miR-138-5p. Similar correlations were observed after studying the profiles of ROCK1 and ROCK2 by immunohistochemistry. Our data present miR-138-5p as a consistent prognostic factor in pediatric and young adult OS, reinforcing its participation in the post-transcriptional regulation of ROCK kinases.
Collapse
Affiliation(s)
| | | | - Lara Elis Delsin
- Department of Genetics, University of São Paulo, São Paulo, Brazil
| | | | | | - Rodrigo Guedes Hakime
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mauricio Eiji Yamashita
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Edgard Eduard Engel
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - María Sol Brassesco
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil. .,Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900. Bairro Monte Alegre, Ribeirão Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
24
|
Xie L, Yao Z, Zhang Y, Li D, Hu F, Liao Y, Zhou L, Zhou Y, Huang Z, He Z, Han L, Yang Y, Yang Z. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Cell Death Dis 2018; 9:772. [PMID: 29991755 PMCID: PMC6039476 DOI: 10.1038/s41419-018-0813-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common pediatric malignant bone tumor, and occurrence of pulmonary metastasis generally causes a rapid and fatal outcome. Here we aimed to provide clues for exploring the mechanism of tumorigenesis and pulmonary metastasis for OS by comprehensive analysis of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in primary OS and OS pulmonary metastasis. In this study, deep sequencing with samples from primary OS (n = 3), pulmonary metastatic OS (n = 3), and normal controls (n = 3) was conducted and differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and mRNAs (DEmRNAs) between primary OS and normal controls as well as pulmonary metastatic and primary OS were identified. A total of 65 DEmiRNAs, 233 DElncRNAs, and 1405 DEmRNAs were obtained between primary OS and normal controls; 48 DEmiRNAs, 50 DElncRNAs, and 307 DEmRNAs were obtained between pulmonary metastatic and primary OS. Then, the target DEmRNAs and DElncRNAs regulated by the same DEmiRNAs were searched and the OS tumorigenesis-related and OS pulmonary metastasis-related competing endogenous RNA (ceRNA) networks were constructed, respectively. Based on these ceRNA networks and Venn diagram analysis, we obtained 3 DEmiRNAs, 15 DElncRNAs, and 100 DEmRNAs, and eight target pairs including miR-223-5p/(CLSTN2, AC009951.1, LINC01705, AC090673.1), miR-378b/(ALX4, IGSF3, SULF1), and miR-323b-3p/TGFBR3 were involved in both tumorigenesis and pulmonary metastasis of OS. The TGF-β superfamily co-receptor TGFBR3, which is regulated by miR-323b-3p, acts as a tumor suppressor in OS tumorigenesis and acts as a tumor promoter in pulmonary metastatic OS via activation of the epithelial-mesenchymal transition (EMT) program.In conclusion, the OS transcriptome (miRNA, lncRNA, and mRNA) is dynamically regulated. These analyses might provide new clues to uncover the molecular mechanisms and signaling networks that contribute to OS progression, toward patient-tailored and novel-targeted treatments.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Computational Biology
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, RNA/methods
- Young Adult
Collapse
Affiliation(s)
- Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Fengdi Hu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yedan Liao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ling Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yonghong Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, 650504, Yunnan, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China.
| |
Collapse
|
25
|
Inhibition of microRNA-138 enhances bone formation in multiple myeloma bone marrow niche. Leukemia 2018; 32:1739-1750. [PMID: 29925904 DOI: 10.1038/s41375-018-0161-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/25/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
Myeloma bone disease is a devastating complication of multiple myeloma (MM) and is caused by dysregulation of bone remodeling processes in the bone marrow microenvironment. Previous studies showed that microRNA-138 (miR-138) is a negative regulator of osteogenic differentiation of mesenchymal stromal cells (MSCs) and that inhibiting its function enhances bone formation in vitro. In this study, we explored the role of miR-138 in myeloma bone disease and evaluated the potential of systemically delivered locked nucleic acid (LNA)-modified anti-miR-138 oligonucleotides in suppressing myeloma bone disease. We showed that expression of miR-138 was significantly increased in MSCs from MM patients (MM-MSCs) and myeloma cells compared to those from healthy subjects. Furthermore, inhibition of miR-138 resulted in enhanced osteogenic differentiation of MM-MSCs in vitro and increased the number of endosteal osteoblastic lineage cells (OBCs) and bone formation rate in mouse models of myeloma bone disease. RNA sequencing of the OBCs identified TRPS1 and SULF2 as potential miR-138 targets that were de-repressed in anti-miR-138-treated mice. In summary, these data indicate that inhibition of miR-138 enhances bone formation in MM and that pharmacological inhibition of miR-138 could represent a new therapeutic strategy for treatment of myeloma bone disease.
Collapse
|
26
|
Wang Y, Zhang H, Ge S, Fan Q, Zhou L, Li H, Bai M, Ning T, Liu R, Wang X, Deng T, Zhang L, Ying G, Ba Y. Effects of miR‑138‑5p and miR‑204‑5p on the migration and proliferation of gastric cancer cells by targeting EGFR. Oncol Rep 2018; 39:2624-2634. [PMID: 29693184 PMCID: PMC5983934 DOI: 10.3892/or.2018.6389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
GC (gastric cancer) remains one of the most lethal malignancies worldwide. EGFR (epidermal growth factor receptor) plays an important role in the malignant process of GC, therefore, the present study addressed the relationship between EGFR and its potential regulators and examined their regulatory mechanisms in GC. We examined differences in the expression levels of EGFR in GC and adjacent non‑cancerous tissues. Bioinformatics analyses and dual luciferase reporter assays were used to confirm the putative relationship between miR‑138 or miR‑204 and EGFR, and their relationship was further detected using western blotting, RT‑PCR, and a series of cell studies. EGFR proteins were abundantly expressed in GC tissues, however EGFR mRNA levels remained indistinctive. Consequently, EGFR was revealed as a putative target of miR‑138 and miR‑204 which bound to the 3'UTR of EGFR mRNA. Further analysis revealed that miR‑138 and miR‑204 were significantly downregulated in GC tissues and the overexpression of miR‑138 and miR‑204 in GC cell lines resulted in the significant inhibition of EGFR protein levels and GC cell proliferation and metastasis. Rescue experiments confirmed that the roles of the two microRNAs were specific to EGFR. EGFR is a pivotal oncogene in GC progression that may be regulated by miR‑138 and miR‑204.
Collapse
Affiliation(s)
- Yi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xia Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
27
|
Nemlich Y, Baruch EN, Besser MJ, Shoshan E, Bar-Eli M, Anafi L, Barshack I, Schachter J, Ortenberg R, Markel G. ADAR1-mediated regulation of melanoma invasion. Nat Commun 2018; 9:2154. [PMID: 29855470 PMCID: PMC5981216 DOI: 10.1038/s41467-018-04600-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Melanoma cells use different migratory strategies to exit the primary tumor mass and invade surrounding and subsequently distant tissues. We reported previously that ADAR1 expression is downregulated in metastatic melanoma, thereby facilitating proliferation. Here we show that ADAR1 silencing enhances melanoma cell invasiveness and ITGB3 expression. The enhanced invasion is reversed when ITGB3 is blocked with antibodies. Re-expression of wild-type or catalytically inactive ADAR1 establishes this mechanism as independent of RNA editing. We demonstrate that ADAR1 controls ITGB3 expression both at the post-transcriptional and transcriptional levels, via miR-22 and PAX6 transcription factor, respectively. These are proven here as direct regulators of ITGB3 expression. miR-22 expression is controlled by ADAR1 via FOXD1 transcription factor. Clinical relevance is demonstrated in patient-paired progression tissue microarray using immunohistochemistry. The novel ADAR1-dependent and RNA-editing-independent regulation of invasion, mediated by ITGB3, strongly points to a central involvement of ADAR1 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Yael Nemlich
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel
| | - Erez Nissim Baruch
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel.,Sackler Faculty of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv, 69978, Israel
| | - Michal Judith Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel.,Sackler Faculty of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv, 69978, Israel
| | - Einav Shoshan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liat Anafi
- Department of Pathology, Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel
| | - Rona Ortenberg
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel
| | - Gal Markel
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel. .,Sackler Faculty of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv, 69978, Israel. .,Talpiot Medical Leadership Program, Sheba Medical Center, Ramat-Gan, 52621, Israel.
| |
Collapse
|
28
|
Zheng S, Zhang X, Wang X, Li J. Downregulation of miR-138 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomark 2018; 20:49-54. [PMID: 28759955 DOI: 10.3233/cbm-170079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been proven to be critical players in many different types of tumors including esophageal squamous cell carcinoma (ESCC). OBJECTIVE This study aimed at investigating the correlation of miR-138 expression and clinical outcome of patients with ESCC. METHODS A total of 168 serum samples and 128 fresh cancer tissues as well as their corresponding adjacent non-cancerous tissues were collected. Real-time PCR was performed to evaluate the clinical value of miR-138 in ESCC. RESULTS Our results showed that tissue and serum miR-138 levels were both significantly reduced in ESCC compared to their respective controls. Tissue miR-138 levels were highly correlated with serum miR-138 levels. Serum miR-138 differentiated patients with ESCC from healthy controls with high accuracy. In addition, reduced tissue/serum miR-138 levels were correlated with unfavorable clinicopathological parameters including T stage, lymph node metastasis and TNM stage. ESCC patients with lower tissue/serum miR-138 levels had shorter five year overall survival compared with those with higher tissue/serum miR-138 levels. Finally, downregulation of miR-138 was demonstrated to be an independent prognostic risk factor for ESCC. CONCLUSIONS In conclusion, both tissue and serum miR-138 levels are reduced in ESCC, and might be promising prognostic biomarkers for ESCC.
Collapse
|
29
|
Blood and lung microRNAs as biomarkers of pulmonary tumorigenesis in cigarette smoke-exposed mice. Oncotarget 2018; 7:84758-84774. [PMID: 27713172 PMCID: PMC5341294 DOI: 10.18632/oncotarget.12475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Cigarette smoke (CS) is known to dysregulate microRNA expression profiles in the lungs of mice, rats, and humans, thereby modulating several pathways involved in lung carcinogenesis and other CS-related diseases. We designed a study aimed at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice exposed to mainstream CS during the first 4 months of life and thereafter kept in filtered air for an additional 3.5 months, (b) the relationship between lung microRNA profiles and histopathological alterations in the lung, (c) intergender differences in microRNA expression, and (d) the comparison with microRNA profiles in blood serum. CS caused multiple histopathological alterations in the lung, which were almost absent in sham-exposed mice. An extensive microRNA dysregulation was detected in the lung of CS-exposed mice. Modulation of microRNA profiles was specifically related to the histopathological picture, no effect being detected in lung fragments with non-neoplastic lung diseases (emphysema or alveolar epithelial hyperplasia), whereas a close association occurred with the presence and multiplicity of preneoplastic lesions (microadenomas) and benign lung tumors (adenomas). Three microRNAs regulating estrogen and HER2-dependent mechanisms were modulated in the lung of adenoma-bearing female mice. Blood microRNAs were also modulated in mice affected by early neoplastic lesions. However, there was a poor association between lung microRNAs and circulating microRNAs, which can be ascribed to an impaired release of mature microRNAs from the damaged lung. Studies in progress are evaluating the feasibility of analyzing blood microRNAs as a molecular tool for lung cancer secondary prevention.
Collapse
|
30
|
Bao L, Miao W, Yu Y. Reduced serum miR-138 is associated with poor prognosis of head and neck squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10276-10281. [PMID: 31966362 PMCID: PMC6965797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/16/2017] [Indexed: 06/10/2023]
Abstract
Circulating microRNAs (miRNAs) have been demonstrated to be potential biomarkers in various cancers including head and neck squamous cell carcinoma (HNSCC). The aim of this study was to assess the diagnostic and prognostic significance of serum miR-138 in HNSCC. Quantitative reverse-transcription PCR (qRT-PCR) was used to measure serum miR-138 levels in 113 HNSCC cases and 60 controls. The results showed that serum miR-138 expression was remarkably down-regulated in HNSCC patients compared to healthy volunteers. Moreover, serum miR-138 levels in 32 patients after receiving surgical treatment were significantly increased. Also, the receiver operating characteristic (ROC) curve analysis revealed that serum miR-138 could discriminate HNSCC patients from controls with high accuracy. Furthermore, a positive correlation was observed between decreased serum miR-138 and worse clinical outcome, as well as shorter survival. Then serum miR-138 was confirmed to be an independent prognostic indicator for HNSCC. Our results demonstrated that serum miR-138 might be a potential biomarker for detection and prognosis prediction of HNSCC.
Collapse
Affiliation(s)
- Li Bao
- Department of Stomatology, Zhongshan Hospital of Fudan UniversityShanghai, China
| | | | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital of Fudan UniversityShanghai, China
| |
Collapse
|
31
|
Zhou Z, Li Z, Shen Y, Chen T. MicroRNA-138 directly targets TNFAIP8 and acts as a tumor suppressor in osteosarcoma. Exp Ther Med 2017; 14:3665-3673. [PMID: 29042962 PMCID: PMC5639325 DOI: 10.3892/etm.2017.4947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) have a critical role in the development and malignant progression of osteosarcoma (OS), but the underlying mechanisms have largely remained elusive. The present study aimed to explore the regulatory role of miR-138 in OS growth and metastasis and investigated the associated mechanisms. Reverse-transcription quantitative polymerase chain reaction and western blot analysis were performed to examine the miR-138 and protein expression levels in OS and normal bone tissues and cell lines. An MTT assay and a Transwell assay were used to assess cell proliferation and invasion. Flow cytometry was used to analyze the cell cycle and determine the apoptotic rate. A luciferase reporter assay was used to confirm the targeting association between miR-138 and tumor necrosis factor-α-induced protein 8 (TNFAIP8). It was found that miR-138 was downregulated in OS tissues and cell lines. Overexpression of miR-138 decreased the proliferation, cell cycle progression and invasion of OS cells, while inducing cell apoptosis. TNFAIP8 was then identified as a novel target of miR-138. Similarly to the effects of miR-138 overexpression, inhibition of TNFAIP8 also inhibited OS cell proliferation, cell cycle progression and invasion, and induced cell apoptosis. In addition, miR-138 overexpression as well as downregulation of TNFAIP8 reduced OS cell invasion via inhibition of matrix metalloproteinase-2 and −9 expression. Taken together, the results of the present study demonstrated that miR-138 directly targets TNFAIP8 and acts as a tumor suppressor in OS, suggesting that the miR-138/TNFAIP8 interaction may become a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi Shen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Tao Chen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
32
|
Liu F, Wu L, Wang A, Xu Y, Luo X, Liu X, Hua Y, Zhang D, Wu S, Lin T, He D, Wei G, Chen S. MicroRNA-138 attenuates epithelial-to-mesenchymal transition by targeting SOX4 in clear cell renal cell carcinoma. Am J Transl Res 2017; 9:3611-3622. [PMID: 28861152 PMCID: PMC5575175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs which can serve as oncogenes or tumor suppressor genes in human cancers. Herein, the transcriptomic differences of miRNAs in ccRCC were globally assessed using publicly available microarray dataset (GSE71302) from Gene Expression Omnibus (GEO) and we identified miR-138 as a potential onco-suppressive miRNA. We further found that the expression of miR-138 was dramatically decreased in ccRCC cell lines and clinical ccRCC tissue samples, and the low miR-138 expression was closely correlated with tumor progression and prognosis in ccRCC patients. Overexpression of miR-138 inhibited, whereas downregulation of miR-138 promoted, the proliferation, migration and invasion of ccRCC cells in vitro, suggesting that miR-138 may function as a tumor suppressor in ccRCC. Furthermore, for the first time, we identified the EMT-related transcription factor SOX4 as a direct target gene of miR-138, evidenced by the direct binding of miR-138 with the 3'UTR of SOX4. Notably, the EMT marker E-cadherin or vimentin was also upregulated or downregulated upon miR-138 overexpression, and these effects were restored by SOX4 overexpression. We have also shown SOX4 overexpression reversed the attenuated migratory and invasive capacities mediated by miR-138. These results revealed that miR-138 functions as a tumor suppressor in ccRCC by targeting SOX4 and the EMT process and might represent a potential target in the treatment of human ccRCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Linfeng Wu
- Wenzhou Hospital of Integrated Traditional Chinese and Western MedicineWenzhou, Zhejiang, China
| | - Anping Wang
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of MedicineXiangyang, Hubei, China
| | - Yajun Xu
- Daqing Oil Field General HospitalDaqing, Heilongjiang, China
| | - Xiaodong Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Xing Liu
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Yi Hua
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Deying Zhang
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Shengde Wu
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Tao Lin
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Dawei He
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Guanghui Wei
- Department of Urinary Surgery, Children’s Hospital, Chongqing Medical UniversityChongqing, China
| | - Shanwen Chen
- Department of Urology, Huashan Hospital Affiliated to Fudan UniversityShanghai, China
| |
Collapse
|
33
|
Tian L, Guo Z, Wang H, Liu X. MicroRNA-635 inhibits the malignancy of osteosarcoma by inducing apoptosis. Mol Med Rep 2017; 16:4829-4834. [DOI: 10.3892/mmr.2017.7127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
|
34
|
Si F, Sun J, Wang C. MicroRNA-138 suppresses cell proliferation in laryngeal squamous cell carcinoma via inhibiting EZH2 and PI3K/AKT signaling. Exp Ther Med 2017; 14:1967-1974. [PMID: 28962111 PMCID: PMC5609183 DOI: 10.3892/etm.2017.4733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miR)-138 generally has a suppressive role in various human cancer types; however, its role and the underlying mechanisms in laryngeal squamous cell carcinoma (LSCC) have remained to be elucidated. The present study assessed the clinical significance and regulatory mechanisms of miR-138 in LSCC progression. Reverse-transcription quantitative polymerase chain reaction analysis indicated that miR-138 was significantly downregulated in LSCC tissues and cell lines. In addition, the decreased expression of miR-138 was significantly associated with poor differentiation, lymph node metastasis and advanced clinical stage of LSCC. Restoration of miR-138 expression caused a significant decrease in the proliferation of Hep-2 LSCC cells, while knockdown of miR-138 significantly promoted Hep-2 cell proliferation. A luciferase reporter assay further identified enhancer of zeste homologue 2 (EZH2) as a direct target gene of miR-138, and the protein expression of EZH2 was negatively regulated by miR-138 in Hep-2 cells. Furthermore, overexpression of EZH2 eliminated the suppressive effects of miR-138 on Hep-2 cell proliferation via activation of phosphoinositide-3 kinase (PI3K)/AKT signaling. In addition, EZH2 was found to be significantly upregulated in LSCC tissues and to be inversely correlated to the miR-138 levels. The results of the present study demonstrated that miR-138 inhibits the proliferation of LSCC cells, at least partly via targeting EZH2 and inhibiting PI3 K/AKT signaling. The present study highlighted the clinical significance of the miR-138/EZH2 axis in LSCC.
Collapse
Affiliation(s)
- Fengzhi Si
- Department of Otorhinolaryngology, The Second Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830063, P.R. China
| | - Jie Sun
- Department of Otorhinolaryngology, The Second Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830063, P.R. China
| | - Chunli Wang
- Department of Otorhinolaryngology, The Second Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830063, P.R. China
| |
Collapse
|
35
|
Ye Z, Fang B, Pan J, Zhang N, Huang J, Xie C, Lou T, Cao Z. miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncol Rep 2017; 37:3244-3252. [PMID: 28498463 PMCID: PMC5442395 DOI: 10.3892/or.2017.5619] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
The present study determined the role and mechanism of miR-138 in non-small cell lung cancer (NSCLC). In total, 45 freshly resected clinical NSCLC tissues were collected. The expression of miR-138 in tissues and cell lines were determined by real-time quantitative PCR. miR-138 mimics were transfected into A549 and Calu-3 cells in vitro, and then the effects of miR-138 on lung cancer cell proliferation, cell cycle, invasion and metastasis were investigated by CCK-8 assay, Transwell and flow cytometry, respectively. The protein expression of the potential target gene Sirt1 in lung cancer cells were determined by western blot analysis. Dual-Luciferase reporter assay was performed to further confirm whether Sirt1 was the target gene of miR-138. The expression of miR-138 was significantly lower in lung cancer tissues and was negatively correlated to the differentiation degree and lymph node metastasis of lung cancer. In vitro experiment results showed that miR-138 inhibited lung cancer cell proliferation, invasion and migration. It was verified that miR-138 could downregulate Sirt1 protein expression, inhibit epithelial-mesenchymal transition (EMT), decrease the activity of AMPK signaling pathway and elevate mTOR phosphorylation level. Dual-Luciferase reporter assay demonstrated that miR-138 could directly regulate Sirt1. Downregulation of Sirt1 alone can also cause the same molecular and biological function changes. Western blot analysis and confocal microscopy results indicated that overexpression of miR-138 or interference of Sirt1 expression could inhibit lung cancer cell autophagy activity possibly through AMPK-mTOR signaling pathway. miR-138 plays a tumor suppressor function in lung cancer. It may inhibit the proliferation, invasion and migration of lung cancer through downregulation of Sirt1 expression and activation of cell autophagy. The downregulation of miR-138 is closely related to the development of lung cancer.
Collapse
Affiliation(s)
- Zaiting Ye
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Bingmu Fang
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Jiongwei Pan
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Ning Zhang
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Jinwei Huang
- The Central Hospital of Lishui City, Lishui, Zhejiang 323000, P.R. China
| | - Congying Xie
- The First Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Tianzheng Lou
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Zhuo Cao
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
36
|
Sha HH, Wang DD, Chen D, Liu SW, Wang Z, Yan DL, Dong SC, Feng JF. MiR-138: A promising therapeutic target for cancer. Tumour Biol 2017; 39:1010428317697575. [PMID: 28378633 DOI: 10.1177/1010428317697575] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs which regulate gene expressions at post-transcriptional level by binding to the 3'-untranslated region of target messenger RNAs. Growing evidences highlight their pivotal roles in various biological processes of human cancers. Among them, miR-138, generating from two primary transcripts, pri-miR-138-1 and pri-miR-138-2, expresses aberrantly in different cancers and is extensively studied in cancer network. Importantly, studies have shown that miR-138 acts as a tumor suppressor by targeting many target genes, which are related to proliferation, apoptosis, invasion, and migration. Additionally, some researches also discover that miR-138 can sensitize tumors to chemotherapies. In this review, we summarize the expression of miR-138 on regulatory mechanisms and tumor biological processes, which will establish molecular basis on the usage of miR-138 in clinical applications in the future.
Collapse
Affiliation(s)
- Huan-Huan Sha
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dan-Dan Wang
- 2 The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Dan Chen
- 3 Research Center of Clinical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Si-Wen Liu
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- 2 The First Clinical School of Nanjing Medical University, Nanjing, China
| | - Da-Li Yan
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shu-Chen Dong
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- 1 Department of Chemotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Li JB, Wang HY, Yao Y, Sun QF, Liu ZH, Liu SQ, Zhuang JL, Wang YP, Liu HY. Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/eNOS pathway. J Cell Mol Med 2017; 21:1482-1491. [PMID: 28371277 PMCID: PMC5542903 DOI: 10.1111/jcmm.13074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the role of miR‐138 in human coronary artery endothelial cell (HCAEC) injury and inflammatory response and the involvement of the PI3K/Akt/eNOS signalling pathway. Oxidized low‐density lipoprotein (OX‐LDL)‐induced HCAEC injury models were established and assigned to blank, miR‐138 mimic, miR‐138 inhibitor, LY294002 (an inhibitor of the PI3K/Akt/eNOS pathway), miR‐138 inhibitor + LY294002 and negative control (NC) groups. qRT‐PCR and Western blotting were performed to detect the miR‐138, PI3K, Akt and eNOS levels and the protein expressions of PI3K, Akt, eNOS, p‐Akt, p‐eNOS, Bcl‐2, Bax and caspase‐3. ELISAs were employed to measure the expressions of TNF‐α, IL‐4, IL‐6, IL‐8, IL‐10 and nitric oxide (NO) and the activities of lactate dehydrogenase (LDH) and eNOS. MTT and flow cytometry were performed to assess the proliferation and apoptosis of HCAECs. Compared to the blank group, PI3K, Akt and eNOS were down‐regulated in the miR‐138 mimic and LY294002 groups but were up‐regulated in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups showed decreased concentrations of TNF‐α, IL‐6, IL‐8 and NO and reduced activities of LDH and eNOS, while opposite trends were observed in the miR‐138 inhibitor group. The concentrations of IL‐4 and IL‐10 increased in the miR‐138 mimic and LY294002 groups but decreased in the miR‐138 inhibitor group. The miR‐138 mimic and LY294002 groups had significantly decreased cell proliferation and increased cell apoptosis compared to the blank group. These findings indicate that up‐regulation of miR‐138 alleviates HCAEC injury and inflammatory response by inhibiting the PI3K/Akt/eNOS signalling pathway.
Collapse
Affiliation(s)
- Jing-Bo Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Yang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Feng Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zong-Hong Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si-Qi Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun-Li Zhuang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun-Peng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Jafri MA, Al-Qahtani MH, Shay JW. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 2017; 44:117-131. [PMID: 28188828 DOI: 10.1016/j.semcancer.2017.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jerry William Shay
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Wang J, Yu C, Zhou XF, Jiang JX. MiRNA-138-5p inhibits proliferation of pancreatic cancer cells. Shijie Huaren Xiaohua Zazhi 2016; 24:3970-3977. [DOI: 10.11569/wcjd.v24.i28.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the effect of microRNA-138-5p (miR-138-5p) on the proliferation of pancreatic cancer (PC) cells.
METHODS We constructed lentiviral vectors for miR-138-5p overexpression or knockdown and a negative control lentiviral vector, and transfected them into human PC cell lines PANC-1 and Capan-2. Cell counting kit-8 assay (CCK-8), colony-forming assay and EdU incorporation assay were employed to detect cell proliferation in vitro. The PANC-1 and Capan-2 cells were implanted subcutaneously in Balb/c nude mice to detect cell proliferation in vivo.
RESULTS Lentiviral vectors were successfully constructed and transfected. CCK-8 assay, colony-forming assay and EdU incorporation assay showed that overexpression of miR-138-5p inhibited cell proliferation compared with the negative control (P < 0.05), while miR-138-5p knockdown promoted cell proliferation compared with the negative control (P < 0.05). In addition, miR-138-5p suppressed tumor growth in the subcutaneous xenograft model of human PC cells in Balb/c nude mice.
CONCLUSION Our results indicate that miR-138-5p inhibits the proliferation of PC cells, suggesting a potential new therapeutic agent for PC.
Collapse
|
40
|
Bao X, Ren T, Huang Y, Wang S, Zhang F, Liu K, Zheng B, Guo W. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:129. [PMID: 27576314 PMCID: PMC5006509 DOI: 10.1186/s13046-016-0407-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Background In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. Methods The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. Results MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. Conclusions These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.
Collapse
Affiliation(s)
- Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Fan Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China.
| |
Collapse
|
41
|
Tian J, Hu L, Li X, Geng J, Dai M, Bai X. MicroRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:105. [PMID: 27364335 PMCID: PMC4929777 DOI: 10.1186/s13046-016-0382-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Background The prognosis of non-small-cell lung cancer (NSCLC) is poor yet mechanistic understanding and therapeutic options remain limited. We investigated the biological and clinical significance of microRNA-130b and its relationship with apoptosis in NSCLC. Methods The level of microRNA-130b in relationship with the expression of PPARγ, VEGF-A, BCL-2 and apoptosis were analyzed in 91 lung cancer patient samples using immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay on tissue microarrays. Gain and loss-of-function studies were performed to investigate the effects of microRNA-130b, peroxisome proliferator-activated receptor γ (PPARγ) or vascular endothelial growth factor-A (VEGF-A) on biological functions of lung cancer cells using in vitro and in vivo approaches. Results MicroRNA-130b up-regulation conferred unfavorable prognosis of lung cancer patients. Notably, microRNA-130b targeted PPARγ and inhibiting microRNA-130b markedly repressed proliferation, invasion and metastasis of lung cancer cells, leading to increased apoptosis. MicroRNA-130b-dependent biologic effects were due to suppression of PPARγ that in turn activated BCL-2, the key mediator of anti-apoptosis. Administration of microRNA-130b mimic to mouse xenografts promoted tumor growth. In vitro and in vivo, miR-130b enrichment associated with down-regulation of PPARγ, up-regulation of VEGF-A and BCL-2, and decreased apoptosis. Conclusions The present study demonstrates that microRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis. Targeting microRNA-130b might have remarkable therapeutic potential for lung cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0382-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianwei Tian
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liping Hu
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiao Li
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Dai
- Health Management Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Bai
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|