1
|
Cordani M, Garufi A, Benedetti R, Tafani M, Aventaggiato M, D’Orazi G, Cirone M. Recent Advances on Mutant p53: Unveiling Novel Oncogenic Roles, Degradation Pathways, and Therapeutic Interventions. Biomolecules 2024; 14:649. [PMID: 38927053 PMCID: PMC11201733 DOI: 10.3390/biom14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Rossella Benedetti
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Marco Tafani
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Michele Aventaggiato
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| |
Collapse
|
2
|
Rabiee S, Hoveizi E, Barati M, Salehzadeh A, Joghataei MT, Tavakol S. Cancer cells same as zombies reprogram normal cells via the secreted microenvironment. PLoS One 2023; 18:e0288003. [PMID: 37506087 PMCID: PMC10381049 DOI: 10.1371/journal.pone.0288003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The cancer microenvironment plays a crucial role in promoting metastasis and malignancy even in normal cells. In the present study, the effect of acidic and conditioned media of cancer cells (MDA-MB-231), separately and in combination, was studied for the first time on the cell death mechanisms and DNA methylation of normal fibroblasts (NIH/3T3). Cell survival of conditioned media was rescued by the addition of acidic media to conditioned media, as shown by the results. Cell metabolic activity is deviated in a direction other than the Krebs cycle by acidic media The mitochondrial metabolic activity of all groups was enhanced over time, except for acidic media. Unlike the highest amount of ROS in conditioned media, its level decreased to the level of acidic media in the combination group. Furthermore, cells were deviated towards autophagy, rather than apoptosis, by the addition of acidic media to the conditioned media, unlike the conditioned media. Global DNA methylation analysis revealed significantly higher DNA hypomethylation in acidic media than in normal and combination media. Not only were cells treated with conditioned media rescued by acidic media, but also DNA hypomethylation and apoptosis in the combination group were decreased through epigenetic modifications. The acidic and conditioned media produced by cancer cells can remotely activate malignant signaling pathways, much like zombies, which can cause metabolic and epigenetic changes in normal cells.
Collapse
Affiliation(s)
- Shadi Rabiee
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Garufi A, D'Orazi V, Pistritto G, Cirone M, D'Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D'Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D'Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
4
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. HIPK2 in Angiogenesis: A Promising Biomarker in Cancer Progression and in Angiogenic Diseases. Cancers (Basel) 2023; 15:cancers15051566. [PMID: 36900356 PMCID: PMC10000595 DOI: 10.3390/cancers15051566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Angiogenesis is the formation of new blood capillaries taking place from preexisting functional vessels, a process that allows cells to cope with shortage of nutrients and low oxygen availability. Angiogenesis may be activated in several pathological diseases, from tumor growth and metastases formation to ischemic and inflammatory diseases. New insights into the mechanisms that regulate angiogenesis have been discovered in the last years, leading to the discovery of new therapeutic opportunities. However, in the case of cancer, their success may be limited by the occurrence of drug resistance, meaning that the road to optimize such treatments is still long. Homeodomain-interacting protein kinase 2 (HIPK2), a multifaceted protein that regulates different molecular pathways, is involved in the negative regulation of cancer growth, and may be considered a "bona fide" oncosuppressor molecule. In this review, we will discuss the emerging link between HIPK2 and angiogenesis and how the control of angiogenesis by HIPK2 impinges in the pathogenesis of several diseases, including cancer.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- Correspondence:
| |
Collapse
|
5
|
NRF2 in Cancer: Cross-Talk with Oncogenic Pathways and Involvement in Gammaherpesvirus-Driven Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010595. [PMID: 36614036 PMCID: PMC9820659 DOI: 10.3390/ijms24010595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Expanding knowledge of the molecular mechanisms at the basis of tumor development, especially the cross-talk between oncogenic pathways, will possibly lead to better tailoring of anticancer therapies. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in cancer progression, not only because of its antioxidant activity but also because it establishes cross-talk with several oncogenic pathways, including Heat Shock Factor1 (HSF1), mammalian target of rapamycin (mTOR), and mutant (mut) p53. Moreover, the involvement of NRF2 in gammaherpesvirus-driven carcinogenesis is particularly interesting. These viruses indeed hijack the NRF2 pathway to sustain the survival of tumor cells in which they establish a latent infection and to avoid a too-high increase of reactive oxygen species (ROS) when these cancer cells undergo treatments that induce viral replication. Interestingly, NRF2 activation may prevent gammaherpesvirus-driven oncogenic transformation, highlighting how manipulating the NRF2 pathway in the different phases of gammaherpesvirus-mediated carcinogenesis may lead to different outcomes. This review will highlight the mechanistic interplay between NRF2 and some oncogenic pathways and its involvement in gammaherpesviruses biology to recapitulate published evidence useful for potential application in cancer therapy.
Collapse
|
6
|
Li Z, Pan X, Cai YD. Identification of Type 2 Diabetes Biomarkers From Mixed Single-Cell Sequencing Data With Feature Selection Methods. Front Bioeng Biotechnol 2022; 10:890901. [PMID: 35721855 PMCID: PMC9201257 DOI: 10.3389/fbioe.2022.890901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the most common disease and a major threat to human health. Type 2 diabetes (T2D) makes up about 90% of all cases. With the development of high-throughput sequencing technologies, more and more fundamental pathogenesis of T2D at genetic and transcriptomic levels has been revealed. The recent single-cell sequencing can further reveal the cellular heterogenicity of complex diseases in an unprecedented way. With the expectation on the molecular essence of T2D across multiple cell types, we investigated the expression profiling of more than 1,600 single cells (949 cells from T2D patients and 651 cells from normal controls) and identified the differential expression profiling and characteristics at the transcriptomics level that can distinguish such two groups of cells at the single-cell level. The expression profile was analyzed by several machine learning algorithms, including Monte Carlo feature selection, support vector machine, and repeated incremental pruning to produce error reduction (RIPPER). On one hand, some T2D-associated genes (MTND4P24, MTND2P28, and LOC100128906) were discovered. On the other hand, we revealed novel potential pathogenic mechanisms in a rule manner. They are induced by newly recognized genes and neglected by traditional bulk sequencing techniques. Particularly, the newly identified T2D genes were shown to follow specific quantitative rules with diabetes prediction potentials, and such rules further indicated several potential functional crosstalks involved in T2D.
Collapse
Affiliation(s)
- Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing, Institute of Image Processing and Pattern Recognition, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Yu-Dong Cai,
| |
Collapse
|
7
|
The Impact of NRF2 Inhibition on Drug-Induced Colon Cancer Cell Death and p53 Activity: A Pilot Study. Biomolecules 2022; 12:biom12030461. [PMID: 35327653 PMCID: PMC8946796 DOI: 10.3390/biom12030461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) protein is the master regulator of oxidative stress, which is at the basis of various chronic diseases including cancer. Hyperactivation of NRF2 in already established cancers can promote cell proliferation and resistance to therapies, such as in colorectal cancer (CRC), one of the most lethal and prevalent malignancies in industrialized countries with limited patient overall survival due to its escape mechanisms in both chemo- and targeted therapies. In this study, we generated stable NRF2 knockout colon cancer cells (NRF2-Cas9) to investigate the cell response to chemotherapeutic drugs with regard to p53 oncosuppressor, whose inhibition we previously showed to correlate with NRF2 pathway activation. Here, we found that NRF2 activation by sulforaphane (SFN) reduced cisplatin (CDDP)-induced cell death only in NRF2-proficient cells (NRF2-ctr) compared to NRF2-Cas9 cells. Mechanistically, we found that NRF2 activation protected NRF2-ctr cells from the drug-induced DNA damage and the apoptotic function of the unfolded protein response (UPR), in correlation with reduction of p53 activity, effects that were not observed in NRF2-Cas9 cells. Finally, we found that ZnCl2 supplementation rescued the cisplatin cytotoxic effects, as it impaired NRF2 activation, restoring p53 activity. These findings highlight NRF2′s key role in neutralizing the cytotoxic effects of chemotherapeutic drugs in correlation with reduced DNA damage and p53 activity. They also suggest that NRF2 inhibition could be a useful strategy for efficient anticancer chemotherapy and support the use of ZnCl2 to inhibit NRF2 pathway in combination therapies.
Collapse
|
8
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
9
|
The complex interplay between autophagy and cell death pathways. Biochem J 2022; 479:75-90. [PMID: 35029627 DOI: 10.1042/bcj20210450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a universal cellular homeostatic process, required for the clearance of dysfunctional macromolecules or organelles. This self-digestion mechanism modulates cell survival, either directly by targeting cell death players, or indirectly by maintaining cellular balance and bioenergetics. Nevertheless, under acute or accumulated stress, autophagy can also contribute to promote different modes of cell death, either through highly regulated signalling events, or in a more uncontrolled inflammatory manner. Conversely, apoptotic or necroptotic factors have also been implicated in the regulation of autophagy, while specific factors regulate both processes. Here, we survey both earlier and recent findings, highlighting the intricate interaction of autophagic and cell death pathways. We, Furthermore, discuss paradigms, where this cross-talk is disrupted, in the context of disease.
Collapse
|
10
|
Zhang J, Tan J, Wang M, Wang Y, Dong M, Ma X, Sun B, Liu S, Zhao Z, Chen L, Liu K, Xin Y, Zhuang L. Lipid-induced DRAM recruits STOM to lysosomes and induces LMP to promote exosome release from hepatocytes in NAFLD. SCIENCE ADVANCES 2021; 7:eabh1541. [PMID: 34731006 PMCID: PMC8565908 DOI: 10.1126/sciadv.abh1541] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biogenesis and diagnostic value of exosomes in nonalcoholic fatty liver disease (NAFLD) are unclear. In this study, we revealed that the plasma exosome level was higher in patients with NAFLD than that in healthy controls. Damage-regulated autophagy modulator (DRAM) was identified as one of the genes related to exosome secretion in patients with NAFLD. Then, loss or knockdown of DRAM down-regulated exosome secretion from hepatic cells using a knockout mouse model and a knockdown cell model. DRAM knockout reversed high-fat diet–induced increase of secreted exosomes. Furthermore, DRAM knockdown inhibited fatty acid (FA)–induced lysosomal membrane permeabilization and lysosome inhibitor reversed the down-regulation of exosome release in DRAM knockout mice. Last, FA-induced DRAM interacted with stomatin and promoted its lysosomal localization to enhance exosome secretion from hepatic cells. We revealed a DRAM-mediated mechanism for exosome secretion and provided the foundation for plasma exosomes as a potential biomarker for NAFLD.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Jie Tan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Mengke Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Yifen Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Mengzhen Dong
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xuefeng Ma
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Baokai Sun
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenzhen Zhao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lizhen Chen
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Kai Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
- Corresponding author. (L.Z.); (Y.X.)
| | - Likun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
- Corresponding author. (L.Z.); (Y.X.)
| |
Collapse
|
11
|
New-Aaron M, Thomes PG, Ganesan M, Dagur RS, Donohue TM, Kusum KK, Poluektova LY, Osna NA. Alcohol-Induced Lysosomal Damage and Suppression of Lysosome Biogenesis Contribute to Hepatotoxicity in HIV-Exposed Liver Cells. Biomolecules 2021; 11:biom11101497. [PMID: 34680130 PMCID: PMC8533635 DOI: 10.3390/biom11101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Although the causes of hepatotoxicity among alcohol-abusing HIV patients are multifactorial, alcohol remains the least explored "second hit" for HIV-related hepatotoxicity. Here, we investigated whether metabolically derived acetaldehyde impairs lysosomes to enhance HIV-induced hepatotoxicity. We exposed Cytochrome P450 2E1 (CYP2E1)-expressing Huh 7.5 (also known as RLW) cells to an acetaldehyde-generating system (AGS) for 24 h. We then infected (or not) the cells with HIV-1ADA then exposed them again to AGS for another 48 h. Lysosome damage was assessed by galectin 3/LAMP1 co-localization and cathepsin leakage. Expression of lysosome biogenesis-transcription factor, TFEB, was measured by its protein levels and by in situ immunofluorescence. Exposure of cells to both AGS + HIV caused the greatest amount of lysosome leakage and its impaired lysosomal biogenesis, leading to intrinsic apoptosis. Furthermore, the movement of TFEB from cytosol to the nucleus via microtubules was impaired by AGS exposure. The latter impairment appeared to occur by acetylation of α-tubulin. Moreover, ZKSCAN3, a repressor of lysosome gene activation by TFEB, was amplified by AGS. Both these changes contributed to AGS-elicited disruption of lysosome biogenesis. Our findings indicate that metabolically generated acetaldehyde damages lysosomes and likely prevents their repair and restoration, thereby exacerbating HIV-induced hepatotoxicity.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Correspondence: (M.N.-A.); (N.A.O.)
| | - Paul G. Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Kharbanda K. Kusum
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA;
- Correspondence: (M.N.-A.); (N.A.O.)
| |
Collapse
|
12
|
Wang Y, Yao Y, Li R, Wu B, Lu H, Cheng J, Liu Z, Du J. Different effects of anti-VEGF drugs (Ranibizumab, Aflibercept, Conbercept) on autophagy and its effect on neovascularization in RF/6A cells. Microvasc Res 2021; 138:104207. [PMID: 34119535 DOI: 10.1016/j.mvr.2021.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Choroidal neovascularization (CNV) is the main pathological change of wet age-related macular degeneration. Anti-VEGF drugs are the most commonly used treatment for CNV. The biggest drawback of anti-VEGF drugs is the recurrence of CNV, which requires repeated therapy several times. Autophagy activation may be involved in reducing the therapeutic effect of anti-VEGF drugs. So, this study aims to elucidate the effect and mechanism of anti-VEGF drugs on endothelial autophagy and neovascularization in vitro. METHODS RF/6A cells were randomly divided into five groups: The control group, hypoxia group (1% O2, 5% CO2, 94% N2), anti-VEGF group (group1: Ranibizumab 100 μg/ml; group2: Aflibercept, 400 μg/ml; group3: Conbercept, 100 μg/ml). Autophagy-related proteins were examined by Western blot. RFP-GFP-LC3 was used to detect autophagy and autophagic flow. Subsequently, we used autophagy inhibitors (3-MA or CQ) to inhibit Conbercept induced autophagy and to observe its effect on angiogenesis in vitro. Proliferation, migration, and tube formation of endothelial cells can be used to study neovascularization in vitro. In this research, the CCK-8 assay was used to detect cell proliferation. Cell migration and tube formation were assessed by wound assay and matrix method, respectively. Flow cytometry and Tunel were used to detect cell apoptosis. Finally, the mechanism of Conbercept activated autophagy was studied. Western blot was used to detect the expression of p53 and DRAM (damage-regulated autophagy modulator), upstream activators of autophagy. RESULTS The protein levels of Beclin-1 and LC3-2/1 in Ranibizumab and Conbercept groups were significantly higher than in the hypoxia group(P < 0.05). While the expression of P62 was decreased (P < 0.05). The autophagic flux was showed the same results. However, Aflibercept showed the opposite effect on autophagy. Compared with the Conbercept group, autophagy inhibitor 3-MA or CQ can further inhibit cell proliferation and promotes cell apoptosis (P < 0.05). Conbercept significantly inhibited cell migration compared with the hypoxia group (633.08 ± 72.52 vs. 546.33 ± 24.61), while the autophagy inhibitor group (3-MA or CQ) had a more obvious inhibition effect (309.75 ± 86.36 and 263.33 ± 68.67) (P < 0.05). For tube formation, the number of tube formation was decreased significantly in the Conbercept group (32.00 ± 2.00) compared to the hypoxia group (39.00 ± 1.53) and even further reduced in 3-MA or CQ group (24.00 ± 3.61, 20.00 ± 2.65). The length of master segments in the hypoxia group was 15,668.00 ± 894.11. It was decreased in Conbercept (13,885.34 ± 730.03). In 3-MA or CQ group, the length of master segments dropped further (11,997.00 ± 433.66, 10,617.67 ± 543.21). Compare with the hypoxia group, the expression P53 and DRAM were increased in the Conbercept group (P < 0.05). Autophagy-related proteins LC-3, Beclin-1, and DRAM were inhibited by P53 inhibitor Pifithrin-α (PFTα) (P < 0.05). CONCLUSION Ranibizumab and Conbercept can trigger the autophagy of vascular endothelial cells while Aflibercept can inhibit it. The combination of Conbercept and autophagy inhibitor can significantly inhibit the formation of angiogenesis in vitro. The mechanism of autophagy activation is related to the activation of the p53/DRAM pathway.
Collapse
Affiliation(s)
- Yi Wang
- Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yang Yao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, West Fenghao Road 48, Xi'an 710077, Shaanxi Province, China
| | - Rong Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Medical University, West Fenghao Road 48, Xi'an 710077, Shaanxi Province, China
| | - Binghui Wu
- Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an 710001, Shaanxi Province, China
| | - Huiqin Lu
- Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an 710001, Shaanxi Province, China
| | - Jing Cheng
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Zhe Liu
- Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Junhui Du
- Center for Translational Medicine, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China; Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
13
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
14
|
Xie Q, Liu Y, Li X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl Oncol 2020; 13:100871. [PMID: 32950931 PMCID: PMC7509232 DOI: 10.1016/j.tranon.2020.100871] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Autophagy and apoptosis play crucial roles in tumorigenesis. Recent studies have shown that autophagy and apoptosis have a cross-talk relationship in anti-tumor therapy. It is well established that apoptosis is one of the main pathways of tumor cell death. While autophagy can occurs in tumors with opposite function: protective autophagy and lethal autophagy. Protective autophagy can inhibit tumor apoptosis induced by anticancer drugs, while lethal autophagy can induce tumor cell apoptosis in cooperation with anticancer drugs. Hence, autophagy and apoptosis have synergistic and antagonistic effects in tumor. Colorectal cancer is a common malignant tumor with high morbidity and mortality. In recent years, colorectal carcinoma has achieved improved clinical efficacy with drug treatment. Nonetheless, increasing drug-resistance limit the treatment efficacy, highlighting the urgency of exploring the molecular events that drive drug resistance. Researchers have found that autophagy is one of the major factors leading to drug resistance in colon cancer. Therefore, elucidating the interaction between autophagy and apoptosis is helpful to improve the efficacy of anticancer drugs in clinical treatment of colorectal cancer. This review attaches great importance to the relationship between autophagy and apoptosis and related factors in colorectal cancer.
Collapse
Affiliation(s)
- Qingqiang Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, PR China,Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China,Corresponding author at: The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
15
|
Asare PF, Roscioli E, Hurtado PR, Tran HB, Mah CY, Hodge S. LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor Progression and Aggressiveness. Front Oncol 2020; 10:1298. [PMID: 32850405 PMCID: PMC7422669 DOI: 10.3389/fonc.2020.01298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
One aim of cancer therapies is to induce apoptosis of tumor cells. Efficient removal of the apoptotic cells requires coordinated efforts between the processes of efferocytosis and LC3-associated phagocytosis (LAP). However, this activity has also been shown to produce anti-inflammatory and immunosuppressive signals that can be utilized by live tumor cells to evade immune defense mechanisms, resulting in tumor progression and aggressiveness. In the absence of LAP, mice exhibit suppressed tumor growth during efferocytosis, while LAP-sufficient mice show enhanced tumor progression. Little is known about how LAP or its regulators directly affect efferocytosis, tumor growth and treatment responses, and identifying the mechanisms involved has the potential to lead to the discovery of novel approaches to target cancer cells. Also incompletely understood is the direct effect of apoptotic cancer cells on LAP. This is particularly important as induction of apoptosis by current cytotoxic cancer therapies can potentially stimulate LAP following efferocytosis. Herein, we highlight the current understanding of the role of LAP and its relationship with efferocytosis in the tumor microenvironment with a view to presenting novel therapeutic strategies.
Collapse
Affiliation(s)
- Patrick F. Asare
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Plinio R. Hurtado
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Hai B. Tran
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Chui Yan Mah
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Freemasons Foundation Centre for Men's Health, Adelaide, SA, Australia
| | - Sandra Hodge
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
16
|
Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D'Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, Cirone M, D'Orazi G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J Exp Clin Cancer Res 2020; 39:122. [PMID: 32605658 PMCID: PMC7325274 DOI: 10.1186/s13046-020-01628-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract Background Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies. In this study we aimed at evaluating NRF2 and p53 in several cancer cell lines carrying different endogenous p53 status, using a novel curcumin compound since curcumin has been shown to target both NRF2 and p53 and have anti-tumor activity. Methods We performed biochemical and molecular studies by using pharmacologic of genetic inhibition of NRF2 to evaluate the effect of curcumin compound in cancer cell lines of different tumor types bearing wild-type (wt) p53, mutant (mut) p53 or p53 null status. Results We found that the curcumin compound induced a certain degree of cell death in all tested cancer cell lines, independently of the p53 status. At molecular level, the curcumin compound induced NRF2 activation, mutp53 degradation and/or wtp53 activation. Pharmacologic or genetic NRF2 inhibition further increased the curcumin-induced cell death in both mutp53- and wtp53-carrying cancer cell lines while it did not increase cell death in p53 null cells, suggesting a cytoprotective role for NRF2 and a critical role for functional p53 to achieve an efficient cancer cell response to therapy. Conclusions These findings underline the prosurvival role of curcumin-induced NRF2 expression in cancer cells even when cells underwent mutp53 downregulation and/or wtp53 activation. Thus, NRF2 inhibition increased cell demise particularly in cancer cells carrying p53 either wild-type or mutant suggesting that p53 is crucial for efficient cancer cell death. These results may represent a paradigm for better understanding the cancer cell response to therapies in order to design more efficient combined anticancer therapies targeting both NRF2 and p53.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,University "G. D'Annunzio", School of Medicine, Chieti, Italy
| | - Silvia Baldari
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Surgical Sciences, and Biotechnologies, Sapienza University, Latina, Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Giuseppa Pistritto
- Italian medicines agency-Aifa, centralized procedure office, Rome, Italy
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Eugenia Giorno
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Gabriele Toietta
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Marchetti
- School of Science and Technology, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
17
|
D'Orazi G, Garufi A, Cirone M. Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 interferes with homeodomain-interacting protein kinase 2/p53 activity to impair solid tumors chemosensitivity. IUBMB Life 2020; 72:1634-1639. [PMID: 32593231 DOI: 10.1002/iub.2334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Resistance to chemotherapy represents a major hurdle to successful cancer treatment. A key role for efficient response to anticancer therapies is played by TP53 oncosuppressor gene that indeed is mutated in 50% of human cancers or inactivated at protein level in the remaining 50%. Homeodomain-interacting protein kinase 2 (HIPK2) is the wild-type p53 (wtp53) apoptotic activator, and its inhibition by hypoxia or hyperglycemia may contribute to tumor chemoresistance mainly by impairing p53 apoptotic activity. Another important molecule able to induce chemoresistance is nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) transcription factor, whose activation by oxidative and/or electrophilic stress regulates a transcriptional antioxidant program allowing cancer cells to adapt and survive to stresses. NRF2 may shift from cytoprotective to tumor-promoting function, according to tumor phases. NRF2 may crosstalk with both wtp53 and mutant p53 (mutp53), inhibiting the wtp53 apoptotic function and strengthening the mutp53 oncogenic function. NRF2 has also been shown to induce HIPK2 mRNA expression cooperating in inducing cytoprotection. Although HIPK2, p53, and NRF2 have been individually extensively studied, their interplay has not been clearly addressed yet. On the basis of the background and our results, we aim at hypothesizing the unexpected pro-survival activity played by the NRF2/HIPK2/p53 interplay that can be hijacked by cancer cells to bypass drugs cytotoxicity.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Garufi
- Department of Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical Sciences, University 'G. d'Annunzio', Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Pasteur Institute, Italy-Foundation Cenci Bolognetti, Rome, Italy
| |
Collapse
|
18
|
Wang J, Zhang ZQ, Li FQ, Chen JN, Gong X, Cao BB, Wang W. Triptolide interrupts rRNA synthesis and induces the RPL23‑MDM2‑p53 pathway to repress lung cancer cells. Oncol Rep 2020; 43:1863-1874. [PMID: 32236588 PMCID: PMC7160537 DOI: 10.3892/or.2020.7569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer has one of the highest mortalities of any cancer worldwide. Triptolide (TP) is a promising tumor suppressor extracted from the Chinese herb Tripterygium wilfordii. Our previous proteomics analysis revealed that TP significantly interfered with the ribosome biogenesis pathway; however, the underlying molecular mechanism remains poorly understood. The aim of the present study was to determine the molecular mechanism of TP's anticancer effect by investigating the association between ribosomal stress and p53 activation. It was found that TP induces nucleolar disintegration together with RNA polymerase I (Pol I) and upstream binding factor (UBF) translocation. TP interrupted ribosomal (r)RNA synthesis through inhibition of RNA Pol I and UBF transcriptional activation. TP treatment increased the binding of ribosomal protein L23 (RPL23) to mouse double minute 2 protein (MDM2), resulting in p53 being released from MDM2 and stabilized. Activation of p53 induced apoptosis and cell cycle arrest by enhancing the activation of p53 upregulated modulator of apoptosis, caspase 9 and caspase 3, and suppressing BCL2. In vivo experiments showed that TP significantly reduced xenograft tumor size and increased mouse body weight. Immunohistochemical assays confirmed that TP significantly increased the p53 level and induced nucleolus disintegration, during which nucleolin distribution moved from the nucleolus to the nucleoplasm, and RPL23 clustered at the edge of the cell membrane. Therefore, it was proposed that TP induces ribosomal stress, which leads to nucleolus disintegration, and inhibition of rRNA transcription and synthesis, resulting in increased binding of RPL23 with MDM2. Consequently, p53 is activated, which induces apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhi-Qian Zhang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Fang-Qiong Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Jia-Ning Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoting Gong
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Bei-Bei Cao
- Department of Clinical Laboratory, Hangzhou Linan District People's Hospital, Hangzhou, Zhejiang 311300, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
19
|
Garufi A, Federici G, Gilardini Montani MS, Crispini A, Cirone M, D’Orazi G. Interplay between Endoplasmic Reticulum (ER) Stress and Autophagy Induces Mutant p53H273 Degradation. Biomolecules 2020; 10:biom10030392. [PMID: 32138264 PMCID: PMC7175121 DOI: 10.3390/biom10030392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive response to intrinsic and external stressors, and it is mainly activated by the accumulation of misfolded proteins at the endoplasmic reticulum (ER) lumen producing ER stress. The UPR signaling network is interconnected with autophagy, the proteolytic machinery specifically devoted to clearing misfolded proteins in order to survive bioenergetic stress and/or induce cell death. Oncosuppressor TP53 may undergo inactivation following missense mutations within the DNA-binding domain (DBD), and mutant p53 (mutp53) proteins may acquire a misfolded conformation, often due to the loss of the DBD-bound zinc ion, leading to accumulation of hyperstable mutp53 proteins that correlates with more aggressive tumors, resistance to therapies, and poorer outcomes. We previously showed that zinc supplementation induces mutp53 protein degradation by autophagy. Here, we show that mutp53 (i.e., Arg273) degradation following zinc supplementation is correlated with activation of ER stress and of the IRE1α/XBPI arm of the UPR. ER stress inhibition with chemical chaperone 4-phenyl butyrate (PBA) impaired mutp53 downregulation, which is similar to IRE1α/XBPI specific inhibition, reducing cancer cell death. Knockdown of mutp53 failed to induce UPR/autophagy activation indicating that the effect of zinc on mutp53 folding was likely the key event occurring in ER stress activation. Recently discovered small molecules targeting components of the UPR show promise as a novel anticancer therapeutic intervention. However, our findings showing UPR activation during mutp53 degradation indicate that caution is necessary in the design of therapies that inhibit UPR components.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.F.)
- University “G. D’Annunzio”, School of Medicine, 66100 Chieti, Italy
| | - Giulia Federici
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.F.)
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy (M.C.)
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT_IN LAB, Calabria University, 87036 Rende, Italy;
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy (M.C.)
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.F.)
- Correspondence:
| |
Collapse
|
20
|
Affiliation(s)
- Xiang-Na Guo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Garufi A, Traversi G, Cirone M, D'Orazi G. HIPK2 role in the tumor-host interaction: Impact on fibroblasts transdifferentiation CAF-like. IUBMB Life 2019; 71:2055-2061. [PMID: 31414572 PMCID: PMC6899452 DOI: 10.1002/iub.2144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
The dialogue between cancer cells and the surrounding fibroblasts, tumor-associated macrophages (TAM), and immune cells can create a tumor microenvironment (TME) able to promote tumor progression and metastasis and induce resistance to anticancer therapies. Cancer cells, by producing growth factors and cytokines, can recruit and activate fibroblasts in the TME inducing their transdifferention in cancer-associated fibroblasts (CAFs). Then, CAFs, in a reciprocal cross-talk with cancer cells, sustain cancer growth and survival and support malignancy and tumor resistance to therapies. Therefore, the identification of the molecular mechanisms regulating the interplay between cancer cells and fibroblasts can offer an intriguing opportunity for novel diagnostic and therapeutic anticancer purpose. HIPK2 is a multifunctional tumor suppressor protein that modulates cancer cell growth and apoptosis in response to anticancer drugs and negatively regulates pathways involved in tumor progression and chemoresistance. HIPK2 protein downregulation is induced by hypoxia and hyperglycemia and HIPK2 knockdown favors tumor progression and resistance to therapy other than a pseudohypoxic, inflammatory, and angiogenic cancer phenotype. Therefore, we hypothesized that HIPK2 modulation in cancer cells could contribute to modify the tumor-host interaction. In support of our hypothesis, here we provide evidence that culturing human fibroblasts (hFB) with conditioned media derived from cancer cells undergoing HIPK2 knockdown (CMsiHIPK2 ) triggered their transdifferentiation CAF-like, compared to hFB cultured with CM-derived from HIPK2-carrying control cancer cells. CAF transdifferentiation was identified by expression of several markers including α-smooth muscle actin (α-SMA) and collagen I and correlated with autophagy-mediated caveolin-1 degradation. Although the molecular mechanisms dictating CAF-transdifferentiation need to be elucidated, these results open the way to further study the role of HIPK2 in TME remodeling for prognostic and therapeutic purpose.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gianandrea Traversi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Mara Cirone
- Department of Experimental Medicine“Sapienza” University of Rome, Italy, Laboratory affiliated to Pasteur InstituteRomeItaly
| | - Gabriella D'Orazi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
22
|
Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep 2019; 39:BSR20191452. [PMID: 31420372 PMCID: PMC6732367 DOI: 10.1042/bsr20191452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cerebral ischemia–reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κB (NF-κB)/p53 pathway in cerebral I/R rats. Methods: Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given intraperitoneally (i.p.) after the 2-h ischemia, and Pifithrin-α (PFT-α, p53 inhibitor), SN50 (NF-κB inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, respectively. Results: The neurological deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT-α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT-α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT-α and ginkgetin. Conclusion: Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κB/p53 signaling pathway.
Collapse
|
23
|
Garufi A, Traversi G, Gilardini Montani MS, D'Orazi V, Pistritto G, Cirone M, D'Orazi G. Reduced chemotherapeutic sensitivity in high glucose condition: implication of antioxidant response. Oncotarget 2019; 10:4691-4702. [PMID: 31384396 PMCID: PMC6659798 DOI: 10.18632/oncotarget.27087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Resistance to chemotherapy represents a major obstacle to successful treatment. The generation of reactive oxygen species (ROS) has been directly linked to the cytotoxic effects of several antitumor agents, including Adriamycin (ADR), and modulation of the oxidative balance has been implicated in the development and/or regulation of resistance to chemotherapeutic drugs. We recently showed that high glucose (HG) markedly diminished the cancer cell death induced by anticancer agents such as ADR. In the present study we attempted to evaluate the mechanism that impaired the cytotoxic effect of ADR in HG. We found that, in colon cancer cells, HG attenuated ADR-induced ROS production that consequently diminished ADR-induced H2AX phosphorylation and micronuclei (MN) formation. Mechanistically, HG attenuation of ADR-induced ROS production correlated with increased antioxidant response promoted by NRF2 activity. Thus, pharmacologic inhibition of NRF2 pathway by brusatol re-established the ADR cytotoxic effect impaired by HG. Together, the data provide new insights into chemotherapeutic-resistance mechanisms in HG condition dictated by increased NRF2-induced antioxidant response and how they may be overcome in order to restore chemosensitivity and ADR-induced cell death.
Collapse
Affiliation(s)
- Alessia Garufi
- IRCCS Regina Elena National Cancer Institute, Department of Research, Rome 00144, Italy.,University 'G. d'Annunzio', Department of Medical and Biotechnological Sciences, Chieti 66013, Italy
| | - Gianandrea Traversi
- IRCCS Regina Elena National Cancer Institute, Department of Research, Rome 00144, Italy.,University 'G. d'Annunzio', Department of Medical and Biotechnological Sciences, Chieti 66013, Italy
| | | | | | - Giuseppa Pistritto
- University Tor Vergata, Department of Systems Medicine, Rome 00133, Italy
| | - Mara Cirone
- Sapienza University, Department of Experimental Medicine, Rome 00161, Italy
| | - Gabriella D'Orazi
- IRCCS Regina Elena National Cancer Institute, Department of Research, Rome 00144, Italy.,University 'G. d'Annunzio', Department of Medical and Biotechnological Sciences, Chieti 66013, Italy
| |
Collapse
|
24
|
Cirone M, Gilardini Montani MS, Granato M, Garufi A, Faggioni A, D'Orazi G. Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:262. [PMID: 31200739 PMCID: PMC6570888 DOI: 10.1186/s13046-019-1275-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Autophagy is a catabolic process whose activation may help cancer cells to adapt to cellular stress although, in some instances, it can induce cell death. Autophagy stimulation or inhibition has been considered an opportunity to treat cancer, especially in combination with anticancer therapies, although autophagy manipulation may be viewed as controversial. Thus, whether to induce or to inhibit autophagy may be the best option in the different cancer patients is still matter of debate. Her we will recapitulate the possible advantages or disadvantages of manipulating autophagy in cancer, not only with the aim to obtain cancer cell death and disable oncogenes, but also to evaluate its interplay with the immune response which is fundamental for the success of anticancer therapies.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessia Garufi
- Department of Medical Science, University 'G. D'Annunzio', 66013, Chieti, Italy.,Department of Research, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Gabriella D'Orazi
- Department of Medical Science, University 'G. D'Annunzio', 66013, Chieti, Italy. .,Department of Research, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
25
|
Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019; 11:cancers11050614. [PMID: 31052524 PMCID: PMC6563084 DOI: 10.3390/cancers11050614] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.
Collapse
|
26
|
Wudu M, Ren H, Hui L, Jiang J, Zhang S, Xu Y, Wang Q, Su H, Jiang X, Dao R, Qiu X. DRAM2 acts as an oncogene in non-small cell lung cancer and suppresses the expression of p53. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:72. [PMID: 30755245 PMCID: PMC6373025 DOI: 10.1186/s13046-019-1068-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Damage-regulated autophagy modulator 2(DRAM2) is associated with autophagy processes. However, the role of DRAM2 in the progression of human neoplasms is still unknown. Here, we show that DRAM2 may act as an oncogenic regulator in non-small cell lung cancer (NSCLC). METHODS Tumor specimens from 259 NSCLC patients were collected and analyzed. Transwell migration, cell cycle analysis, MTT and colony formation assays were performed to determine the effect of DRAM2 overexpression and knockdown on NSCLC-cell migration and proliferation. Western blotting confirmed the expression of DRAM2, p53, and the other involved proteins. RESULTS DRAM2 was preferentially upregulated in NSCLC tissues and higher expression of DRAM2 in NSCLC correlated with tumor node metastases stage and lymph node metastasis. Additionally, DRAM2 overexpression promoted cell metastasis and proliferation in vitro, while knockdown of DRAM2 expression yielded opposite result. Furthermore, DRAM2 overexpression increased the expression of proteins RAC1, RHOA, RHOC, ROCK1, and decreased RHOB expression, all of which are cell migration factors. DRAM2 overexpression also increased proteins CDK4, CyclinD3, and decreased p27 expression, all of which are cell cycle-related factors. Consistently knocked down DRAM2 had the opposite effect. We also found that DRAM2 expression was negatively correlated to p53 expression. Knockdown of DRAM2 caused an increase of p53 and p21 expression, and overexpression of p53 caused a decrease of DRAM2 expression. Finally, absence of p53 did not influence the function of DRAM2 in NSCLC, but overexpression of p53 repressed its function. CONCLUSIONS DRAM2 plays an oncogenic role in NSCLC via regulating p53 expression. Therefore, DRAM2 may act as an oncogene in NSCLC and could serve as a prognostic factor and potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Muli Wudu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Linping Hui
- Department of Pathology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Siyang Zhang
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, Liaoning, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Runa Dao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Li XQ, Yu Q, Chen FS, Tan WF, Zhang ZL, Ma H. Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway. J Neuroinflammation 2018; 15:250. [PMID: 30172256 PMCID: PMC6119253 DOI: 10.1186/s12974-018-1271-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common node tightly controlling various cellular responses during myocardial IR. However, the roles of the p53-PUMA feedback loop in the spinal cord remain unclear. This study aimed to elucidate the roles of p53-PUMA feedback interactions in the spinal cord after IR, specifically investigating their regulation of caspase 3-mediated apoptosis and nuclear factor (NF)-κB-mediated cytokine release. Methods SD rats subjected to 12 min of aortic arch occlusion served as IR models. Neurological assessment as well as p53 and PUMA mRNA and protein expression analyses were performed at 12-h intervals during a 48-h reperfusion period. The cellular distributions of p53 and PUMA were determined via double immunofluorescence staining. The effects of the p53-PUMA feedback loop on modulating hind-limb function; the number of TUNEL-positive cells; and protein levels of caspase 3, NF-κB and cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, were evaluated by intrathecal treatment with PUMA-specific or scramble siRNA and pifithrin (PFT)-α. Blood-spinal cord barrier (BSCB) breakdown was examined by Evans blue (EB) extravasation and water content analyses. Results IR induced significant behavioural deficits as demonstrated by deceased Tarlov scores, which displayed trends opposite those of PUMA and p53 protein and mRNA expression. Upregulated PUMA and p53 fluorescent labels were widely distributed in neurons, astrocytes and microglia. Injecting si-PUMA and PFT-α exerted significant anti-apoptosis effects as shown by the reduced number of TUNEL-positive cells, nuclear abnormalities and cleaved caspase 3 levels at 48 h post-IR. Additionally, p53 colocalized with NF-κB within the cell. Similarly, injecting si-PUMA and PFT-α exerted anti-inflammatory effects as shown by the decreased NF-κB translocation and release of IL-1β and TNF-α. Additionally, injecting si-PUMA and PFT-α preserved the BSCB integrity as determined by decreased EB extravasation and spinal water content. However, injecting si-Con did not induce any of the abovementioned effects. Conclusions Inhibition of aberrant p53-PUMA feedback loop activation by intrathecal treatment with si-PUMA and PFT-α prevented IR-induced neuroapoptosis, inflammatory responses and BSCB breakdown by inactivating caspase 3-mediated apoptosis and NF-κB-mediated cytokine release.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Qian Yu
- Department of Thoracic Surgery, Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, Liaoning, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
28
|
Zhang D, Lin J, Chao Y, Zhang L, Jin L, Li N, He R, Ma B, Zhao W, Han C. Regulation of the adaptation to ER stress by KLF4 facilitates melanoma cell metastasis via upregulating NUCB2 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:176. [PMID: 30055641 PMCID: PMC6064624 DOI: 10.1186/s13046-018-0842-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/13/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Adaptation to ER stress has been indicated to play an important role in resistance to therapy in human melanoma. However, the relationship between adaptation to ER stress and cell metastasis in human melanoma remains unclear. METHODS The relationship of adaptation to ER stress and cell metastasis was investigated using transwell and mouse metastasis assays. The potential molecular mechanism of KLF4 in regulating the adaptation to ER stress and cell metastasis was investigated using RNA sequencing analysis, q-RT-PCR and western blot assays. The transcriptional regulation of nucleobindin 2 (NUCB2) by KLF4 was identified using bioinformatic analysis, luciferase assay, and chromatin immunoprecipitation (ChIP). The clinical significance of KLF4 and NUCB2 was based on human tissue microarray (TMA) analysis. RESULTS Here, we demonstrated that KLF4 was induced by ER stress in melanoma cells, and increased KLF4 inhibited cell apoptosis and promoted cell metastasis. Further mechanistic studies revealed that KLF4 directly bound to the promoter of NUCB2, facilitating its transcription. Additionally, an increase in KLF4 promoted melanoma ER stress resistance, tumour growth and cell metastasis by regulating NCUB2 expression in vitro and in vivo. Elevated KLF4 was found in human melanoma tissues, which was associated with NUCB2 expression. CONCLUSION Our data revealed that the promotion of ER stress resistance via the KLF4-NUCB2 axis is essential for melanoma cell metastasis, and KLF4 may be a promising specific target for melanoma therapy.
Collapse
Affiliation(s)
- Dongmei Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.,Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jingrong Lin
- Department of Dermatology, the First Affiliated Hospital, Dalian Medical University, Liaoning, 116027, China
| | - Yulin Chao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Lu Zhang
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lei Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Na Li
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ruiping He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Binbin Ma
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Wenzhi Zhao
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|