1
|
Gristina V, Bazan V, Barraco N, Taverna S, Manno M, Raccosta S, Carreca AP, Bono M, Bazan Russo TD, Pepe F, Pisapia P, Incorvaia L, Badalamenti G, Troncone G, Malapelle U, Santini D, Russo A, Galvano A. On-treatment dynamics of circulating extracellular vesicles in the first-line setting of patients with advanced non-small cell lung cancer: the LEXOVE prospective study. Mol Oncol 2025. [PMID: 39780749 DOI: 10.1002/1878-0261.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index. A total of 135 plasma samples from 27 patients were collected at baseline (T0) and at the first radiological restaging (T1). A ∆cfEV < 20% was associated with improved median progression-free survival (mPFS) in responders versus non-responders. Specifically, cfEV responders on pembrolizumab had a significantly better mPFS (25.2 months) compared to those on chemotherapy plus pembrolizumab (6.1 months). EGFR-positive cfEV responders also experienced longer mPFS compared to cfEV non-responders (35.1 months, 95% CI: 14.9-35.5 vs. 20.8 months, 95% CI: 11.2-30.4). This study suggested that monitoring circulating EV could provide valuable insights into treatment efficacy in NSCLC, particularly for patients receiving pembrolizumab or osimertinib.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Nadia Barraco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Mauro Manno
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Anna Paola Carreca
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | | | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Italy
| | - Daniele Santini
- Medical Oncology A, Policlinico Umberto 1, La Sapienza Università Di Roma, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| |
Collapse
|
2
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Li J, Zhan X. Mass spectrometry analysis of phosphotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2024; 43:857-887. [PMID: 36789499 DOI: 10.1002/mas.21836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine phosphorylation is a crucial posttranslational modification that is involved in various aspects of cell biology and often has functions in cancers. It is necessary not only to identify the specific phosphorylation sites but also to quantify their phosphorylation levels under specific pathophysiological conditions. Because of its high sensitivity and accuracy, mass spectrometry (MS) has been widely used to identify endogenous and synthetic phosphotyrosine proteins/peptides across a range of biological systems. However, phosphotyrosine-containing proteins occur in extremely low abundance and they degrade easily, severely challenging the application of MS. This review highlights the advances in both quantitative analysis procedures and enrichment approaches to tyrosine phosphorylation before MS analysis and reviews the differences among phosphorylation, sulfation, and nitration of tyrosine residues in proteins. In-depth insights into tyrosine phosphorylation in a wide variety of biological systems will offer a deep understanding of how signal transduction regulates cellular physiology and the development of tyrosine phosphorylation-related drugs as cancer therapeutics.
Collapse
Affiliation(s)
- Jiajia Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
| |
Collapse
|
4
|
Pandey S, Singh R, Habib N, Tripathi RM, Kushwaha R, Mahdi AA. Regulation of Hypoxia Dependent Reprogramming of Cancer Metabolism: Role of HIF-1 and Its Potential Therapeutic Implications in Leukemia. Asian Pac J Cancer Prev 2024; 25:1121-1134. [PMID: 38679971 PMCID: PMC11162727 DOI: 10.31557/apjcp.2024.25.4.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic reprogramming occurs to meet cancer cells' high energy demand. Its function is essential to the survival of malignancies. Comparing cancer cells to non-malignant cells has revealed that cancer cells have altered metabolism. Several pathways, particularly mTOR, Akt, PI3K, and HIF-1 (hypoxia-inducible factor-1) modulate the metabolism of cancer. Among other aspects of cancer biology, gene expression in metabolism, survival, invasion, proliferation, and angiogenesis of cells are controlled by HIF-1, a vital controller of cellular responsiveness to hypoxia. This article examines various cancer cell metabolisms, metabolic alterations that can take place in cancer cells, metabolic pathways, and molecular aspects of metabolic alteration in cancer cells placing special attention on the consequences of hypoxia-inducible factor and summarising some of their novel targets in the treatment of cancer including leukemia. A brief description of HIF-1α's role and target in a few common types of hematological malignancies (leukemia) is also elucidated in the present article.
Collapse
Affiliation(s)
- Sandeep Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ranjana Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Nimra Habib
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Ramesh Mani Tripathi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| | - Rashmi Kushwaha
- Department of Pathology, King George’s Medical University, Lucknow, U.P., India.
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, U.P., India.
| |
Collapse
|
5
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Xia J, Bu C, Zhang B, Wang X, Chen Y, Li T. The emerging role of microRNA-22 in the Leukemia: experimental and clinical implications. Mol Biol Rep 2023; 51:12. [PMID: 38085373 DOI: 10.1007/s11033-023-08922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs, approximately 20-24 nucleotides long that negatively regulate gene expression by either inhibiting translation or cleaving complementary mRNA to participate in various biological processes. Accumulating evidence has indicated that miRNAs are widely present in hematological cancers, particularly leukemia, exhibiting either upregulation or downregulation in leukemia patients compared with healthy controls. These miRNAs have a pivotal role in the development, progression and metastasis of leukemia, as well as in the prognosis and/or relapse of patients. miR-22 is one of the abnormally expressed miRNAs in a variety of leukemia diseases, and is considered to be one of the few cancer suppressors. Recent research has demonstrated that miR-22 is involved in the regulation of leukemia cell proliferation, differentiation and apoptosis, and could be a promising biomarker and prognostic indicator for leukemia. Here, we summarize all relevant findings that carry out experimental investigation and clinical analyses, aiming to elucidate the comprehensive implications of miR-22 in various types of leukemia for the development of new therapeutic and prognostic strategies and new drug targets for the treatment of leukemia.
Collapse
Affiliation(s)
- Jing Xia
- Department of Hematology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214023, Jiangsu, China
| | - Chaozhi Bu
- State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Bing Zhang
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Xingqing Wang
- Department of Hematology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214023, Jiangsu, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yuejuan Chen
- State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Tianyu Li
- Department of Hematology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
7
|
Zhang Y, Li Z, Huang Y, Xu Y, Zou B. Nanotechnology and curcumin: a novel and promising approach in digestive cancer therapy. Nanomedicine (Lond) 2023; 18:2081-2099. [PMID: 38078442 DOI: 10.2217/nnm-2023-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zheng Li
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Xu
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Bingwen Zou
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
8
|
Wang W, Li M, Wang L, Chen L, Goh BC. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Lett 2023; 570:216332. [PMID: 37541540 DOI: 10.1016/j.canlet.2023.216332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cancer poses a significant global health burden, necessitating the widespread use of chemotherapy and radiotherapy as conventional frontline interventions. Although targeted therapy and immunotherapy have shown remarkable advancements, the challenges of resistance development and severe side effects persist in cancer treatment. Consequently, researchers have actively sought more effective alternatives with improved safety profiles. In recent years, curcumin, a natural polyphenolic phytoalexin, has garnered considerable attention due to its broad spectrum of biological effects. This concise review provides valuable insights into the role of curcumin in cancer therapy, with a focus on elucidating its molecular mechanisms in inducing programmed cell death of tumor cells and suppressing tumor cell metastasis potential. Additionally, we discuss the challenges associated with the clinical application of curcumin and explore current endeavors aimed at overcoming these limitations. By shedding light on the promising potential of curcumin, this review contributes to the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingqin Li
- Department of Medical Cardiology, Zhongxiang TCM Hospital of Hubei, Zhongxiang, 431900, China
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; National University Cancer Institute, National University of Singapore, 119074, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; National University Cancer Institute, National University of Singapore, 119074, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
9
|
Taverna S, Masucci A, Cammarata G. PIWI-RNAs Small Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer. Cancers (Basel) 2023; 15:3912. [PMID: 37568728 PMCID: PMC10417041 DOI: 10.3390/cancers15153912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of small noncoding RNAs (ncRNAs) that bind components of the PIWI protein family. piRNAs are specifically expressed in different human tissues and regulate important signaling pathways. Aberrant expressions of piRNAs and PIWI proteins have been associated with tumorigenesis and cancer progression. Recent studies reported that piRNAs are contained in extracellular vesicles (EVs), nanosized lipid particles, with key roles in cell-cell communication. EVs contain several bioactive molecules, such as proteins, lipids, and nucleic acids, including emerging ncRNAs. EVs are one of the components of liquid biopsy (LB) a non-invasive method for detecting specific molecular biomarkers in liquid samples. LB could become a crucial tool for cancer diagnosis with piRNAs as biomarkers in a precision oncology approach. This review summarizes the current findings on the roles of piRNAs in different cancer types, focusing on potential theranostic applications of piRNAs contained in EVs (EV-piRNAs). Their roles as non-invasive diagnostic and prognostic biomarkers and as new therapeutic options have been also discussed.
Collapse
Affiliation(s)
- Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, Laboratory Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
10
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
11
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
12
|
Adrenocortical Carcinoma (ACC) Cells Rewire Their Metabolism to Overcome Curcumin Antitumoral Effects Opening a Window of Opportunity to Improve Treatment. Cancers (Basel) 2023; 15:cancers15041050. [PMID: 36831394 PMCID: PMC9954484 DOI: 10.3390/cancers15041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Extensive research suggests that curcumin interferes with multiple cell signaling pathways involved in cancer development and progression. This study aimed to evaluate curcumin effects on adrenocortical carcinoma (ACC), a rare but very aggressive tumor. Curcumin reduced growth, migration and activated apoptosis in three different ACC cell lines, H295R, SW13, MUC-1. This event was related to a decrease in estrogen-related receptor-α (ERRα) expression and cholesterol synthesis. More importantly, curcumin changed ACC cell metabolism, increasing glycolytic gene expression. However, pyruvate from glycolysis was only minimally used for lactate production and the Krebs cycle (TCA). In fact, lactate dehydrogenase, extracellular acidification rate (ECAR), TCA genes and oxygen consumption rate (OCR) were reduced. We instead found an increase in Glutamic-Pyruvic Transaminase (GPT), glutamine antiport transporter SLC1A5 and glutaminase (GLS1), supporting a metabolic rewiring toward glutamine metabolism. Targeting this mechanism, curcumin effects were improved. In fact, in a low glutamine-containing medium, the growth inhibitory effects elicited by curcumin were observed at a concentration ineffective in default growth medium. Data from this study prove the efficacy of curcumin against ACC growth and progression and point to the concomitant use of inhibitors for glutamine metabolism to improve its effects.
Collapse
|
13
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
14
|
Cammarata G, Barraco N, Giusti I, Gristina V, Dolo V, Taverna S. Extracellular Vesicles-ceRNAs as Ovarian Cancer Biomarkers: Looking into circRNA-miRNA-mRNA Code. Cancers (Basel) 2022; 14:cancers14143404. [PMID: 35884464 PMCID: PMC9324482 DOI: 10.3390/cancers14143404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Patients with ovarian cancer have a very poor chance of long-term survival, usually due to advanced disease at the time of diagnosis. Emerging evidence suggests that extracellular vesicles contain noncoding RNAs such as microRNAs, piwiRNAs, circular RNAs, and long noncoding RNAs, with regulatory effects on ovarian cancer. In this review, we focus on ovarian cancer-associated circular RNA shuttled by extracellular vesicles as mediators of cancer progression and novel biomarkers in liquid biopsy. We propose a circular-RNA–microRNA-mRNA code that can reveal the regulatory network created by extracellular vesicles, noncoding RNAs, and mRNAs in ovarian cancer. Future research in this field will help to identify novel diagnostic biomarkers and druggable therapeutic targets, which will ultimately benefit patients. Abstract Ovarian cancer (OC) is one of the most lethal gynecologic malignancies in females worldwide. OC is frequently diagnosed at an advanced stage due to a lack of specific symptoms and effective screening tests, resulting in a poor prognosis for patients. Age, genetic alterations, and family history are the major risk factors for OC pathogenesis. Understanding the molecular mechanisms underlying OC progression, identifying new biomarkers for early detection, and discovering potential targets for new drugs are urgent needs. Liquid biopsy (LB), used for cancer detection and management, consists of a minimally invasive approach and practical alternative source to investigate tumor alterations by testing extracellular vesicles (EVs), circulating tumor cells, tumor-educated platelets, and cell-free nucleic acids. EVs are nanosize vesicles shuttling proteins, lipids, and nucleic acids, such as DNA, RNA, and non-coding RNAs (ncRNAs), that can induce phenotypic reprogramming of target cells. EVs are natural intercellular shuttles for ncRNAs, such as microRNAs (miRNAs) and circular-RNAs (circRNAs), known to have regulatory effects in OC. Here we focus on the involvement of circRNAs and miRNAs in OC cancer progression. The circRNA-microRNA-mRNA axis has been investigated with Circbank and miRwalk analysis, unraveling the intricate and detailed regulatory network created by EVs, ncRNAs, and mRNAs in OC.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| |
Collapse
|
15
|
Cammarata G, de Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C, Taverna S. Emerging noncoding RNAs contained in extracellular vesicles: rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol 2022; 14:17588359221131229. [PMID: 36353504 PMCID: PMC9638531 DOI: 10.1177/17588359221131229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Lung cancer has a high morbidity and mortality rate, and affected patients have a
poor prognosis and low survival. The therapeutic approaches for lung cancer
treatment, including surgery, radiotherapy, and chemotherapy, are not completely
effective, due to late diagnosis. Although the identification of genetic drivers
has contributed to the improvement of lung cancer clinical management, the
discovery of new diagnostic and prognostic tools remains a critical issue.
Liquid biopsy (LB) represents a minimally invasive approach and practical
alternative source to investigate tumor-derived alterations and to facilitate
the selection of targeted therapies. LB allows for the testing of different
analytes such as circulating tumor cells, extracellular vesicles (EVs),
tumor-educated platelets, and cell-free nucleic acids including DNAs, RNAs, and
noncoding RNAs (ncRNAs). Several regulatory factors control the key cellular
oncogenic pathways involved in cancers. ncRNAs have a wide range of regulatory
effects in lung cancers. This review focuses on emerging regulatory ncRNAs,
freely circulating in body fluids or shuttled by EVs, such as circular-RNAs,
small nucleolar-RNAs, small nuclear-RNAs, and piwi-RNAs, as new biomarkers for
early detection, prognosis, and monitoring of therapeutic strategy of lung
cancer treatment.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Russo
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Ariel Peleg
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1079, New York, NY 10029-6574, USA
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Via Ugo La Malfa, 153, Palermo 90146, Italy
| |
Collapse
|
16
|
Liu W, Sun Y, Ge W, Zhang F, Gan L, Zhu Y, Guo T, Liu K. DIA-based Proteomics Identifies IDH2 as a Targetable Regulator of Acquired Drug Resistance in Chronic Myeloid Leukemia. Mol Cell Proteomics 2021; 21:100187. [PMID: 34922009 PMCID: PMC8800142 DOI: 10.1016/j.mcpro.2021.100187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia (CML). To understand the underlying resistance mechanisms in response to imatinib (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for two months to generate derivative cells with mild, intermediate and severe resistance to the drugs as defined by their increasing resistance index (RI). PulseDIA-based quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteotypic proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin Signaling Pathway was found to be significantly enriched in both ADR- and IMA-resistant K562 cells. In particular, IDH2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated IDH2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.
Collapse
Affiliation(s)
- Wei Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yaoting Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Fangfei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Gan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
17
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
18
|
Fontana S, Mauceri R, Novara ME, Alessandro R, Campisi G. Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011160. [PMID: 34681822 PMCID: PMC8539015 DOI: 10.3390/ijms222011160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC.
Collapse
Affiliation(s)
- Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
- Correspondence: ; Tel.: +39-09123865731
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98124 Messina, Italy
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, 2090 Msida, Malta
| | - Maria Eugenia Novara
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
| |
Collapse
|
19
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
20
|
Shah D, Gandhi M, Kumar A, Cruz-Martins N, Sharma R, Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit Rev Food Sci Nutr 2021; 63:1755-1791. [PMID: 34433338 DOI: 10.1080/10408398.2021.1968786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies have reported the health-beneficial effects of dietary phytochemicals, namely polyphenols, to prevent various diseases, including cancer. Polyphenols, like (-)-epigallocatechin-3-gallate (EGCG) from green tea, curcumin from turmeric, and ellagic acid from pomegranate are known to act by modulating antioxidant, anti-inflammatory and apoptotic signal transduction pathways in the tumor milieu. The evolving literature underscores the role of epigenetic regulation of genes associated with cancer by these polyphenols, primarily via non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long noncoding RNA (lncRNA). However, there is little clarity on the exact role(s) played by these ncRNAs and their interactions with other ncRNAs, or with their protein targets, in response to modulation by these dietary polyphenols. Here, we review ncRNA interactions and functional networks of the complex ncRNA interactome with their targets in preclinical studies along with the role of epigenetics as well as key aspects of pharmacokinetics and phytochemistry of dietary polyphenols. We also summarize the current state of clinical trials with these dietary polyphenols. Taken together, this synthetic review provides insights into the molecular aspects underlying the anticancer chemopreventive effects of dietary polyphenols as well as summarizes data on novel biomarkers modulated by these polyphenols for preventive or therapeutic purposes in various types of cancer.
Collapse
Affiliation(s)
| | | | - Arun Kumar
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur Delhi, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
21
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. Targeting microRNAs by curcumin: implication for cancer therapy. Crit Rev Food Sci Nutr 2021; 62:7718-7729. [PMID: 33905266 DOI: 10.1080/10408398.2021.1916876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In spite of all the investigations in the past 20 years that established a great body of knowledge in cancer therapy, utilizing some elderly methods such as plant compound administration might still be useful. Curcumin is a bioactive polyphenol, which has many anticancer properties but its capability in modulating miRNA expression has opened new doors in the field of cancer-targeted therapy. MiRNAs are a class of small noncoding RNAs that are able to regulate gene expression and signaling. In addition, some other effects of these RNAs such as modulating cell differentiation and regulation of cell cycle have made miRNAs great candidates for personalized cancer treatment. In this review, we try to find some answers to the questions on how curcumin exerts its impacts on cancer hallmarks through miRNAs and whether chemotherapy can be replaced by this beneficial plant compound.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Wu TM, Liu JB, Liu Y, Shi Y, Li W, Wang GR, Ma YS, Fu D. Power and Promise of Next-Generation Sequencing in Liquid Biopsies and Cancer Control. Cancer Control 2021; 27:1073274820934805. [PMID: 32806937 PMCID: PMC7791471 DOI: 10.1177/1073274820934805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional methods of cancer treatment are usually based on the morphological
and histological diagnosis of tumors, and they are not optimized according to
the specific situation. Precision medicine adjusts the existing treatment
regimen based on the patient’s genomic information to make it most suitable for
patients. Detection of genetic mutations in tumors is the basis of precise
cancer medicine. Through the analysis of genetic mutations in patients with
cancer, we can tailor the treatment plan for each patient with cancer to
maximize the curative effect, minimize damage to healthy tissues, and optimize
resources. In recent years, next-generation sequencing technology has developed
rapidly and has become the core technology of precise targeted therapy and
immunotherapy for cancer. From early cancer screening to treatment guidance for
patients with advanced cancer, liquid biopsy is increasingly used in cancer
management. This is as a result of the development of better noninvasive,
repeatable, sensitive, and accurate tools used in early screening, diagnosis,
evaluation, and monitoring of patients. Cell-free DNA, which is a new
noninvasive molecular pathological detection method, often carries
tumor-specific gene changes. It plays an important role in optimizing treatment
and evaluating the efficacy of different treatment options in clinical trials,
and it has broad clinical applications.
Collapse
Affiliation(s)
- Ting-Miao Wu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Yi Shi
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, 12571Central South University of Forestry and Technology, Chaha, China
| | - Gao-Ren Wang
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Da Fu
- Department of Radiology, 12485The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Fasih Ramandi N, Faranoush M, Ghassempour A, Aboul-Enein HY. Mass Spectrometry: A Powerful Method for Monitoring Various Type of Leukemia, Especially MALDI-TOF in Leukemia's Proteomics Studies Review. Crit Rev Anal Chem 2021; 52:1259-1286. [PMID: 33499652 DOI: 10.1080/10408347.2021.1871844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent success in studying the proteome, as a source of biomarkers, has completely changed our understanding of leukemia (blood cancer). The identification of differentially expressed proteins, such as relapse and drug resistance proteins involved in leukemia by using various ionization sources and mass analyzers of mass spectrometry techniques, has helped scientists find better diagnosis, prognosis, and treatment strategies. With the aid of this powerful analytical technique, we can investigate the qualification/quantification of proteins, protein-protein interactions, post-translational modifications, and find the correlation between proteins and their genes with the hope of finding the missing parts of the successful therapy puzzle. In this review, we followed different MS sources and analyzers which used for monitoring various type of leukemia, then focused on MALDI-TOF MS as a quick and reliable method for studying proteins. Due to several review published for other techniques, the present review is the first work in this field. Also, by classifying more than 400 proteins, we have found 42 proteins are involved in two or three different stages of leukemia. Finally, we have suggested six specific biomarkers for AML, one for ALL, three biomarkers with a role in the etiology of leukemia and 13 markers with the potential for further studies.
Collapse
Affiliation(s)
- Negin Fasih Ramandi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Cairo, Egypt
| |
Collapse
|
24
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
25
|
Zhang W, Liu Y, Zhang J, Zheng N. Long Non-Coding RNA Taurine Upregulated Gene 1 Targets miR-185 to Regulate Cell Proliferation and Glycolysis in Acute Myeloid Leukemia Cells in vitro. Onco Targets Ther 2020; 13:7887-7896. [PMID: 32982274 PMCID: PMC7493018 DOI: 10.2147/ott.s238189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a group of malignant hematopoietic system diseases. Taurine-upregulated gene 1 (TUG1) is a long non-coding RNA that has been associated with human cancers, including AML. However, the role and molecular mechanisms of TUG1 in AML remains to be defined. Methods Expression of TUG1 and miR-185 was detected using RT-qPCR. Cell viability and apoptotic rate were measured by MTT assay and flow cytometry, respectively. Glycolysis was determined by commercial glucose and lactate assay kits and Western blot. The target binding between TUG1 and miR-185 was predicted on Starbase online database and confirmed by luciferase reporter assay and RNA immunoprecipitation. Results TUG1 was upregulated and miR-185 was downregulated in the peripheral blood mononuclear cells of AML specimens and cells (HL-60, KG-1, MOLM-14, and MOLM-13). Both TUG1 knockdown and miR-185 overexpression via transfection could suppress cell viability, glucose consumption, lactate production, and hexokinase 2 expression, but promote apoptotic rate in HL-60 and KG-1 cells. Notably, TUG1 functioned as a sponge of miR-185 by target binding. Moreover, downregulation of miR-185 could partially overturn the effect of TUG1 knockdown on cell proliferation and glycolysis in HL-60 and KG-1 cells. Conclusion Expression of TUG1 was upregulated in AML patients and cells, and its knockdown repressed cell proliferation and glycolysis in AML cells in vitro by targeting miR-185.
Collapse
Affiliation(s)
- Weide Zhang
- Department of Hematology, The People's Hospital of Shouguang, Shouguang, Shandong, People's Republic of China
| | - Yuhua Liu
- Department of Digestive Oncology, The Gansu Provincial Cancer Hospital, Lanzhou, Gansu, People's Republic of China
| | - Jing Zhang
- Department of Psychiatry, Shouguang Mental and Health Care Center, Shouguang, Shandong, People's Republic of China
| | - Ni Zheng
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|
26
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
27
|
Wang QH, Zhang M, Zhou MH, Gao XJ, Chen F, Yan X, Lu F. High expression of eukaryotic initiation factor 3M predicts poor prognosis in colon adenocarcinoma patients. Oncol Lett 2019; 19:876-884. [PMID: 31897202 PMCID: PMC6924177 DOI: 10.3892/ol.2019.11164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic initiation factor 3 subunit M (EIF3M) is required for key steps in the initiation of protein synthesis, and dysregulation of EIF3M is associated with tumorigenesis. This study aimed to explore the clinicopathological and prognostic role of EIF3M in patients with colon adenocarcinoma. A total of 82 pathology specimens, 20 freeze-thawed tumors and 80 healthy controls were used to investigate the expression of EIF3M in colon adenocarcinoma through immunohistochemistry, western blotting, RT-qPCR and ELISA. In addition, Kaplan-Meier curves and Cox regression analysis were used to analyze overall survival (OS) and disease-free survival (DFS). Furthermore, the Oncomine database was used for analyzing EIF3M expression. The positive rate of EIF3M in colon adenocarcinoma was higher compared with that in normal colon tissues (62.20% vs. 29.27%; P<0.001). The mean score of EIF3M was also higher in colon adenocarcinoma compared with normal colon tissue (17.28±10.05 vs. 6.53±4.87; P<0.001). The levels of EIF3M expression in freeze-thawed tumors and serum from 20 patients with colon adenocarcinoma were higher than those in normal tissues and serum from healthy controls, respectively (P<0.001). In addition, positive expression of EIF3M was associated with tumor size (P=0.002) and Dukes' stage (P<0.001). In multivariate Cox regression analysis, EIF3M expression was an independent prognostic factor for OS (P=0.003) and DFS (P=0.001). Oncomine database analysis showed a higher expression of EIF3M expression in colon adenocarcinoma compared with normal colon tissues, colon squamous cell carcinomas or gastrointestinal stromal tumors. In conclusion, EIF3M expression was associated with tumor size and Dukes' stage in colon adenocarcinoma. Hence, EIF3M is a potential prognostic indicator for colon adenocarcinoma.
Collapse
Affiliation(s)
- Qing-Hua Wang
- Digestion Department, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Min Zhang
- No. 1 Department of General Surgery, Wuxi Second Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Ming-Hui Zhou
- Centralab Department, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Xiao-Jiao Gao
- Pathology Department, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Fang Chen
- Pathology Department, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Xun Yan
- Department of General Surgery, Binhai County People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Feng Lu
- Department of General Surgery, Binhai County People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
28
|
Manfredi M, Brandi J, Di Carlo C, Vita Vanella V, Barberis E, Marengo E, Patrone M, Cecconi D. Mining cancer biology through bioinformatic analysis of proteomic data. Expert Rev Proteomics 2019; 16:733-747. [PMID: 31398064 DOI: 10.1080/14789450.2019.1654862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Discovery proteomics for cancer research generates complex datasets of diagnostic, prognostic, and therapeutic significance in human cancer. With the advent of high-resolution mass spectrometers, able to identify thousands of proteins in complex biological samples, only the application of bioinformatics can lead to the interpretation of data which can be relevant for cancer research. Areas covered: Here, we give an overview of the current bioinformatic tools used in cancer proteomics. Moreover, we describe their applications in cancer proteomics studies of cell lines, serum, and tissues, highlighting recent results and critically evaluating their outcomes. Expert opinion: The use of bioinformatic tools is a fundamental step in order to manage the large amount of proteins (from hundreds to thousands) that can be identified and quantified in a cancer biological samples by proteomics. To handle this challenge and obtain useful data for translational medicine, it is important the combined use of different bioinformatic tools. Moreover, a particular attention to the global experimental design, and the integration of multidisciplinary skills are essential for best setting of tool parameters and best interpretation of bioinformatics output.
Collapse
Affiliation(s)
- Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Translation Medicine, University of Piemonte Orientale , Novara , Italy
| | - Jessica Brandi
- Department of Biotechnology, University of Verona , Verona , Italy
| | - Claudia Di Carlo
- Department of Biotechnology, University of Verona , Verona , Italy
| | - Virginia Vita Vanella
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy
| | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy.,ISALIT , Novara , Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy.,ISALIT , Novara , Italy
| | - Mauro Patrone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona , Verona , Italy
| |
Collapse
|
29
|
Farooqi AA, Qureshi MZ, Khalid S, Attar R, Martinelli C, Sabitaliyevich UY, Nurmurzayevich SB, Taverna S, Poltronieri P, Xu B. Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040478. [PMID: 30987378 PMCID: PMC6521278 DOI: 10.3390/cancers11040478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
There has been a renewed interest in the identification of natural products having premium pharmacological properties and minimum off-target effects. In accordance with this approach, natural product research has experienced an exponential growth in the past two decades and has yielded a stream of preclinical and clinical insights which have deeply improved our knowledge related to the multifaceted nature of cancer and strategies to therapeutically target deregulated signaling pathways in different cancers. In this review, we have set the spotlight on the scientifically proven ability of berberine to effectively target a myriad of deregulated pathways.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan.
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, 34755 Istanbul, Turkey.
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, 56025 Pisa, Italy.
| | | | | | - Simona Taverna
- Department of Biomedical Science, Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, 90146 Palermo, Italy.
| | - Palmiro Poltronieri
- Department of Agrifood, National Research Council Italy Institute of Sciences of Food Productions (CNR-ISPA) Via Lecce-Monteroni km 7, 73100 Lecce, Italy.
| | - Baojun Xu
- Food Science and Technology Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
30
|
Dong C, Liu X, Wang H, Li J, Dai L, Li J, Xu Z. Hypoxic non-small-cell lung cancer cell-derived exosomal miR-21 promotes resistance of normoxic cell to cisplatin. Onco Targets Ther 2019; 12:1947-1956. [PMID: 30881046 PMCID: PMC6420102 DOI: 10.2147/ott.s186922] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose To explore the effects of hypoxic non-small-cell lung cancer (NSCLC)-derived exosomes on NSCLC resistance to cisplatin. Materials and methods Exosomes were isolated by differential centrifugation and characterized by transmission electron microscope and Western blotting. Quantitative real-time PCR was used to measure miR-21 levels. MTT assays and colony formation assays were performed to investigate the effects of hypoxia-induced exosomes on cisplatin resistance. Results Hypoxic NSCLC cell-derived exosomes facilitate normoxic cell resistance to cisplatin. In addition, hypoxia enhanced the miR-21 expression in NSCLC cells and cell-derived exosomes. Interestingly, changes in miR-21 levels in the hypoxia-induced exosomes affected the sensitivity of recipient cells to cisplatin. Mechanically, exosomal miR-21 promoted cisplatin resistance by downregulating phosphatase and tensin homolog (PTEN). The expression of miR-21 in tumor cell lines and clinical NSCLC tumor samples was positively correlated with hypoxia-inducible factor-1α and negatively correlated with PTEN. Moreover, high miR-21 expression was associated with shorter median survival period in patients undergoing pharmacotherapy, but no association was observed in patients who were not under pharmacotherapy. Conclusion Exosomal miR-21 derived from hypoxic NSCLC cells may promote cisplatin resistance, which indicates that exosomal miR-21 might be a potential biomarker and therapeutic target to address NSCLC chemoresistance.
Collapse
Affiliation(s)
- Caijun Dong
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, People's Republic of China,
| | - Xingwang Liu
- Sports Medicine Center, Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Huisheng Wang
- Department of Orthopedics, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jutao Li
- Department of Hand and Foot Surgery I, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Liaoning, People's Republic of China
| | - Lei Dai
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Jun Li
- Department of General Surgery II, Taihe Hospital, Shiyan, Hubei, People's Republic of China
| | - Zhen Xu
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, People's Republic of China,
| |
Collapse
|
31
|
Corrado C, Costa V, Giavaresi G, Calabrese A, Conigliaro A, Alessandro R. Long Non Coding RNA H19: A New Player in Hypoxia-Induced Multiple Myeloma Cell Dissemination. Int J Mol Sci 2019; 20:ijms20040801. [PMID: 30781795 PMCID: PMC6413127 DOI: 10.3390/ijms20040801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
The long non-coding RNA H19 (lncH19) is broadly transcribed in the first stage of development and silenced in most cells of an adult organism; it appears again in several tumors where, through different molecular mediators, promotes cell proliferation, motility and metastases. LncH19 has been associated with hypoxia-inducible factor 1-alpha (HIF-1α) activation and, in some tumors, it has proved to be necessary and required to sustain hypoxic responses. Here we propose to investigate a putative role for the lncH19 in hypoxia induced multiple myeloma (MM) progression. Transcriptional analysis of MM cell lines (RPMI and MM1.S) exposed to normoxia or hypoxia (1% O2) was done in order to evaluate lncH19 levels under hypoxic stimulation. Then, to investigate the role of lncH19 in hypoxia mediated MM progression, transcriptional, protein and functional assays have been performed on hypoxia stimulated MM cell lines, silenced or not for lncH19. Our data demonstrated that hypoxic stimulation in MM cell lines induced the overexpression of lncH19, which, in turn, is required for the expression of the hypoxia induced genes involved in MM dissemination, such as C-X-C Motif Chemokine Receptor 4 (CXCR4) and Snail. Moreover, adhesion assays demonstrated that lncH19 silencing abrogates the increased adhesion on stromal cells induced by the hypoxic condition. Finally, Western blot analysis indicated that lncH19 silencing impaired HIF1α nuclear translocation. The LncH19, required for the induction of hypoxic responses in MM cells, could represent a new therapeutic target for MM.
Collapse
Affiliation(s)
- Chiara Corrado
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Viviana Costa
- IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
- Laboratory of Preclinical and Surgical Studies, IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
| | - Annalisa Calabrese
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Alice Conigliaro
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Riccardo Alessandro
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| |
Collapse
|
32
|
Su J, Fang M, Tian B, Luo J, Jin C, Wang X, Ning Z, Li X. Atorvastatin protects cardiac progenitor cells from hypoxia-induced cell growth inhibition via MEG3/miR-22/HMGB1 pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1257-1265. [PMID: 30481260 DOI: 10.1093/abbs/gmy133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) induced by ischemia myocardial infarction (MI) is one of the major causes of morbidity and mortality all around the world. Atorvastatin, a hydroxymethylglutaryl coenzyme A reductase inhibitor, has been demonstrated to benefit patients with ischemic or non-ischemic-induced HF, but the mechanism is still poorly understood. Increasing evidence indicates that lncRNAs play important role in variety of human disease. However, the role and underlying molecular mechanisms remain largely unclear. In our work, we applied 0.5% O2 to generate a hypoxia cardiac progenitor cell (CPC) model. Then, CCK8 and EdU assays were employed to investigate the role of atorvastatin in hypoxia CPC cell model. We found that hypoxia inhibits CPC viability and proliferation through modulating MEG3 expression, while atorvastatin application can protect CPCs from hypoxia-induced injury through inhibiting MEG3 expression. Then, we demonstrated that repression of MEG3 inhibited the hypoxia-induced injury of CPCs and overexpression of MEG3 inhibited the protective effect of atorvastatin in the hypoxia-induced injury of CPCs. Furthermore, our study illustrated that atorvastatin played its role in CPC viability and proliferation by modulating the expression of HMGB1 through the MEG3/miR-22 pathway. Our study, for the first time, uncovered the molecular mechanism of atorvastatin's protective role in cardiomyocytes under hypoxia condition, which may provide an exploitable target in developing effective therapy drugs for MI patients.
Collapse
Affiliation(s)
- Jinwen Su
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Ming Fang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Bei Tian
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Jun Luo
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Can Jin
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Xuejun Wang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| | - Xinming Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201138, China
| |
Collapse
|