1
|
Spirina LV, Avgustinovich AV, Bakina OV, Afanas'ev SG, Volkov MY, Vtorushin SV, Kovaleva IV, Klyushina TS, Munkuev IO. Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness. Curr Issues Mol Biol 2024; 46:1281-1290. [PMID: 38392199 PMCID: PMC10887746 DOI: 10.3390/cimb46020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Heterogeneity of gastric cancer (GC) is the main trigger of the disease's relapse. The aim of this study was to investigate the connections between targeted genes, cancer clinical features, and the effectiveness of FLOT chemotherapy. Twenty-one patients with gastric cancers (GCs) were included in this study. Tumor-targeted sequencing was conducted, and real-time PCR was used to assess the expression of molecular markers in tumors. Seven patients with stabilization had mutations that were related to their response to therapy and were relevant to the tumor phenotype. Two patients had two mutations. The number of patients with TP53 mutations increased in HER2-positive tumor status. PD-L1-positive cancers had mutations in KRAS, TP53, PIK3CA, PTEN, and ERBB, which resulted in an increase in PD-1 expression. TP53 mutation and PTEN mutation are associated with changes in factors associated with neoangiogenesis. In concusion, patients who did not have aggressive growth markers that were verified by molecular features had the best response to treatment, including complete morphologic regression.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Olga V Bakina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
- Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Pr. Akademicheskii, Tomsk 634055, Russia
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Sergey V Vtorushin
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Irina V Kovaleva
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia
| | - Tatyana S Klyushina
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
| | - Igor O Munkuev
- Biochemistry and Molecular Biology Division, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
| |
Collapse
|
2
|
Chen Q, Zhang J, Bao B, Zhang F, Zhou J. Large-Scale Gastric Cancer Susceptibility Gene Identification Based on Gradient Boosting Decision Tree. Front Mol Biosci 2022; 8:815243. [PMID: 35096975 PMCID: PMC8793069 DOI: 10.3389/fmolb.2021.815243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
The early clinical symptoms of gastric cancer are not obvious, and metastasis may have occurred at the time of treatment. Poor prognosis is one of the important reasons for the high mortality of gastric cancer. Therefore, the identification of gastric cancer-related genes can be used as relevant markers for diagnosis and treatment to improve diagnosis precision and guide personalized treatment. In order to further reveal the pathogenesis of gastric cancer at the gene level, we proposed a method based on Gradient Boosting Decision Tree (GBDT) to identify the susceptible genes of gastric cancer through gene interaction network. Based on the known genes related to gastric cancer, we collected more genes which can interact with them and constructed a gene interaction network. Random Walk was used to extract network association of each gene and we used GBDT to identify the gastric cancer-related genes. To verify the AUC and AUPR of our algorithm, we implemented 10-fold cross-validation. GBDT achieved AUC as 0.89 and AUPR as 0.81. We selected four other methods to compare with GBDT and found GBDT performed best.
Collapse
Affiliation(s)
- Qing Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Zhang
- Wuhan Asia General Hospital, Wuhan, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zhou,
| |
Collapse
|
3
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B. Application of Animal Models in Cancer Research: Recent Progress and Future Prospects. Cancer Manag Res 2021; 13:2455-2475. [PMID: 33758544 PMCID: PMC7979343 DOI: 10.2147/cmar.s302565] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Animal models refers to the animal experimental objects and related materials that can simulate human body established in medical research. As the second-largest disease in terms of morbidity and mortality after cardiovascular disease, cancer has always been the focus of human attention all over the world, which makes it a research hotspot in the medical field. At the same time, more and more animal models have been constructed and used in cancer research. With the deepening of research, the construction methods of cancer animal models are becoming more and more diverse, including chemical induction, xenotransplantation, gene programming, and so on. In recent years, patient-derived xenotransplantation (PDX) model has become a research hotspot because it can retain the microenvironment of the primary tumor and the basic characteristics of cells. Animal models can be used not only to study the biochemical and physiological processes of the occurrence and development of cancer in objects but also for the screening of cancer drugs and the exploration of gene therapy. In this paper, several main tumor animal models and the application progress of animal models in tumor research are systematically reviewed. Finally, combined with the latest progress and development trend in this field, the future research of tumor animal model was prospected.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Role of sympathetic and parasympathetic nerves in the development of gastric cancer through antagonism. Chin Med J (Engl) 2021; 134:908-909. [PMID: 33470652 PMCID: PMC8078313 DOI: 10.1097/cm9.0000000000001348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
5
|
Gao J, Pan H, Zhu Z, Yu T, Huang B, Zhou Y. Guanine nucleotide-binding protein subunit beta-4 promotes gastric cancer progression via activating Erk1/2. Acta Biochim Biophys Sin (Shanghai) 2020; 52:975-987. [PMID: 32747927 DOI: 10.1093/abbs/gmaa084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and lethal malignancies worldwide, and its poor prognosis is mainly due to the rapid tumor progression including tumor invasion, distant metastasis, etc. Understanding the molecular mechanisms regulating GC progression lays the basis for the development of targeted therapeutic agents. Increasing evidence suggests that guanine nucleotide-binding protein subunit beta-4 (GNB4), a key subunit of heterotrimeric G protein, plays a crucial role in the initiation and progression of multiple malignancies. However, whether and how GNB4 promotes GC progression are still unknown. In this study, we found that GNB4 was highly expressed in GC tissues compared to that in non-tumor tissues and was significantly associated with tumor invasion depth, pathological stage and poor survival rate of GC patients. Both gain-of-function and loss-of-function studies revealed that GNB4 significantly enhanced GC cell growth and motility both in vitro and in vivo. Further studies revealed that GNB4 overexpression induced G1-S transition and promoted the process of epithelial-mesenchymal transformation. These tumor promoting effects were mediated by GNB4 which activates the Erk1/2 pathway through upregulating Erk1/2 phosphorylation, as U0126, an Erk1/2 phosphorylation inhibitor, could significantly inhibit GNB4-mediated cell proliferation, migration and invasion. In summary, GNB4 contributes to the proliferation and metastasis of GC cells by activating the Erk1/2 signaling pathway, and it may serve as a potential therapeutic target of GC.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenglun Zhu
- Department of Gastrointestinal Surgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teng Yu
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ye Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Zhou G, Huang Z, Meng Y, Jin T, Liang Y, Zhang B. Upregulation of long non-coding RNA FOXD2-AS1 promotes progression and predicts poor prognosis in tongue squamous cell carcinoma. J Oral Pathol Med 2020; 49:1011-1018. [PMID: 32531865 DOI: 10.1111/jop.13074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Accumulating evidences suggest that lncRNA FOXD2-AS1 plays an important role in tumor progression, however, its function in tongue squamous cell carcinoma (TSCC) remains unknown. This research aims to investigate the function and mechanism of FOXD2-AS1 in the modulation of tongue squamous cell carcinoma progression. METHODS Expression of FOXD2-AS1 was detected in TSCC tissues and TCGA data. Receiver operating characteristic curves (ROCs) analysis and bioinformatic analysis of TCGA data were performed to investigate the role of FOXD2-AS1 in TSCC prognosis. After siRNA-mediated downregulation of FOXD2-AS1, wound healing assay, Transwell migration and invasion assays, and MTS proliferation assay were conducted to explore the effects that FOXD2-AS1 exerted on SCC-9 and CAL-27 cell lines. Western blotting was performed to detect the downstream protein changes. RESULTS Compared to the normal tissues and samples, FOXD2-AS1 significantly highly expressed in TSCC tissues and in TSCC samples of TCGA data, and high expression of FOXD2-AS1 was associated with lymphatic metastasis and poor TNM stages. ROC analysis and bioinformatic analysis of TCGA data further suggested that high expression of FOXD2-AS1 was associated with TSCC poor prognosis. Downregulation of FOXD2-AS1 inhibited the migration and invasion of SCC-9 and CAL-27 cell lines. Western blotting showed that the expression of p-p44 and p-p65 downregulated after FOXD2-AS1 knockdown. CONCLUSION High expression of FOXD2-AS1 promotes TSCC progression through modulating NF-kB and ERK MAPK signaling pathways and is associated with TSCC poor prognosis, it could be a novel therapeutic target and prognostic biomarker for TSCC.
Collapse
Affiliation(s)
- Guangming Zhou
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zixian Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiyi Meng
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,School of Nursing, Sun Yat-sen University, Guangzhou, China
| | - Tingting Jin
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yancan Liang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Sun J, Wang L, Huang M, Li Y, Wang W, Song L. CgCLec-HTM–Mediated Signaling Pathway Regulates Lipopolysaccharide-Induced CgIL-17 and CgTNF Production in Oyster. THE JOURNAL OF IMMUNOLOGY 2019; 203:1845-1856. [DOI: 10.4049/jimmunol.1900238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023]
|
8
|
Wang F, Zhang S, Wei Y, Chen H, Jiao Z, Li Y. Upregulation of family with sequence similarity 83 member D expression enhances cell proliferation and motility via activation of Wnt/β-catenin signaling and predicts poor prognosis in gastric cancer. Cancer Manag Res 2019; 11:6775-6791. [PMID: 31413630 PMCID: PMC6660642 DOI: 10.2147/cmar.s203082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background/aims Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. The molecular mechanisms underlying the progression of gastric cancer are still not fully elucidated. In this study, we focused on exploring the role of family with sequence similarity 83, member D (FAM83D) in gastric cancer progression. Methods The expression of FAM83D in GC tissues was detected by immunohistochemistry (IHC) staining. FAM83D knockdown or overexpression were constructed in AGS and SGC-7901 cells with two distinct siRNA duplexes and lentivirus infection, respectively, to explore the role of FAM83D in gastric cancer progression. Nude mouse xenograft assay was used to further explore the role of FAM83D in tumorigenesis in vivo. Results We found that FAM83D mRNA and protein levels were higher in human GC tumor tissues and in GC cell lines, compared with the adjacent normal tissues and non-malignant gastric epithelial cell lines, respectively, and that higher FAM83D expression was correlated with worse overall survival (p<0.0001) and disease-free survival (p<0.0001) in GC patients. Additionally, our results showed that FAM83D overexpression significantly enhanced the proliferation, clonogenicity, and motility of GC cells, whereas FAM83D depletion caused a dramatic increase in the number of cells arrested at the G1 phase of the cell cycle. Consistent with these findings from in vitro experiment, our data also indicated that FAM83D knockdown significantly repressed GC tumor growth in vivo. Furthermore, we demonstrated that FAM83D depletion was associated with reduced Wnt/β-catenin signaling. Conclusions This study suggested that FAM83D overexpression enhanced the proliferation, clonogenicity, and motility of GC cells by activating Wnt/β-catenin signaling, and FAM83D may be a promising diagnostic and therapeutic target for human GC.
Collapse
Affiliation(s)
- Furong Wang
- Department of Pathology, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sigong Zhang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of Rheumatology, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yucai Wei
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zuoyi Jiao
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yumin Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|