1
|
Zhao J, Du XM, Si W, Zhao XH, Zhou ZQ. Role of INPP4B in the proliferation, migration, invasion, and survival of human endometrial cancer cells. Histol Histopathol 2024; 39:1197-1208. [PMID: 38318760 DOI: 10.14670/hh-18-711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND Inositol polyphosphate 4-phosphatase type II (INPP4B) has been identified as a tumor repressor in several human cancers while its role in endometrial cancer has not been investigated yet. Therefore, the current study was designed to determine whether INPP4B participates in the progression of endometrial cancer by utilizing clinical data and experimental determination. MATERIALS AND METHODS We first include six chemotherapy-treated patients with recurrent and metastatic endometrioid carcinoma to determine the relationship between INPP4B mutation and relative tumor burden. By using siRNA-mediated gene silencing and vector-mediated gene overexpression, we further determined the effect of manipulating INPP4B expression on the proliferation, invasion, and survival of endometrial cancer cells. Furthermore, the repressing effect of INPP4B together with its role in chemotherapy was further validated by xenograft tumor-bearing mice models. Western blot analysis was used to explore further downstream signaling modulated by INPP4B expression manipulation. RESULTS Two of the patients were found to have INPP4B mutations and the mutation frequency of INPP4B increased during the progression of chemotherapy resistance. Endometrial cancer cells with silenced INPP4B expression were found to have promoted tumor cell proliferation, invasion, and survival. Endometrial cancer cells overexpressing INPP4B were found to have decreased tumor cell proliferation, invasion, and survival. An in vivo study using six xenograft tumor-bearing mice in each group revealed that INPP4B overexpression could suppress tumor progression and enhance chemosensitivity. Furthermore, INPP4B overexpression was found to modulate the activation of Wnt3a signaling. CONCLUSION The current study suggested that INPP4B could be a suppressor in endometrial cancer progression and might be a target for endometrial cancer treatment. Also, INPP4B might serve as a predictor of chemosensitivity determination.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Xue-Mei Du
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Si
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xian-He Zhao
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zi-Qi Zhou
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Tumor Suppressor Role of INPP4B in Chemoresistant Retinoblastoma. JOURNAL OF ONCOLOGY 2023; 2023:2270097. [PMID: 36993823 PMCID: PMC10042642 DOI: 10.1155/2023/2270097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
The chemotherapy of retinoblastoma (RB), a malignant ocular childhood disease, is often limited by the development of resistance against commonly used drugs. We identified inositol polyphosphate 4-phosphatase type II (INPP4B) as a differentially regulated gene in etoposide-resistant RB cell lines, potentially involved in the development of RB resistances. INPP4B is controversially discussed as a tumor suppressor and an oncogenic driver in various cancers, but its role in retinoblastoma in general and chemoresistant RB in particular is yet unknown. In the study presented, we investigated the expression of INPP4B in RB cell lines and patients and analyzed the effect of INPP4B overexpression on etoposide resistant RB cell growth in vitro and in vivo. INPP4B mRNA levels were significantly downregulated in RB cells lines compared to the healthy human retina, with even lower expression levels in etoposide-resistant compared to the sensitive cell lines. Besides, a significant increase in INPP4B expression was observed in chemotherapy-treated RB tumor patient samples compared to untreated tumors. INPP4B overexpression in etoposide-resistant RB cells resulted in a significant reduction in cell viability with reduced growth, proliferation, anchorage-independent growth, and in ovo tumor formation. Caspase-3/7-mediated apoptosis was concomitantly increased, suggesting a tumor suppressive role of INPP4B in chemoresistant RB cells. No changes in AKT signaling were discernible, but p-SGK3 levels increased following INPP4B overexpression, indicating a potential regulation of SGK3 signaling in etoposide-resistant RB cells. RNAseq analysis of INPP4B overexpressing, etoposide-resistant RB cell lines revealed differentially regulated genes involved in cancer progression, mirroring observed in vitro and in vivo effects of INPP4B overexpression and strengthening INPP4B’s importance for cell growth control and tumorigenicity.
Collapse
|
3
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
4
|
Peng M, Ren J, Jing Y, Jiang X, Xiao Q, Huang J, Tao Y, Lei L, Wang X, Yang Z, Yang Z, Zhan Q, Lin C, Jin G, Zhang X, Zhang L. Tumour-derived small extracellular vesicles suppress CD8+ T cell immune function by inhibiting SLC6A8-mediated creatine import in NPM1-mutated acute myeloid leukaemia. J Extracell Vesicles 2021; 10:e12168. [PMID: 34807526 PMCID: PMC8607980 DOI: 10.1002/jev2.12168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) carrying nucleophosmin (NPM1) mutations has been defined as a distinct entity of acute leukaemia. Despite remarkable improvements in diagnosis and treatment, the long-term outcomes for this entity remain unsatisfactory. Emerging evidence suggests that leukaemia, similar to other malignant diseases, employs various mechanisms to evade killing by immune cells. However, the mechanism of immune escape in NPM1-mutated AML remains unknown. In this study, both serum and leukemic cells from patients with NPM1-mutated AML impaired the immune function of CD8+ T cells in a co-culture system. Mechanistically, leukemic cells secreted miR-19a-3p into the tumour microenvironment (TME) via small extracellular vesicles (sEVs), which was controlled by the NPM1-mutated protein/CCCTC-binding factor (CTCF)/poly (A)-binding protein cytoplasmic 1 (PABPC1) signalling axis. sEV-related miR-19a-3p was internalized by CD8+ T cells and directly repressed the expression of solute-carrier family 6 member 8 (SLC6A8; a creatine-specific transporter) to inhibit creatine import. Decreased creatine levels can reduce ATP production and impair CD8+ T cell immune function, leading to immune escape by leukemic cells. In summary, leukemic cell-derived sEV-related miR-19a-3p confers immunosuppression to CD8+ T cells by targeting SLC6A8-mediated creatine import, indicating that sEV-related miR-19a-3p might be a promising therapeutic target for NPM1-mutated AML.
Collapse
Affiliation(s)
- Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xin Wang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing University Cancer HospitalChongqingChina
| | - Zesong Yang
- Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qian Zhan
- The Center for Clinical Molecular Medical detectionThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Guoxiang Jin
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xian Zhang
- Immunology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of EducationSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Chen Y, Xu R, Ruze R, Yang J, Wang H, Song J, You L, Wang C, Zhao Y. Construction of a prognostic model with histone modification-related genes and identification of potential drugs in pancreatic cancer. Cancer Cell Int 2021; 21:291. [PMID: 34090418 PMCID: PMC8178883 DOI: 10.1186/s12935-021-01928-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. An effective prediction model is urgently needed for the accurate assessment of patients’ prognosis to assist clinical decision-making. Methods Gene expression data and clinicopathological data of the samples were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. The effectiveness and independence of the model were validated by time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier (KM) survival analysis and survival point graph in training set, test set, TCGA entire set and GSE57495 set. The validity of the core gene was verified by immunohistochemistry and our own independent cohort. Meanwhile, functional enrichment analysis of DEGs between the high and low risk groups revealed the potential biological pathways. Finally, CMap database and drug sensitivity assay were utilized to identify potential small molecular drugs as the risk model-related treatments for PC patients. Results Four histone modification-related genes were identified to establish the risk signature, including CBX8, CENPT, DPY30 and PADI1. The predictive performance of risk signature was validated in training set, test set, TCGA entire set and GSE57495 set, with the areas under ROC curve (AUCs) for 3-year survival were 0.773, 0.729, 0.775 and 0.770 respectively. Furthermore, KM survival analysis, univariate and multivariate Cox regression analysis proved it as an independent prognostic factor. Mechanically, functional enrichment analysis showed that the poor prognosis of high-risk population was related to the metabolic disorders caused by inadequate insulin secretion, which was fueled by neuroendocrine aberration. Lastly, a cluster of small molecule drugs were identified with significant potentiality in treating PC patients. Conclusions Based on a histone modification-related gene signature, our model can serve as a reliable prognosis assessment tool and help to optimize the treatment for PC patients. Meanwhile, a cluster of small molecule drugs were also identified with significant potentiality in treating PC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01928-6.
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jinshou Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Jianlu Song
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, People's Republic of China.
| |
Collapse
|
6
|
Wu Y, Meng D, Xu X, Bao J, You Y, Sun Y, Li Y, Sun D. Expression and functional characterization of INPP4B in gallbladder cancer patients and gallbladder cancer cells. BMC Cancer 2021; 21:433. [PMID: 33879096 PMCID: PMC8056679 DOI: 10.1186/s12885-021-08143-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inositol polyphosphate 4-phosphatase type II (INPP4B) is a negative regulator of the PI3K-Akt signalling pathway and plays a contradictory role in different types of cancers. However, the its biological role played by INPP4B in human gallbladder cancer (GBC) has not been elucidated. In this study, we investigated the expression, clinical significance and biological function of INPP4B in GBC patients and cell lines. Methods The INPP4B protein expression levels in gallbladder cancer tissues and normal gallbladder tissues were detected by immunohistochemistry, and the clinical significance of INPP4B was analysed. Knockdown and overexpression of INPP4B in GBC-SD and SGC-996 cells followed by cell proliferation, clonogenic, apoptosis detection, scratch wound-healing and transwell assays were used to identify INPP4B function in vitro. Results INPP4B was up-regulated in human GBC tissues compared with normal gallbladder tissues and was related to histopathological differentiation (p = 0.026). Here, we observed that INPP4B was highly expressed in high-moderately differentiated tumours compared with low-undifferentiated tumours (p = 0.022). Additionally, we found that INPP4B expression was not associated with overall survival of GBC patients (p = 0.071) and was not an independent prognostic factor. Furthermore, when we stratified the relationship between INPP4B expression and the prognosis of GBC based on histopathological differentiation, we found that INPP4B played a contradictory role in GBC progression depending on the degree of differentiation. In addition, INPP4B knockdown inhibited the proliferation, colony formation, migration and invasion in GBC cells, while INPP4B overexpression had the opposite effects in vitro, which indicates its role as an oncoprotein. Conclusions These findings suggested that INPP4B may play a dual role in the prognosis of GBC depending on the degree of differentiation and that INPP4B might act as an oncogene in gallbladder cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08143-6.
Collapse
Affiliation(s)
- Youliang Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Xin Xu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Junjun Bao
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yexiang You
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yanjun Sun
- Department of General Surgery, the Armed Police Corps Hospital of Anhui, Hefei, 230041, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Dengqun Sun
- Department of General Surgery, the Armed Police Corps Hospital of Anhui, Hefei, 230041, People's Republic of China.
| |
Collapse
|
7
|
Li J, Yang J, Hua L, Wang R, Li H, Zhang C, Zhang H, Li S, Zhu L, Su H. Ese-3 contributes to colon cancer progression by downregulating EHD2 and transactivating INPP4B. Am J Cancer Res 2021; 11:92-107. [PMID: 33520362 PMCID: PMC7840712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023] Open
Abstract
Epithelium-specific Ets protein 3 (Ese-3), a member of the Ets family of transcription factors, plays an important role in the development of cancers. However, little is known concerning its role in colon cancer (CC). In this study, we demonstrate that the expression of Ese-3 is upregulated in CC tissues and elevated Ese-3 expression is relationship with advanced T stage (P=0.037) and poor disease-free survival (DFS, P=0.044). Univariate and multivariate cox regression analyses show that Ese-3 expression may be an independent prognostic value for CC patients. Moreover, Ese-3 knockdown suppresses CC cell proliferation in vitro and in vivo, while Ese-3 overexpression has the opposite result. Further, we first demonstrate that EHD2 and INPP4B are the downstream genes of Ese-3. Subsequent investigation find that EHD2 is downregulated in CC tissues and knockdown of EHD2 significantly increase CC cell proliferation in vitro and vivo. Our findings reveal that Ese-3 promotes CC cell proliferation by downregulating EHD2 and transactivating INPP4B, and targeting the pathway may be a promising therapeutic target for CC patients.
Collapse
Affiliation(s)
- Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Jing Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Lei Hua
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Hong Li
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Chao Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Haihua Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Shanshan Li
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Liaoliao Zhu
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical UniversityXi’an 710038, Shaanxi, China
| |
Collapse
|
8
|
Identification of 6 Hub Proteins and Protein Risk Signature of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6135060. [PMID: 33376727 PMCID: PMC7744197 DOI: 10.1155/2020/6135060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer death in the United States and the third most common cancer globally. The incidence of CRC tends to be younger, and we urgently need a reliable prognostic assessment strategy. Methods Protein expression profile and clinical information of 390 CRC patients/samples were downloaded from the TCPA and TCGA database, respectively. The Kaplan-Meier, Cox regression, and Pearson correlation analysis were applied in this study. Results Based on the TCPA and TCGA database, we screened 6 hub proteins and first constructed protein risk signature, all of which were significantly associated with CRC patients' overall survival (OS). The risk score was an independent prognostic factor and significantly related with the size of the tumor in situ (T). 6 hub proteins were differentially expressed in cancer and normal tissues and in different CRC stages, which were validated at the ONCOMINE database. Next, 40 coexpressed proteins of 6 hub proteins were extracted from the TCPA database. In the protein-protein interaction (PPI) network, HER1, HER2, and CTNNB1 were at the center. Function enrichment analysis illustrated that 46 proteins were mainly involved in the EGFR (HER1) tyrosine kinase inhibitor resistance pathway. Conclusion Studies indicated that 6 hub proteins might be considered as new targets for CRC therapies, and the protein risk signature can be used to predict the OS of CRC patients.
Collapse
|
9
|
Zheng H, Wu L, Wang X, Chen Q. Risk of Nasopharyngeal Carcinoma Associated with Single Nucleotide Polymorphisms in the MicroRNA Binding Site of SGK3. Genet Test Mol Biomarkers 2020; 24:508-519. [PMID: 32644852 DOI: 10.1089/gtmb.2019.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Serum/glucocorticoid regulated kinase is a serine/threonine kinase that is involved in regulating cell proliferation, apoptosis, the cell cycle, and ion channel function. The aim of this study was to analyze the relationship between single nucleotide polymorphisms (SNPs) in the microRNA (miRNA) binding site of the SGK3 gene and the risk of nasopharyngeal carcinoma (NPC). Methods: Three SGK3 loci, rs77572541, rs11994200, and rs78158330, were genotyped in 226 NPC patients and 226 healthy controls via Sanger sequencing. Quantitative real-time polymerase chain reaction was used to analyze levels of SGK3 messenger RNA (mRNA), hsa-miR-3529-5p, hsa-miR-379-5p, hsa-miR-498, hsa-miR-4320, and hsa-miR-590-3p. Western blot analysis was used to assess serum and glucocorticoid regulated kinase 3 (SGK3) protein expression. Results: SGK3 rs77572541 locus G allele carriers were 3.47 times more likely to develop NPC than carriers of the A allele (95% confidence interval [CI] = 1.98-6.09, p < 0.01). The SGK3 rs11994200 locus C allele was a major risk factor for NPC (odds ratio = 2.68, 95% CI = 1.63-4.39, p < 0.01). Similarly, carriers of the C allele of the SGK3 rs78158330 locus were 3.36 times more likely to develop NPC than those with the T allele (95% CI = 1.96-5.73, p < 0.01). The SGK3 protein was highly expressed in NPC. The SGK3 rs77572541 locus G allele is the target of hsa-miR-379-5p and hsa-miR-3529-5p, but the A allele is not. The SGK3 rs11994200 locus C allele was the target of hsa-miR-4320, and the G allele was the target of hsa-miR-498. The SGK3 rs78158330 locus T allele was the target of hsa-miR-590-3p. Hsa-miR-3529-5p, hsa-miR-379-5p, and hsa-miR-4320 were down-regulated in NPC tissues (p < 0.01), whereas hsa-miR-498 and hsa-miR-590-3p were highly expressed (p < 0.01). Conclusions: SNPs at the SGK3 loci rs77572541, rs11994200, and rs78158330 are significantly associated with the risk for NPC. These effects may be related to the influence of miRNAs on different alleles, but this needs to be verified both in vitro and in vivo.
Collapse
Affiliation(s)
- Huizhen Zheng
- Department of Otolaryngology, Wenzhou People's Hospital, Wenzhou, China
| | - Liping Wu
- Department of Otolaryngology, Huzhou Central Hospital, Huzhou, China
| | - Xiaodan Wang
- Department of Otolaryngology, The 72nd Army Hospital of the People's Liberation Army of China, Huzhou, China
| | - Qin Chen
- Department of Otolaryngology, Wenzhou Kean University, Wenzhou, China
| |
Collapse
|
10
|
Yang Q, Li H, Xiao Y, Wu C, Yang S, Sun Z. Expression of inositol polyphosphate 4‐phosphatase type II and the prognosis of oral squamous cell carcinoma. Eur J Oral Sci 2020; 128:37-45. [PMID: 32027770 DOI: 10.1111/eos.12673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Qi‐Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Cong‐Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Shao‐Chen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Zhi‐Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
- Department of Oral Maxillofacial‐Head Neck Oncology School & Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
11
|
Hirsch E, Gulluni F, Martini M. Phosphoinositides in cell proliferation and metabolism. Adv Biol Regul 2020; 75:100693. [PMID: 32008962 DOI: 10.1016/j.jbior.2020.100693] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Phosphoinositides (PI) are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have improved our understanding of how and when these lipids are generated and what their roles are in physiology and disease. In particular, PI play a central role in the regulation of cell proliferation and metabolism. Here, we will review recent advances in our understanding of PI function, regulation, and importance in different aspects of proliferation and energy metabolism.
Collapse
Affiliation(s)
- Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
12
|
Wang K, Dai J, Liu T, Wang Q, Pang Y. Retracted Article: LncRNA ZEB2-AS1 regulates the drug resistance of acute myeloid leukemia via the miR-142-3p/INPP4B axis. RSC Adv 2019; 9:39495-39504. [PMID: 35540690 PMCID: PMC9076093 DOI: 10.1039/c9ra07854a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) has been reported to participate in the process of chemoresistance in multiple cancers, including acute myeloid leukemia (AML). LncRNA zinc finger E-box binding homeobox 2 antisense RNA 1 (ZEB2-AS1) has been reported to be up-regulated in AML. However, the biological role of ZEB2-AS1 remains to be determined. Quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the levels of ZEB2-AS1, miR-142-3p and inositol polyphosphate-4-phosphatase type II B (INPP4B). The cell viability and apoptosis were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry, respectively. Western blotting was applied to analyze levels of BCL2 apoptosis regulator (Bcl-2), BCL2 associated X, apoptosis regulator (Bax), cleaved-caspase-3 and INPP4B. The interaction among ZEB2-AS1, miR-142-3p and INPP4B was verified by dual-luciferase reporter assay and RNA pull-down assay. The levels of ZEB2-AS1 and INPP4B were significantly elevated in AML and chemo-resistance tissues, as well as in THP-1 and THP-1/ADR cells. ZEB2-AS1 elevated the IC50 of ADR, and suppressed cell apoptosis of AML cells, while ZEB2-AS1 increased Bcl-2 expression and decreased the levels of Bax and cleaved-caspase-3. ZEB2-AS1 could enhance the resistance in THP-1 and THP-1/ADR cells. ZEB2-AS1 could sponge miR-142-3p, and ZEB2-AS1 reduced the promotion effect of miR-124-3p on the sensitivity of AML cells. Furthermore, IPNN4B was revealed as a target gene of miR-142-3p. More interestingly, suppression of IPNN4B by shRNA reversed the inhibitory effect of ZEB2-AS1 on the sensitivity of AML cells. LncRNA ZEB2-AS1 promoted ADR resistance of AML via regulating INP4B expression by sponging miR-142-3p, providing a novel therapeutic target for drug resistance of AML.
Collapse
Affiliation(s)
- Kai Wang
- Department of Hematology, Zhoukou Central Hospital No. 26, East Renmin Road Zhoukou 466000 Henan China +86-394-8521603
| | - Jing Dai
- Department of Hematology, Zhoukou Central Hospital No. 26, East Renmin Road Zhoukou 466000 Henan China +86-394-8521603
| | - Tao Liu
- Department of Hematology, Zhoukou Central Hospital No. 26, East Renmin Road Zhoukou 466000 Henan China +86-394-8521603
| | - Qiong Wang
- Department of Hematology, Zhoukou Central Hospital No. 26, East Renmin Road Zhoukou 466000 Henan China +86-394-8521603
| | - Yingxu Pang
- Department of Hematology, Zhoukou Central Hospital No. 26, East Renmin Road Zhoukou 466000 Henan China +86-394-8521603
| |
Collapse
|
13
|
Chen J, Li HL, Li BB, Li W, Ma D, Li YH, Liu T. Serum- and glucocorticoid-inducible kinase 3 is a potential oncogene in nasopharyngeal carcinoma. Braz J Otorhinolaryngol 2019; 85:705-715. [DOI: doi.org/10.1016/j.bjorl.2018.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
|
14
|
Chen J, Li HL, Li BB, Li W, Ma D, Li YH, Liu T. Serum- and glucocorticoid-inducible kinase 3 is a potential oncogene in nasopharyngeal carcinoma. Braz J Otorhinolaryngol 2019; 85:705-715. [DOI: https:/doi.org/10.1016/j.bjorl.2018.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
|
15
|
Mangialardi EM, Chen K, Salmon B, Vacher J, Salmena L. Investigating the duality of Inpp4b function in the cellular transformation of mouse fibroblasts. Oncotarget 2019; 10:6378-6390. [PMID: 31695845 PMCID: PMC6824866 DOI: 10.18632/oncotarget.27293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/19/2019] [Indexed: 11/25/2022] Open
Abstract
Inositol Polyphosphate 4-Phosphatase, Type II (INPP4B) is a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that INPP4B also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that INPP4B may be a context dependent cancer gene. Whether INPP4B functions solely in a tumour suppressing or tumour promoting manner, or both in non-transformed cells is currently not clear. In this study, consequences of deficiency and overexpression of INPP4B on cellular transformation was investigated using a mouse embryonic fibroblast (MEF) model of cellular transformation. We observed that neither deficiency nor overexpression of INPP4B was sufficient to induce neoplastic transformation, alone or in combination with H-Ras V12 or E1A overexpression. However, Inpp4b-deficiency did cooperate with SV40 T-Large-mediated cellular transformation, a finding which was associated with increased phosphorylated-Akt levels. Transformation and phosphorylated-Akt levels were dampened upon overexpression of INPP4B in SV40 T-Large-MEF. Together, our findings support a model where INPP4B function suppresses transformation mediated by SV40 T-Large, but is inconsequential for Ras and E1A mediated transformation.
Collapse
Affiliation(s)
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Salmon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Yang L, Wang L, Yang Z, Jin H, Zou Q, Zhan Q, Tang Y, Tao Y, Lei L, Jing Y, Jiang X, Zhang L. Up-regulation of EMT-related gene VCAN by NPM1 mutant-driven TGF-β/cPML signalling promotes leukemia cell invasion. J Cancer 2019; 10:6570-6583. [PMID: 31777586 PMCID: PMC6856892 DOI: 10.7150/jca.30223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/14/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) is acknowledged as a distinct leukemia entity in the 2016 updated World Health Organization (WHO) classification. NPM1-mutated AML patients are correlated with higher extramedullary involvement. Epithelial-mesenchymal transition (EMT) is one of the key steps which cause distant metastasis in tumor. However, whether EMT-related programs contribute to cell invasion in NPM1-mutated AML remains unclear. In this study, we identified the EMT-related gene versican (VCAN) in NPM1-mutated AML across three patient datasets. Further experiments validated the elevated VCAN expression in NPM1-mutated AML primary blasts and OCI-AML3 cells with NPM1 mutation. Mechanistic studies revealed that increased VCAN expression was at least partially regulated by NPM1 mutant via TGF-β/cPML/Smad signalling. Functional evaluations showed that silencing VCAN by shRNA significantly suppressed cell migration and invasion capacity, whereas increased VCAN by overexpressing NPM1-mA enhanced migration and invasion ability of leukemia cells. Finally, we found that high expression of VCAN was associated with poor prognosis in AML patients. These findings provide insights into the involvement of EMT-related gene VCAN in the pathogenesis of NPM1-mutated leukemia, which suggests that VCAN is an attractive target for novel diagnostic and therapeutic strategies in NPM1-mutated AML.
Collapse
Affiliation(s)
- Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongjun Jin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qin Zou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Zhan
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Comparative Assessment of Antitumor Effects and Autophagy Induction as a Resistance Mechanism by Cytotoxics and EZH2 Inhibition in INI1-Negative Epithelioid Sarcoma Patient-Derived Xenograft. Cancers (Basel) 2019; 11:cancers11071015. [PMID: 31331120 PMCID: PMC6678245 DOI: 10.3390/cancers11071015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022] Open
Abstract
Epithelioid sarcoma (ES) is a rare mesenchymal malignancy marked by SMARCB1/INI1 deficiency. Retrospective clinical data report on the activity of anthracycline- and gemcitabine-based regimens. EZH2 inhibitors are currently being tested in clinical trials. Since comparisons of these agents are unlikely to be prospectively evaluated in the clinics, we took advantage of an INI1-deficient proximal-type ES patient-derived xenograft (PDX ES-1) to comparatively assess its preclinical antitumor activity. Mice were treated with doxorubicin and ifosfamide, singly or in combination, gemcitabine, and the EZH2 inhibitor EPZ-011989. Comparable antitumor activity (max tumor volume inhibition: ~90%) was caused by gemcitabine, EPZ-011989, and the doxorubicin-ifosfamide combination. The integration of RNAseq data, generated on tumors obtained from untreated and EPZ-011989-treated mice, and results from functional studies, carried out on the PDX-derived ES-1 cell line, revealed autophagy induction as a possible survival mechanism in residual tumor cells following EPZ-011989 treatment and identified HMGA2 as a main player in this process. Our data support the clinical use of gemcitabine and the doxorubicin-ifosfamide combination, confirm EZH2 as a therapeutic target in proximal-type ES, and suggest autophagy as a cytoprotective mechanism against EZH2 inhibition.
Collapse
|
18
|
Ruan XH, Liu XM, Yang ZX, Zhang SP, Li QZ, Lin CS. INPP4B promotes colorectal cancer cell proliferation by activating mTORC1 signaling and cap-dependent translation. Onco Targets Ther 2019; 12:3109-3117. [PMID: 31114251 PMCID: PMC6485035 DOI: 10.2147/ott.s186365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and objective Inositol polyphosphate 4-phosphatase type II (INPP4B) is over-expressed in CRC tissues, and emerges as an oncogene. However, the mechanism by which INPP4B regulates CRC cell proliferation remains largely unclear. In this study, we aimed to investigate the regulatory mechanisms of INPP4B in CRC. Materials and methods The expression levels of mRNA were detected by qRT-PCR. The expression levels of protein were determined by Western blot. Cell Counting Kit-8 (CCK-8) assays and BrdU incorporation assays were performed to evaluate cell proliferation abilities. Bicistronic luciferase assays and the m7GTP pull down assay were performed to measure the cap-dependent translation in cells. Results INPP4B promotes CRC cell proliferation by increasing mTORC1 activity. Furthermore, it was shown that the activation of mTORC1 signaling by INPP4B led to increased cap-dependent translation, which is essential for INPP4B-mediated CRC cell proliferation. Finally, it was demonstrated that increased AKT and serum and glucocorticoid-inducible kinase 1 activity contributed to the activation of cap-dependent translation induced by INPP4B. Conclusion Collectively, the present study reveals INPP4B promotes colorectal cancer cell proliferation by activating mTORC1 signaling and cap-dependent translation.
Collapse
Affiliation(s)
- Xin-Hua Ruan
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Xi-Mei Liu
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Zhi-Xiang Yang
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Shao-Peng Zhang
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Quan-Zheng Li
- Department of Cardiac Surgery, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| | - Chun-Sheng Lin
- Department of Medical Service, TianJin Union Medical Centre, Tianjin, People's Republic of China,
| |
Collapse
|
19
|
Chen J, Li HL, Li BB, Li W, Ma D, Li YH, Liu T. Serum- and glucocorticoid-inducible kinase 3 is a potential oncogene in nasopharyngeal carcinoma. Braz J Otorhinolaryngol 2018; 85:705-715. [PMID: 30108027 PMCID: PMC9443024 DOI: 10.1016/j.bjorl.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/03/2018] [Accepted: 05/30/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. OBJECTIVE The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. METHODS Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. RESULTS Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. CONCLUSION Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jing Chen
- Zhujiang Hospital, Southern Medical University, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Hai Liang Li
- Jinan University, Zhuhai People's Hospital, Xiangzhou District, Zhuhai, Guangdong, China; University of Science and Technology of China, School of Life Sciences and Medical Center, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, Hefei, Anhui, China
| | - Bo Bo Li
- Guangdong Provincial Hospital of Chinese Medicine, Department of Otolaryngology, Guangdong, China; The 2(nd) Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Li
- Zhujiang Hospital, Southern Medical University, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Dong Ma
- Jinan University, Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Yong He Li
- Zhujiang Hospital, Southern Medical University, Department of Otolaryngology, Guangzhou, Guangdong, China.
| | - Tao Liu
- Zhujiang Hospital, Southern Medical University, Department of Otolaryngology, Guangzhou, Guangdong, China; Guangdong Academy of Medical Sciences, Guangdong General Hospital, Department of Otolaryngology, Guangzhou, Guangdong, China.
| |
Collapse
|