1
|
Zeng J, Chen Z, He Y, Jiang Z, Zhang Y, Dong Q, Chen L, Deng S, He Z, Li L, Li J, Shi J. A patent review of SCF E3 ligases inhibitors for cancer:Structural design, pharmacological activities and structure-activity relationship. Eur J Med Chem 2024; 278:116821. [PMID: 39232359 DOI: 10.1016/j.ejmech.2024.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Currently, as the largest family of E3 ubiquitin ligases, Skp1-Cullin 1-F-box (SCF) E3 ligase complexes have attracted extensive attention. Among SCF complexes, Skp2, β-TrCP, and FBXW7 have undergone extensive research on their structures and functions. Previous studies suggest Skp2, β-TrCP, and FBXW7 are overexpressed in numerous cancers. Thus, the SCF E3 ligase complex has become a significant target for the development of anti-cancer drugs. Over the past few decades, a variety of anti-tumor inhibitors targeting the SCF E3 ligase complex have been attempted. However, since almost none of the SCF E3 ligase inhibitors passed clinical trials, the design and synthesis of the new inhibitors are needed. Here, we will introduce the structure and function of Skp2, β-TrCP, and FBXW7, their connections with cancer development, the relevant in vitro and in vivo activities, selectivity, structure-activity relationships, and the therapeutic or preventive application of small molecule inhibitors targeting these three F-box proteins reported in the patent (2010-present). This information will help develop drugs targeting the SCF E3 ubiquitin ligase, providing new strategies for future cancer treatments.
Collapse
Affiliation(s)
- Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhongliang Jiang
- Hematology Department, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yi Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Sichun Deng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Ziyou He
- School of Economics and Management, The University of Hong Kong, Hong Kong, 999077, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China; Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, Sichuan, 611137, China.
| | - Jinqi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
3
|
Tang L, Zhang B, Li G, Qiu X, Dai Z, Liu H, Zhu Y, Feng B, Su Z, Han W, Huang H, Li Q, Zhang Z, Wang M, Liu H, Chen Y, Zhang Y, Wu D, Zheng X, Liu T, Zhao J, Li C, Zheng G. Upregulated SKP2 Empowers Epidermal Proliferation Through Downregulation of P27 Kip1. Ann Dermatol 2024; 36:282-291. [PMID: 39343755 PMCID: PMC11439983 DOI: 10.5021/ad.23.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Excessive growth of keratinocytes is the critical event in the etiology of psoriasis. However, the underlying molecular mechanism of psoriatic keratinocyte hyperproliferation is still unclear. OBJECTIVE This study aimed to figure out the potential contributory role of S-phase kinase-associated protein 2 (SKP2) in promoting the hyperproliferation of keratinocytes in psoriasis. METHODS We analyzed microarray data (GSE41662) to investigate the gene expression of SKP2 in psoriatic lesion skins compared with their adjacent non-lesional skin. Then, we further confirmed the mRNA and protein expression of SKP2 in human psoriatic skin tissues, imiquimod (IMQ)-induced psoriatic mice back skins and tumor necrosis factor α (TNF-α), interleukin (IL)-17A and IL-6-stimulated keratinocytes by using real-time quantitative polymerase chain reaction and western blot (WB). Furthermore, we explored the potential pathogenic role and its underlying cellular mechanism of SKP2 in promoting keratinocytes hyperproliferation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle detection, 5-ethynyl-2'-deoxyuridine staining and WB. Finally, we determined whether inhibition of SKP2 can effectively alleviate the keratinocytes hyperproliferation in vivo. RESULTS We identified that SKP2 is aberrantly upregulated in the psoriatic lesion skin and cytokines-stimulated keratinocytes. Moreover, upregulated SKP2 augments cytokines-induced keratinocytes hyperproliferation. Mechanistically, enhanced SKP2 increased the S phase ratio through inhibiting Cyclin-Dependent Kinase Inhibitor p27 (P27 Kip1) expression. Correspondingly, suppression of SKP2 with SMIP004 can significantly ease the epidermis hyperplasia in vivo. CONCLUSION Our results suggest that elevated SKP2 can empower keratinocytes proliferation and psoriasis-like epidermis hyperplasia via downregulation of P27 Kip1. Therefore, targeting SKP2-P27 Kip1 axis might be a promising therapeutic strategy for the treatment of psoriasis in future.
Collapse
Affiliation(s)
- Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanzhuo Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinmin Qiu
- Genetic Testing Lab, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixin Dai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongying Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuqing Su
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huilin Huang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuping Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Maojie Wang
- Department of Rheumatology Clinical and Basic Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Zhang
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dinghong Wu
- Department of Material Basis of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xirun Zheng
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taohua Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhao
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chutian Li
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Khan AQ, Al-Tamimi M, Anver R, Agha MV, Anamangadan G, Raza SS, Ahmad F, Ahmad A, Alam M, Buddenkotte J, Steinhoff M, Uddin S. Targeting of S-phase kinase associated protein 2 stabilized tumor suppressors leading to apoptotic cell death in squamous skin cancer cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167286. [PMID: 38866114 DOI: 10.1016/j.bbadis.2024.167286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Maha Al-Tamimi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rasheeda Anver
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gazala Anamangadan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
5
|
Huang X, Feng Z, Liu D, Gou Y, Chen M, Tang D, Han C, Peng J, Peng D, Xue Y. PTMD 2.0: an updated database of disease-associated post-translational modifications. Nucleic Acids Res 2024:gkae850. [PMID: 39329270 DOI: 10.1093/nar/gkae850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Various post-translational modifications (PTMs) participate in nearly all aspects of biological processes by regulating protein functions, and aberrant states of PTMs are frequently associated with human diseases. Here, we present a comprehensive database of PTMs associated with diseases (PTMD 2.0), including 342 624 PTM-disease associations (PDAs) in 15 105 proteins for 93 types of PTMs and 2083 diseases. Based on the distinct PTM states in diseases, we classified all PDAs into six categories: upregulation (U) or downregulation (D) of PTM levels, absence (A) or presence (P) of PTMs, and creation (C) or disruption (N) of PTM sites. We provided detailed annotations for each PDA and carefully annotated disease-associated proteins by integrating the knowledge from 101 additional resources that covered 13 aspects, including disease-associated information, variation and mutation, protein-protein interaction, protein functional annotation, DNA and RNA element, protein structure, chemical-target relationship, mRNA expression, protein expression/proteomics, subcellular localization, biological pathway annotation, functional domain annotation and physicochemical property. With a data volume of ∼8 GB, we anticipate that PTMD 2.0 will serve as a fundamental resource for further analysing the relationships between PTMs and diseases. The online service of PTMD 2.0 is freely available at https://ptmd.biocuckoo.cn/.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Zihao Feng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dachao Tang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Jianzhen Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Xianlin Avenue 163, Nanjing 210031, China
| |
Collapse
|
6
|
Cai Y, Wang Y, Su W, Zhou X, Lu C. Angelica sinensis polysaccharide suppresses the Wnt/β-catenin-mediated malignant biological behaviors of breast cancer cells via the miR-3187-3p/PCDH10 axis. Biochem Pharmacol 2024; 225:116295. [PMID: 38762145 DOI: 10.1016/j.bcp.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women. Angelica sinensis polysaccharide (ASP) is one of the main components extracted from the traditional Chinese medicine Angelica sinensis. Research has shown that ASP affects the progression of various cancers by regulating miRNA expression. This study aimed to explore the specific molecular mechanism by which ASP regulates BC progression through miR-3187-3p. After the overexpression or knockdown of miR-3187-3p and PDCH10 in BC cells, the proliferation, migration, invasion, and phenotype of BC cells were evaluated after ASP treatment. Bioinformatics software was used to predict the target genes of miR-3187-3p, and luciferase gene reporter experiments reconfirmed the targeted binding relationship. Subcutaneous tumor formation experiments were conducted in nude mice after the injection of BC cells. Western blot and Ki-67 immunostaining were performed on the tumor tissues. The results indicate that ASP can significantly inhibit the proliferation, migration, and invasion of BC cells. ASP can inhibit the expression of miR-3187-3p in BC cells and upregulate the expression of PDCH10 by inhibiting miR-3187-3p. A regulatory relationship exists between miR-3187-3p and PDCH10. ASP can inhibit the expression of β-catenin and phosphorylated glycogen synthase kinase-3β (p-GSK-3β) proteins through miR-3187-3p/PDCH10 and prevent the occurrence of malignant biological behavior in BC. Overall, this study revealed the potential mechanism by which ASP inhibits the BC process. ASP mediates the Wnt/β-catenin signaling pathway by affecting the miR-3187-3p/PDCH10 molecular axis, thereby inhibiting the proliferation, migration, invasion, and other malignant biological behaviors of BC cells.
Collapse
Affiliation(s)
- Yan Cai
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China; Department of Pharmacy, Zhangjiagang Aoyang Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Yang Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Wenjun Su
- Department of Pharmacy, Zhangjiagang Aoyang Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Xianglin Zhou
- Intensive Care Medicine, Zhangjiagang Aoyang Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
7
|
Yin C, Yu J, Liu G, He J, Wu P. Riddle of the Sphinx: Emerging role of circular RNAs in cervical cancer. Pathol Res Pract 2024; 257:155315. [PMID: 38653090 DOI: 10.1016/j.prp.2024.155315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Cervical cancer is a prominent cause of cancer-related mortality among women, with recent attention directed toward exploring the involvement of circular RNAs (circRNAs) in this particular cancer. CircRNAs, characterized by a covalently closed loop structure, belong to a class of single-stranded non-coding RNA (ncRNA) molecules that play crucial roles in cancer development and progression through diverse mechanisms. The abnormal expression of circRNAs in vivo is significantly associated with the development of cervical cancer. Notably, circRNAs actively interact with miRNAs in cervical cancer, leading to the regulation of diverse signaling pathways, and they can contribute to cancer hallmarks such as self-sufficiency in growth signals, insensitivity to antigrowth signals, limitless proliferation, evading apoptosis, tissue invasion and metastasis, and sustained angiogenesis. Moreover, the distinctive biomedical attributes exhibited by circRNAs, including their abundance, conservation, and stability in body fluids, position them as promising biomarkers for various cancers. In this review, we elucidate the tremendous potential of circRNAs as diagnostic markers or therapeutic targets in cervical cancer by expounding upon their biogenesis, characteristics, functions, and databases, highlighting the novel advances in the signaling pathways associated with circRNAs in cervical cancer.
Collapse
Affiliation(s)
- Caiyan Yin
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hengyang Maternal and Child Health Hospital, Hengyang, Hunan 421001, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaohua Liu
- The First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Peng Wu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hengyang Maternal and Child Health Hospital, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Yuan J, Zhu Z, Zhang P, Ashrafizadeh M, Abd El-Aty AM, Hacımüftüoğlu A, Linnebacher CS, Linnebacher M, Sethi G, Gong P, Zhang X. SKP2 promotes the metastasis of pancreatic ductal adenocarcinoma by suppressing TRIM21-mediated PSPC1 degradation. Cancer Lett 2024; 587:216733. [PMID: 38360141 DOI: 10.1016/j.canlet.2024.216733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - Zeyao Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pingping Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Christina Susanne Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
William JNG, Dhar R, Gundamaraju R, Sahoo OS, Pethusamy K, Raj AFPAM, Ramasamy S, Alqahtani MS, Abbas M, Karmakar S. SKping cell cycle regulation: role of ubiquitin ligase SKP2 in hematological malignancies. Front Oncol 2024; 14:1288501. [PMID: 38559562 PMCID: PMC10978726 DOI: 10.3389/fonc.2024.1288501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It is associated with ubiquitin-mediated degradation in the mammalian cell cycle components and other target proteins involved in cell cycle progression, signal transduction, and transcription. Being an oncogene in solid tumors and hematological malignancies, it is frequently associated with drug resistance and poor disease outcomes. In the current review, we discussed the novel role of SKP2 in different hematological malignancies. Further, we performed a limited in-silico analysis to establish the involvement of SKP2 in a few publicly available cancer datasets. Interestingly, our study identified Skp2 expression to be altered in a cancer-specific manner. While it was found to be overexpressed in several cancer types, few cancer showed a down-regulation in SKP2. Our review provides evidence for developing novel SKP2 inhibitors in hematological malignancies. We also investigated the effect of SKP2 status on survival and disease progression. In addition, the role of miRNA and its associated families in regulating Skp2 expression was explored. Subsequently, we predicted common miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we discussed current approaches and future prospective approaches to target the Skp2 gene by using different drugs and miRNA-based therapeutics applications in translational research.
Collapse
Affiliation(s)
- Jonahunnatha Nesson George William
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), Ageing Research Center and Translational Medicine-CeSI-MeT, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Gundamaraju
- ER Stress and Intestinal Mucosal Biology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subbiah Ramasamy
- Cardiac Metabolic Disease Laboratory, Department Of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Zhang Y, Li W, Yang Y, Zhang S, Yang H, Hao Y, Fang X, Du G, Shi J, Wu L, Wang J. AAA237, an SKP2 inhibitor, suppresses glioblastoma by inducing BNIP3-dependent autophagy through the mTOR pathway. Cancer Cell Int 2024; 24:69. [PMID: 38341584 PMCID: PMC10859026 DOI: 10.1186/s12935-023-03191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.
Collapse
Affiliation(s)
- Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xu Fang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Lianqiu Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci 2024; 338:122409. [PMID: 38184273 DOI: 10.1016/j.lfs.2023.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The ubiquitin-proteasome system (UPS) is a multi-step process that serves as the primary pathway for protein degradation within cells. UPS activity also plays a crucial role in regulating various life processes, including the cell cycle, signal transduction, DNA repair, and others. The F-box protein Skp2, a crucial member of the UPS, plays a central role in the development of various diseases. Skp2 controls cancer cell growth and drug resistance by ubiquitinating modifications to a variety of proteins. This review emphasizes the multifaceted role of Skp2 in a wide range of cancers and the mechanisms involved, highlighting the potential of Skp2 as a therapeutic target in cancer. Additionally, we describe the impactful influence exerted by Skp2 in various other diseases beyond cancer.
Collapse
Affiliation(s)
- Tianyang Feng
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Xiling Zhang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China.
| |
Collapse
|
13
|
Zarezadeh R, Abbasi K, Aboutalebi Vand Beilankouhi E, Navali N, Hakimi P, Fattahi A, Farzadi L. Programmed cell death 4: A novel player in the pathogenesis of polycystic ovary syndrome. Cell Biochem Funct 2024; 42:e3905. [PMID: 38115175 DOI: 10.1002/cbf.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a pathological condition recognized by menstrual cycle irregularities, androgen excess, and polycystic ovarian morphology, affecting a significant proportion of women of childbearing age and accounting for the most prevalent cause of anovulatory sterility. In addition, PCOS is frequently accompanied by metabolic and endocrine disturbances such as obesity, dyslipidemia, insulin resistance, and hyperinsulinemia, indicating the multiplicity of mechanisms implicated in the progression of PCOS. However, the exact pathogenesis of PCOS is yet to be elucidated. Programmed cell death 4 (PDCD4) is a ubiquitously expressed protein that contributes to the regulation of various cellular processes, including gene expression, cell cycle progression, proliferation, and apoptosis. Despite some disparities concerning its exact cellular effects, PDCD4 is generally characterized as a protein that inhibits cell cycle progression and proliferation and instead drives the cell into apoptosis. The apoptosis of granulosa cells (GCs) is speculated to take a major part in the occurrence and progression of PCOS by ceasing antral follicle development and compromising oocyte competence. Given the possible involvement of GC apoptosis in the progression of PCOS, as well as the contribution of PDCD4 to the regulation of cell apoptosis and the development of metabolic diseases, the current review aimed to discuss whether or how PDCD4 can play a role in the pathogenesis of PCOS by affecting GC apoptosis.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nazli Navali
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Liu X, Zhang X, Shao Z, Zhong X, Ding X, Wu L, Chen J, He P, Cheng Y, Zhu K, Zheng D, Jing J, Luo T. Pyrotinib and chrysin synergistically potentiate autophagy in HER2-positive breast cancer. Signal Transduct Target Ther 2023; 8:463. [PMID: 38110365 PMCID: PMC10728098 DOI: 10.1038/s41392-023-01689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 09/03/2023] [Indexed: 12/20/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) has been the most challenging subtype of BC, consisting of 20% of BC with an apparent correlation with poor prognosis. Despite that pyrotinib, a new HER2 inhibitor, has led to dramatic improvements in prognosis, the efficacy of pyrotinib monotherapy remains largely restricted due to its acquired resistance. Therefore, identifying a new potential antitumor drug in combination with pyrotinib to amplify therapeutic efficacy is a pressing necessity. Here, we reported a novel combination of pyrotinib with chrysin and explored its antitumor efficacy and the underlying mechanism in HER2-positive BC. We determined that pyrotinib combined with chrysin yielded a potent synergistic effect to induce more evident cell cycle arrest, inhibit the proliferation of BT-474 and SK-BR-3 BC cells, and repress in vivo tumor growth in xenograft mice models. This may be attributed to enhanced autophagy induced by endoplasmic reticulum stress. Furthermore, the combined treatment of pyrotinib and chrysin induced ubiquitination and glucose-6-phosphate dehydrogenase (G6PD) degradation by upregulating zinc finger and BTB/POZ domain-containing family protein 16 (ZBTB16) in tumorigenesis of BC. Mechanistically, we identified that miR-16-5p was a potential upstream regulator of ZBTB16, and it showed a significant inverse correlation with ZBTB16. Inhibition of miR-16-5p overexpression by restoring ZBTB16 significantly potentiated the overall antitumor efficacy of pyrotinib combined with chrysin against HER2-positive BC. Together, these findings demonstrate that the combined treatment of pyrotinib and chrysin enhances autophagy in HER2-positive BC through an unrecognized miR-16-5p/ZBTB16/G6PD axis.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 221000, Xuzhou, China
| | - Xing Zhang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, 221000, Xuzhou, Jiangsu, China
| | - Xiaorong Zhong
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xin Ding
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 221000, Xuzhou, China
| | - Liang Wu
- Division of Nephrology and Transplantation, Department of Internal Medicine, University Medical Center Rotterdam Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Jie Chen
- Institute for Breast Health Medicine, Department of General Surgery, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ping He
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yan Cheng
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Kunrui Zhu
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Dan Zheng
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jing Jing
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Ting Luo
- Institute for Breast Health Medicine, Cancer Center, Breast Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Deng C, Li C, Dong X, Yu Y, Guo W, Guan Y, Sun X, Cao L. Atg7 senses ATP levels and regulates AKT 1-PDCD4 phosphorylation-ubiquitination axis to promote survival during metabolic stress. Commun Biol 2023; 6:1252. [PMID: 38081915 PMCID: PMC10713595 DOI: 10.1038/s42003-023-05656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
We report that autophagy-related gene 7 (ATG7) modulates p53 activity to regulate cell cycle and survival during metabolic stress, and that indicates Atg7 is functionally involved in cellular homeostasis in autophagy independent fashion. As a protein translation inhibitor, Programmed cell death 4 (PDCD4) expression is regulated by AKT1 phosphorylation. Here, we find that Atg7 interacts with PDCD4 and AKT1 to regulate AKT1-PDCD4 phosphorylation-ubiquitination axis during metabolic stress. We demonstrate that Atg7 senses decrease of ATP levels to suppress AKT-mediated PDCD4 phosphorylation at Ser67, which inhibits PDCD4 ubiquitinating during metabolic stress. Finally, PDCD4 accumulates and functions as a protein translation inhibitor to conserve energy, thus reducing apoptosis and allowing cells to survive stress periods. These results suggest that the ATP-Atg7-PDCD4 axis acts as a metabolic adaptation pathway which dictates cells to overcome metabolic stress.
Collapse
Affiliation(s)
- Chengsi Deng
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Chunlu Li
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiang Dong
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yang Yu
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Wendong Guo
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yi Guan
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.
| | - Liu Cao
- Health Sciences Institute, College of Basic Medical Sciences, China Medical University, Shenyang, China.
- Key Laboratory of Medical Cell Biology, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Zhang M, Shao Y, Gu W. The Mechanism of Ubiquitination or Deubiquitination Modifications in Regulating Solid Tumor Radiosensitivity. Biomedicines 2023; 11:3240. [PMID: 38137461 PMCID: PMC10741492 DOI: 10.3390/biomedicines11123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy, a treatment method employing radiation to eradicate tumor cells and subsequently reduce or eliminate tumor masses, is widely applied in the management of numerous patients with tumors. However, its therapeutic effectiveness is somewhat constrained by various drug-resistant factors. Recent studies have highlighted the ubiquitination/deubiquitination system, a reversible molecular modification pathway, for its dual role in influencing tumor behaviors. It can either promote or inhibit tumor progression, impacting tumor proliferation, migration, invasion, and associated therapeutic resistance. Consequently, delving into the potential mechanisms through which ubiquitination and deubiquitination systems modulate the response to radiotherapy in malignant tumors holds paramount significance in augmenting its efficacy. In this paper, we comprehensively examine the strides made in research and the pertinent mechanisms of ubiquitination and deubiquitination systems in governing radiotherapy resistance in tumors. This underscores the potential for developing diverse radiosensitizers targeting distinct mechanisms, with the aim of enhancing the effectiveness of radiotherapy.
Collapse
Affiliation(s)
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| |
Collapse
|
17
|
Jin Y, Cao J, Cheng H, Hu X. LncRNA POU6F2-AS2 contributes to malignant phenotypes and paclitaxel resistance by promoting SKP2 expression in stomach adenocarcinoma. J Chemother 2023; 35:638-652. [PMID: 36797828 DOI: 10.1080/1120009x.2023.2177807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
This study aimed to investigate the role and mechanism of POU6F2-AS2 in the development of gastric cancer. POU6F2-AS2 expression was considerably higher in clinical stomach adenocarcinoma (STAD) tissues and gastric cancer cell lines (MKN-28 and MGC-803) than in neighbouring normal tissues and gastric mucosa epithelial cells (GES-1). POU6F2-AS2 overexpression resulted in a low overall survival probability, progression-free survival probability and post progression survival probability, as well as increased cell viability, migration and invasion of gastric cancer cells, thereby inhibiting apoptosis. Based on RNA pull-down, cycloheximide and MG132 incubation experiments, POU6F2-AS2 promoted SKP2 by stabilizing NONO expression. In addition, in vivo silencing of POU6F2-AS2 in gastric cancer cells can inhibit tumour progression and produce a synergistic antitumour effect when combined with paclitaxel. POU6F2-AS2 is overexpressed in STAD, which is attributed to a bad prognosis. In vitro and in vivo experiments have confirmed that the POU6F2-AS2/NONO/SKP2 axis promotes STAD progression, and that the silencing of POU6F2-AS2 plays a synergistic antitumour effect when combined with paclitaxel. Therefore, POU6F2-AS2 may be potentially developed as a target to inhibit STAD and reduce chemoresistance.
Collapse
Affiliation(s)
- Yanzhao Jin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Wang L, Hu Z, Chen C, Chen T, Yao Z, Li W, Yang Z. Low-dose aspirin can inhibit exosomal release induced by radiotherapy in breast cancer and attenuate its inhibitory effect on NK cell proliferation. Cancer Med 2023; 12:16386-16404. [PMID: 37392173 PMCID: PMC10469664 DOI: 10.1002/cam4.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.
Collapse
Affiliation(s)
- Li Wang
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zaoxiu Hu
- Department of PathologyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunmingChina
| | - Ting Chen
- Department of Nuclear MedicineThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Wenhui Li
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| |
Collapse
|
19
|
Gui C, Wei J, Mo C, Liang Y, Cen J, Chen Y, Wang D, Luo J. Therapeutic implications for localized prostate cancer by multiomics analyses of the ageing microenvironment landscape. Int J Biol Sci 2023; 19:3951-3969. [PMID: 37564213 PMCID: PMC10411471 DOI: 10.7150/ijbs.85209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Numerous studies have substantiated the association between aging and the progression of malignant tumors in humans, notably prostate cancer (PCa). Nevertheless, to the best of our knowledge, no studies have comprehensively elucidated the intricate characteristics of the aging microenvironment (AME) in PCa. Methods: AME regulatory patterns were determined using the NMF algorithm. Then an ageing microenvironment index (AMI) was constructed, with excellent prognostic and immunotherapy prediction ability, and its' clinical relevance was surveyed through spatial transcriptomics. Further, the drug response was analysed using the Genomics of Drug Sensitivity in Cancer (GDSC), the Connectivity Map (CMap) and CellMiner database for patients with PCa. Finally, the AME was studied using in vitro and vivo experiments. Results: Three different AME regulatory patterns were identified across 813 PCa patients, associated with distinct clinical prognosis and physiological pathways. Based on the AMI, patients with PCa were divided into the high-score and low-score subsets. Higher AMI score was significantly infiltrated with more immune cells, higher rate of biochemical recurrence (BCR) and worse response to immunotherapy, antiandrogen therapy and chemotherapy in PCa. In addition, we found that the combination of bicalutamide and embelin was capable of suppressing tumor growth of PCa. Besides, as the main components of AMI, COL1A1 and BGLAP act as oncogenes and were verified via in vivo and in vitro experiments. Conclusions: AME regulation is significantly associated with the diversity and complexity of TME. Quantitative evaluation of the AME regulatory patterns may provide promising novel molecular markers for individualised therapy in PCa.
Collapse
Affiliation(s)
- Chengpeng Gui
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jinhuan Wei
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chengqiang Mo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanping Liang
- Department of Laboratory Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junjie Cen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhang Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daohu Wang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Shao Y, Ren W, Dai H, Yang F, Li X, Zhang S, Liu J, Yao X, Zhao Q, Sun X, Zheng Z, Xu C. SKP2 Contributes to AKT Activation by Ubiquitination Degradation of PHLPP1, Impedes Autophagy, and Facilitates the Survival of Thyroid Carcinoma. Mol Cells 2023; 46:360-373. [PMID: 36694914 PMCID: PMC10258456 DOI: 10.14348/molcells.2022.2242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 01/26/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. Despite a good prognosis, approximately a quarter of PTC patients are likely to relapse. Previous reports suggest an association between S-phase kinase-associated protein 2 (SKP2) and the prognosis of thyroid cancer. SKP1 is related to apoptosis of PTC cells; however, its role in PTC remains largely elusive. This study aimed to understand the expression and molecular mechanism of SKP2 in PTC. SKP2 expression was upregulated in PTC tissues and closely associated with clinical diagnosis. In vitro and in vivo knockdown of SKP2 expression in PTC cells suppressed cell growth and proliferation and induced apoptosis. SKP2 depletion promoted cell autophagy under glucose deprivation. SKP2 interacted with PH domain leucine-rich repeat protein phosphatase-1 (PHLPP1), triggering its degradation by ubiquitination. Furthermore, SKP2 activates the AKT-related pathways via PHLPP1, which leads to the cytoplasmic translocation of SKP2, indicating a reciprocal regulation between SKP2 and AKT. In conclusion, the upregulation of SKP2 leads to PTC proliferation and survival, and the regulatory network among SKP2, PHLPP1, and AKT provides novel insight into the molecular basis of SKP2 in tumor progression.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Wanli Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Fangli Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xiaobao Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Qian Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xin Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Zhiwei Zheng
- The Third Ward of General Surgery Department, Rizhao People’s Hospital, Rizhao, China
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Li GS, Huang T, Zhou HF. Gene S-phase kinase associated protein 2 is a novel prognostic marker in human neoplasms. BMC Med Genomics 2023; 16:128. [PMID: 37308972 PMCID: PMC10259050 DOI: 10.1186/s12920-023-01561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Neoplasms are a series of diseases affecting human health. Prognostic and tumor status-related markers for various tumors should be identified. METHODS Based on 19,515 samples from multiple sources, for the first time, this study provided an overview of gene S-phase kinase associated protein 2 (SKP2) in pan-cancer. Differential SKP2 expression in multiple comparison groups was identified by the Kruskal-Wallis test and Wilcoxon rank-sum test. The prognosis significance of SKP2 in individuals with neoplasm was evaluated through univariate Cox regression analysis and Kaplan-Meier curves. The area under the curve was utilized to detect the accuracy of SKP2 in predicting cancer status. Spearman's rank correlation coefficients were calculated in all correlation analyses. Gene set enrichment analysis was used to identify essential signaling pathways of SKP2 in human neoplasms. RESULTS The study disclosed the upregulated SKP2 expression in 15 neoplasms and decreased SKP2 expression in three cancers (p < 0.05). The transcription factor Forkhead Box M1 may contribute to the increased expression levels of SKP2 in certain tumors. Over-expressed SKP2 represented a risk factor for the prognosis of most cancer patients (hazard ratio > 1, p < 0.05). SKP2 expression made it feasible to distinguish neoplasm and control tissues of 21 neoplasms (sensitivity = 0.79, specificity = 0.87, area under the curve = 0.90), implying its potential in screening a series of neoplasms. Further, the research revealed the close association of SKP2 expression with DNA methyltransferases, mismatch repair genes, microsatellite instability, tumor mutational burden, neoantigen count, and immunity. CONCLUSIONS SKP2 plays an essential role in multiple neoplasms and may serve as a marker for treating and identifying these neoplasms.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tao Huang
- Department of Cardiothoracic Vascular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
22
|
Liao Y, Li S, An J, Yu X, Tan X, Gui Y, Wang Y, Huang L, Zhou S, Wang D. Ethyl acetate extract of Antenoron Filiforme inhibits the proliferation of triple negative breast cancer cells via suppressing Skp2/p21 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154856. [PMID: 37187035 DOI: 10.1016/j.phymed.2023.154856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) has the worst prognosis of the any breast cancer subtype, and the efficient therapeutical treatment is extremely limited. Antenoron filiforme (Thunb.) Roberty & Vautier (AF) is a Traditional Chinese Medicine (TCM), which is well-known for a diverse array of pharmacological activities, including but not limited to anti-inflammatory, antioxidant and anti-tumors properties. Clinically, AF is commonly prescribed for the treatment of gynecological diseases. PURPOSE Since TNBC is one of the worst gynecological diseases, the objective of this research is to study the anti-TNBC function of the ethyl acetate extract (EAE) of AF (AF-EAE) and disclose its mechanism of action. MATERIALS AND METHODS With the aim of elucidating the underlying molecular mechanism and possible chemical basis of AF-EAE in the treatment of TNBC, a comprehensive approach combining system pharmacology and transcriptomic analysis, functional experimental validation, and computational modeling was implemented. Firstly, the potential therapeutic targets of AF-EAE treating TNBC were analyzed by systemic pharmacology and transcriptome sequencing. Subsequently, cell viability assays, cell cycle assays, and transplantation tumor assays were employed to detect the inhibitory effect of AF-EAE on TNBC. Apart from that, the western blot and RT-qPCR assays were adopted to verify its mechanism of action. Finally, the potential chemical basis of anti-TNBC function of AF-EAE was screened through molecular docking and validated by molecular dynamics. RESULTS This study analyzed the differentially expressed genes after AF-EAE treatment by RNA-sequencing (RNA-seq). It was found that most of the genes were abundant in the gene set termed "cell cycle". Besides, AF-EAE could suppress the proliferation of TNBC cells in vitro and in vivo by inhibiting the function of Skp2 protein. AF-EAE could also lead to the accumulation of p21 and a decrease of CDK6/CCND1 protein, thereby stalling the cycle of cell in the G1/S stage. Notably, clinical data survival analysis clearly demonstrated that Skp2 overexpression has been negatively correlated with survival rates in breast cancer (BC) patients. Further, as suggested by molecular docking and molecular dynamics, the quercetin and its analogues of AF-EAE might bind to Skp2 protein. CONCLUSION In summary, AF-EAE inhibits the growth of TNBC in vitro and in vivo through targeting Skp2/p21 signaling pathway. While providing a novel potential drug for treating TNBC, this study might establish a method to delve into the action mechanism of TCM.
Collapse
Affiliation(s)
- Yile Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiankuo Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
23
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
24
|
Li H, Ouyang J, Liu R. Platycodin D suppresses proliferation, migration, and invasion of human glioblastoma cells through regulation of Skp2. Eur J Pharmacol 2023; 948:175697. [PMID: 36997048 DOI: 10.1016/j.ejphar.2023.175697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Platycodin D (PD) is a major bioactive component of Platycodon grandiflorum, a medicinal herb that is widely used in China, and is effective against various human cancers, including glioblastoma multiforme (GBM). S phase kinase-related protein 2 (Skp2) is oncogenic and overexpressed in various human tumors. It is highly expressed in GBM and its expression is correlated with tumor growth, drug resistance and poor prognosis. In this study, we investigated whether inhibition of glioma progression by PD is mediated by decreasing expression of Skp2. METHODS Cell Counting Kit-8 (CCK-8) and Transwell assays were used to determine the effects of PD on GBM cell proliferation, migration, and invasion in vitro. mRNA and protein expression were determined by real time polymerase chain reaction (RT-PCR) and western blotting, respectively. The U87 xenograft model was used to verify the anti-glioma effect of PD in vivo. Expression levels of Skp2 protein were analyzed by immunofluorescence staining. RESULTS PD suppressed proliferation and motility of GBM cells in vitro. The expression of Skp2 in U87 and U251 cells was significantly reduced by PD. PD mainly decreased the cytoplasmic expression of Skp2 in glioma cells. Skp2 protein expression was downregulated by PD, resulting in upregulation of its downstream targets, p21and p27. The inhibitory effect of PD was enhanced by Skp2 knockdown in GBM cells and reversed in cells with Skp2 overexpression. CONCLUSION PD suppresses glioma development by regulation of Skp2 in GBM cells.
Collapse
|
25
|
Yang WH, George AP, Wang CM, Yang RH, Duncan AM, Patel D, Neil ZD, Yang WH. Tumor Suppressor p53 Down-Regulates Programmed Cell Death Protein 4 (PDCD4) Expression. Curr Oncol 2023; 30:1614-1625. [PMID: 36826085 PMCID: PMC9955764 DOI: 10.3390/curroncol30020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, inhibits translation initiation and cap-dependent translation by inhibiting the helicase activity of EIF4A. The EIF4A tends to target mRNAs with a structured 5'-UTR. In addition, PDCD4 can also prevent tumorigenesis by inhibiting tumor promoter-induced neoplastic transformation, and studies indicate that PDCD4 binding to certain mRNAs inhibits those mRNAs' translation. A previous study demonstrated that PDCD4 inhibits the translation of p53 mRNA and that treatment with DNA-damaging agents down-regulates PDCD4 expression but activates p53 expression. The study further demonstrated that treatment with DNA-damaging agents resulted in the downregulation of PDCD4 expression and an increase in p53 expression, suggesting a potential mechanism by which p53 regulates the expression of PDCD4. However, whether p53 directly regulates PDCD4 remains unknown. Herein, we demonstrate for the first time that p53 regulates PDCD4 expression. Firstly, we found that overexpression of p53 in p53-null cells (H1299 and Saos2 cells) decreased the PDCD4 protein level. Secondly, p53 decreased PDCD4 promoter activity in gene reporter assays. Moreover, we demonstrated that mutations in p53 (R273H: contact hotspot mutation, and R175H: conformational hotspot mutation) abolished p53-mediated PDCD4 repression. Furthermore, mutations in the DNA-binding domain, but not in the C-terminal regulatory domain, of p53 disrupted p53-mediated PDCD4 repression. Finally, the C-terminal regulatory domain truncation study showed that the region between aa374 and aa370 is critical for p53-mediated PDCD4 repression. Taken together, our results suggest that p53 functions as a novel regulator of PDCD4, and the relationship between p53 and PDCD4 may be involved in tumor development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei-Hsiung Yang
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
26
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
27
|
Nguyen MT, Hoang MT, Bui HTT. Pan-Cancer Analysis of the Expression and Prognostic Value of S-Phase Kinase-Associated Protein 2. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.11212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND: S-Phase Kinase-Associated Protein 2 (SKP2) is essential in modulating metabolism processes, cell proliferation, and carcinogenesis DUE to its capacity to ubiquitinate and degrade various tumor-suppressive substrates. However, the actual biological and mechanism significance of SKP2 in the development of tumors and as a possible therapeutic target remains to be completely understood.
AIM: This study aimed to explore the potential roles of the SKP2 gene in the oncologic pathogenesis of various cancers through an in-depth pan-cancer analysis including gene expression assessment, survival analysis, genetic alteration, and enrichment analysis.
METHODS: Public databases including the Cancer Genome Atlas database, Genotype-Tissue Expression Project database, cBioPortal database, Gene Expression Profiling Interactive Analysis 2 database, Tumor Immune Estimation Resource version 2.0 database, and STRING database were used to detect the SKP2 expression, molecular mechanism, and its association with the prognosis across pan-cancer.
RESULTS: SKP2 was significantly highly expressed in most types of cancers and was substantially correlated to the poor survival of patients with specific cancers based on the log-rank test. SKP2 had the highest frequency of alteration in lung cancer and amplification was the most common genetic alteration type. Finally, SKP2-related genes were identified and enrichment analyses were conducted.
CONCLUSION: This study presented the first demonstration of the pan-cancer landscape of abnormal SKP2 expression, it could potentially serve as a predictive indicator and prospective therapeutic target.
Collapse
|
28
|
Jing J, Rui L, Junyuan S, Jinfeng Y, Zhihao H, Weiguo L, Zhenyu J. Small-molecule compounds inhibiting S-phase kinase-associated protein 2: A review. Front Pharmacol 2023; 14:1122008. [PMID: 37089937 PMCID: PMC10113621 DOI: 10.3389/fphar.2023.1122008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
S-phase kinase-associated protein 2 (Skp2) is a substrate-specific adaptor in Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases and widely regarded as an oncogene. Therefore, Skp2 has remained as an active anticancer research topic since its discovery. Accordingly, the structure of Skp2 has been solved and numerous Skp2 inhibiting compounds have been identified. In this review, we would describe the structural features of Skp2, introduce the ubiquitination function of SCFSkp2, and summarize the diverse natural and synthetic Skp2 inhibiting compounds reported to date. The IC50 data of the Skp2 inhibitors or inhibiting compounds in various kinds of tumors at cellular levels implied that the cancer type, stage and pathological mechanisms should be taken into consideration when selecting Skp2-inhibiting compound for cancer treatment.
Collapse
Affiliation(s)
- Jia Jing
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Li Rui
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sun Junyuan
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yang Jinfeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Hong Zhihao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lu Weiguo
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| | - Jia Zhenyu
- Institute of Occupation Diseases, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| |
Collapse
|
29
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
30
|
Huang ML, Shen GT, Li NL. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J Clin Cases 2022; 10:11690-11701. [PMID: 36405275 PMCID: PMC9669866 DOI: 10.12998/wjcc.v10.i32.11690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women, accounting for 30% of new diagnosing female cancers. Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer etiology and progression processes. As the primary deubiquitinases in the family, ubiquitin-specific peptidases (USPs) are thought to represent potential therapeutic targets. The role of ubiquitin and ubiquitination in breast cancer, as well as the classification and involvement of USPs are discussed in this review, such as USP1, USP4, USP7, USP9X, USP14, USP18, USP20, USP22, USP25, USP37, and USP39. The reported USPs inhibitors investigated in breast cancer were also summarized, along with the signaling pathways involved in the investigation and its study phase. Despite no USP inhibitor has yet been approved for clinical use, the biological efficacy indicated their potential in breast cancer treatment. With the improvements in phenotypic discovery, we will know more about USPs and USPs inhibitors, developing more potent and selective clinical candidates for breast cancer.
Collapse
Affiliation(s)
- Mei-Ling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Guang-Tai Shen
- Department of Breast Surgery, Xing'an League People's Hospital, Ulanhot 137400, Inner Mongolia Autonomous Region, China
| | - Nan-Lin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
31
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
32
|
Wang X, Ma L, Zhang S, Song Q, He X, Wang J. WWP2 ameliorates oxidative stress and inflammation in atherosclerotic mice through regulation of PDCD4/HO-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1057-1067. [PMID: 35983977 PMCID: PMC9828489 DOI: 10.3724/abbs.2022091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
WWP2 is a HECT-type E3 ubiquitin ligase that regulates various physiological and pathological activities by binding to different substrates, but its role in atherosclerosis (AS) remains largely unknown. The objective of the present study is to investigate the role and underlying molecular mechanisms of WWP2 in endothelial injury. We found that WWP2 expression is significantly decreased in Apolipoprotein E (ApoE) -/- mice. Overexpression of WWP2 attenuates oxidative stress and inflammation in AS mice, while knockdown of WWP2 has opposite effects. WWP2 overexpression alleviates oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cell (HUVEC) injury, evidenced by the decreased oxidative stress levels and the secretion of inflammatory cytokines. Programmed cell death 4 (PDCD4) is identified as a potential substrate of WWP2. Co-immunoprecipitation (Co-IP) further demonstrates that WWP2 interacts with PDCD4, which is enhanced by ox-LDL treatment. Furthermore, the level of PDCD4 ubiquitination is significantly increased by WWP2 overexpression under the condition of MG132 treatment, while WWP2 knockdown shows opposite results. Subsequently, rescue experiments demonstrate that WWP2 knockdown further aggravates oxidative stress and inflammation in ox-LDL-treated HUVECs, while knockdown of PDCD4 alleviates this effect. Moreover, the use of sn-protoporphyrin (SnPP), an inhibitor of HO-1 pathway, confirms that PDCD4 enhances endothelial injury induced by ox-LDL through inhibiting HO-1 pathway. In conclusion, our results suggest that WWP2 protects against atherosclerosis progression via the PDCD4/HO-1 pathway, which may provide a novel treatment strategy for atherosclerosis.
Collapse
Affiliation(s)
- Xingye Wang
- Department of Structural Cardiologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Lu Ma
- Department of Graduate SchoolXi’an Shiyou UniversityXi’an710065China
| | - Songlin Zhang
- Department of Structural Cardiologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Qiang Song
- Department of Structural Cardiologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Xumei He
- Department of Structural Cardiologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Jun Wang
- Department of Structural Cardiologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China,Correspondence address. Tel: +86-29-85434128; E-mail:
| |
Collapse
|
33
|
Cheng X, Lou K, Ding L, Zou X, Huang R, Xu G, Zou J, Zhang G. Clinical potential of the Hippo-YAP pathway in bladder cancer. Front Oncol 2022; 12:925278. [PMID: 35912245 PMCID: PMC9336529 DOI: 10.3389/fonc.2022.925278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the world’s most frequent cancers. Surgery coupled with adjuvant platinum-based chemotherapy is the current standard of therapy for BC. However, a high proportion of patients progressed to chemotherapy-resistant or even neoplasm recurrence. Hence, identifying novel treatment targets is critical for clinical treatment. Current studies indicated that the Hippo-YAP pathway plays a crucial in regulating the survival of cancer stem cells (CSCs), which is related to the progression and reoccurrence of a variety of cancers. In this review, we summarize the evidence that Hippo-YAP mediates the occurrence, progression and chemotherapy resistance in BC, as well as the role of the Hippo-YAP pathway in regulating bladder cancer stem-like cells (BCSCs). Finally, the clinical potential of Hippo-YAP in the treatment of BC was prospected.
Collapse
Affiliation(s)
- Xin Cheng
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Ding
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Ruohui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
- *Correspondence: Guoxi Zhang,
| |
Collapse
|
34
|
miR-590-5p Targets Skp2 to Inhibit the Growth and Invasion of Malignant Melanoma Cells. DISEASE MARKERS 2022; 2022:8723725. [PMID: 35845132 PMCID: PMC9282986 DOI: 10.1155/2022/8723725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Skp2 participates in the regulation of cell growth cycle and promotes the growth of tumor cells. It was speculated that miR-590-5p could regulate the expression of Skp2 and have therapeutic effects on malignant melanin. In this study, the expression of Skp2 was detected by qRT-PCR and Western blot (WB), and the targeted binding between miR-590-5p and Skp2 was verified by dual luciferase reporting assay. Subsequently, cell proliferation activity was detected by CCK8, cell invasion was detected by Transwell, and cell apoptosis was detected by mitochondrial membrane potential assay. The results indicate that Skp2 is highly expressed in melanoma cells and inhibits the proliferation and invasion of melanoma cells. However, miR-590-5p can bind to Skp2 in a targeted manner. miR-590-5p is underexpressed in melanoma cells, and its overexpression can inhibit Skp2 expression and proliferation and invasion of melanoma cells. Our results showed that miR-590-5p could inhibit melanoma cell development by targeting Skp2. This study provides more therapeutic targets for the treatment of melanoma.
Collapse
|
35
|
Chen C, Liu S, Cao G, Hu Y, Wang R, Wu M, Liu M, Yiu KH. Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis. Front Cardiovasc Med 2022; 9:695004. [PMID: 35865382 PMCID: PMC9294229 DOI: 10.3389/fcvm.2022.695004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundThis study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury.MethodsDOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors.ResultsPaeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2.ConclusionPaeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis.
Collapse
Affiliation(s)
- Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Shuhong Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Gaozhen Cao
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Yang Hu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
| | - Run Wang
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Min Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Mingya Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Kai Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
- *Correspondence: Kai Hang Yiu,
| |
Collapse
|
36
|
Liu J, Zheng X, Li W, Ren L, Li S, Yang Y, Yang H, Ge B, Du G, Shi J, Wang J. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence. Pharmacol Res 2022; 181:106259. [PMID: 35577307 DOI: 10.1016/j.phrs.2022.106259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
Lung cancer is by far the leading cause of cancer death worldwide, and 85% of patients are diagnosed with non-small cell lung cancer (NSCLC), which is still very difficult to treat. Skp2 functions as an oncogene that participates in processes of many cancers. Here, we report a novel Skp2 inhibitor AAA-237 that binds to Skp2 protein and inhibits the proliferation of the NSCLC cells. We further investigated the anti-NSCLC mechanism of AAA-237 and found that it arrested the cell cycle at the G0/G1 phase by targeting Skp2 to reduce the degradation of p21Cip1 and p27Kip1 or by transcriptionally activating FOXO1 to increase the mRNA expression of p21Cip1 and p27Kip1. More importantly, we found that treatment of a high concentration AAA-237 could induce apoptosis of NSCLC cells and treatment of a low AAA-237 concentration for a longer time could induce senescence of NSCLC cells. Similar results were found in nude mice xenografted with A549 cells. AAA-237 inhibited tumor growth by inducing apoptosis and senescence in a dose-dependent manner. Considering these results, we propose that AAA-237 could be a promising therapeutic drug for treating patients with NSCLC.
Collapse
Affiliation(s)
- Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial, People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
37
|
Cai Q, Yang HS, Li YC, Zhu J. Dissecting the Roles of PDCD4 in Breast Cancer. Front Oncol 2022; 12:855807. [PMID: 35795053 PMCID: PMC9251513 DOI: 10.3389/fonc.2022.855807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The human programmed cell death 4 (PDCD4) gene was mapped at chromosome 10q24 and encodes the PDCD4 protein comprised of 469 amino acids. PDCD4 inhibits protein translation PDCD4 inhibits protein translation to suppress tumor progression, and its expression is frequently decreased in breast cancer. PDCD4 blocks translation initiation complex by binding eIF4A via MA-3 domains or by directly binding 5’ mRNA internal ribosome entry sites with an RNA binding domain to suppress breast cancer progression and proliferation. Numerous regulators and biological processes including non-coding RNAs, proteasomes, estrogen, natural compounds and inflammation control PDCD4 expression in breast cancer. Loss of PDCD4 expression is also responsible for drug resistance in breast cancer. HER2 activation downregulates PDCD4 expression by activating MAPK, AKT, and miR-21 in aromatase inhibitor-resistant breast cancer cells. Moreover, modulating the microRNA/PDCD4 axis maybe an effective strategy for overcoming chemoresistance in breast cancer. Down-regulation of PDCD4 is significantly associated with short overall survival of patients, which suggests that PDCD4 may be an independent prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Qian Cai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovasular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hsin-Sheng Yang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yi-Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Jiang Zhu,
| |
Collapse
|
38
|
The emerging role of ubiquitin-specific protease 20 in tumorigenesis and cancer therapeutics. Cell Death Dis 2022; 13:434. [PMID: 35508480 PMCID: PMC9068925 DOI: 10.1038/s41419-022-04853-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
As a critical member of the ubiquitin-specific proteolytic enzyme family, ubiquitin-specific peptidase 20 (USP20) regulates the stability of proteins via multiple signaling pathways. In addition, USP20 upregulation is associated with various cellular biological processes, such as cell cycle progression, proliferation, migration, and invasion. Emerging studies have revealed the pivotal role of USP20 in the tumorigenesis of various cancer types, such as breast cancer, colon cancer, lung cancer, gastric cancer and adult T cell leukemia. In our review, we highlight the different mechanisms of USP20 in various tumor types and demonstrate that USP20 regulates the stability of multiple proteins. Therefore, regulating the activity of USP20 is a novel tumor treatment. However, the clinical significance of USP20 in cancer treatment merits more evidence. Finally, different prospects exist for the continued research focus of USP20.
Collapse
|
39
|
Chen J, Xu Y, Wu P, Chen X, Weng W, Li D. Transcription Factor FOXO3a Overexpression Inhibits the Progression of Neuroblastoma by Regulating the miR-21/SPRY2/ERK Axis. World Neurosurg 2022; 164:e99-e112. [DOI: 10.1016/j.wneu.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
40
|
Campos Gudiño R, Farrell AC, Neudorf NM, McManus KJ. A Comprehensive Assessment of Genetic and Epigenetic Alterations Identifies Frequent Variations Impacting Six Prototypic SCF Complex Members. Int J Mol Sci 2021; 23:ijms23010084. [PMID: 35008511 PMCID: PMC8744973 DOI: 10.3390/ijms23010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex represents a family of 69 E3 ubiquitin ligases that poly-ubiquitinate protein substrates marking them for proteolytic degradation via the 26S proteasome. Established SCF complex targets include transcription factors, oncoproteins and tumor suppressors that modulate cell cycle activity and mitotic fidelity. Accordingly, genetic and epigenetic alterations involving SCF complex member genes are expected to adversely impact target regulation and contribute to disease etiology. To gain novel insight into cancer pathogenesis, we determined the prevalence of genetic and epigenetic alterations in six prototypic SCF complex member genes (SKP1, CUL1, RBX1, SKP2, FBXW7 and FBXO5) from patient datasets extracted from The Cancer Genome Atlas (TCGA). Collectively, ~45% of observed SCF complex member mutations are predicted to impact complex structure and/or function in 10 solid tumor types. In addition, the distribution of encoded alterations suggest SCF complex members may exhibit either tumor suppressor or oncogenic mutational profiles in a cancer type dependent manner. Further bioinformatic analyses reveal the potential functional implications of encoded alterations arising from missense mutations by examining predicted deleterious mutations with available crystal structures. The SCF complex also exhibits frequent copy number alterations in a variety of cancer types that generally correspond with mRNA expression levels. Finally, we note that SCF complex member genes are differentially methylated across cancer types, which may effectively phenocopy gene copy number alterations. Collectively, these data show that SCF complex member genes are frequently altered at the genetic and epigenetic levels in many cancer types, which will adversely impact the normal targeting and timely destruction of protein substrates, which may contribute to the development and progression of an extensive array of cancer types.
Collapse
Affiliation(s)
- Rubi Campos Gudiño
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ally C. Farrell
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nicole M. Neudorf
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
41
|
Ji Y, Yang S, Yan X, Zhu L, Yang W, Yang X, Yu F, Shi L, Zhu X, Lu Y, Zhang C, Lu H, Zhang F. CircCRIM1 Promotes Hepatocellular Carcinoma Proliferation and Angiogenesis by Sponging miR-378a-3p and Regulating SKP2 Expression. Front Cell Dev Biol 2021; 9:796686. [PMID: 34869393 PMCID: PMC8634842 DOI: 10.3389/fcell.2021.796686] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence has demonstrated that circular RNAs have an important function in tumorigenesis and cancer evolvement. CircCRIM1 has been shown to be a poor prognostic element in multiple human malignancies. However, the clinical significance and mechanism of circCRIM1 in hepatocellular carcinoma (HCC) is still unclear. The present study confirmed the expression level of circCRIM1 using quantitative real-time PCR. In addition, circCRIM1 siRNA and overexpression vectors were used for transfection into LM3 or Huh7 cells to down- or up-regulate the expression of circCRIM1. In vitro and in vivo experiments were performed to explore the function of circCRIM1 in HCC. RNA pull-down, RNA immunoprecipitation, fluorescent in situ hybridization, and luciferase reporter assays were conducted to confirm the relationship between miR-378a-3p and circCRIM1 or S-phase kinase-associated protein 2 (SKP2) in HCC. Then, circCRIM1 was up-regulated in HCC and its expression level was significantly associated with poor prognosis and clinicopathologic characteristics. CircCRIM1 enhanced the proliferation and angiogenesis of HCC cells in vitro and promoted xenograft growth in vivo. Moreover, circCRIM1 upregulated the expression of SKP2 by functioning as a sponge for miR-378a-3p. These findings suggest that circCRIM1 boosts the HCC progression via the miR-378-3p/SKP2 axis and may act as a crucial epigenetic therapeutic molecule target in HCC.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shikun Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueqi Yan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhu
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Wenjie Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchen Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Longqing Shi
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Xi Zhu
- Department of Infectious Disease, The First People's Hospital of Kunshan Affliated with Jiangsu University, Zhenjiang, China
| | - Yunjie Lu
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Chuanyong Zhang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Lu
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Liu J, Lu Y, Huang W, He Z. Comprehensive Analysis of Inhibitor of Apoptosis Protein Expression and Prognostic Significance in Non-Small Cell Lung Cancer. Front Genet 2021; 12:764270. [PMID: 34925455 PMCID: PMC8675358 DOI: 10.3389/fgene.2021.764270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) have been associated with tumor development and progression by affecting apoptosis through cell death signaling pathways. To date, eight IAPs (BIRC1-8) have been identified in mammalian cells. However, the role of IAPs in non-small cell lung cancer (NSCLC) development and progression has not been explored in depth. In this study, we used public datasets and bioinformatics tools to compare the expression, prognostic significance, and function of IAPs in NSCLC and its subtypes. Expression of IAPs in cancer and normal tissues and at different stages of NSCLC was compared with gene expression profiling interactive analysis, and their prognostic significance was analyzed with the Kaplan-Meier Plotter database. The correlations among IAPs were analyzed with the STRING database and SPSS19.0. Functional annotation of IAPs was analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment on the basis of the DAVID tool. Among patients with lung adenocarcinoma (LUAD), the expression level of BIRC5 was higher than that in normal samples, and the expression of BIRC1 and BIRC5 significantly varied in different stages. Moreover, the BIRC1-3 and BIRC5 mRNA levels were associated with overall survival (OS), and the BIRC1-2 and BIRC5-6 mRNA levels were associated with progression-free survival (PFS). Among patients with lung squamous cell carcinoma (LUSC), the expression level of BIRC1 was lower and that of BIRC5 was higher than those in normal tissues, and BIRC5 expression significantly varied in different stages. BIRC1 expression was associated with OS, whereas BIRC2 and BIRC6 expression was associated with PFS. Enrichment analysis showed that most IAPs are associated with ubiquitin- and apoptosis-related pathways. Collectively, this study suggests BIRC5 as a potential diagnostic and staging marker, BIRC1 as a potential marker of OS, and BIRC2 and BIRC6 as potential PFS markers for patients with NSCLC. These highlight new targets for the early detection, treatment, and management of NSCLC.
Collapse
Affiliation(s)
- Jun Liu
- Medical College, Jiujiang University, Jiujiang, China
| | - Yi Lu
- Medical College, Jiujiang University, Jiujiang, China
| | - Wenan Huang
- Medical College, Jiujiang University, Jiujiang, China
| | - Zhibo He
- School of Literature and Communication, Jiujiang University, Jiujiang, China
| |
Collapse
|
43
|
Li C, Li W, Cao S, Xu J, Qian Y, Pan X, Lei D, Wei D. Circ_0058106 promotes proliferation, metastasis and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway through miR-185-3p in hypopharyngeal squamous cell carcinoma. Cell Death Dis 2021; 12:1063. [PMID: 34750351 PMCID: PMC8575998 DOI: 10.1038/s41419-021-04346-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) accounts 95% of hypopharyngeal cancer, which is characterized by high early metastasis rate and poor prognosis. It is reported that circular RNA is involved in the occurrence and development of cancer; however, the role of circRNA in hypopharyngeal cancer has little been investigated. We performed hypopharyngeal carcinoma circRNA microarray and qRT-PCR verification. The results showed circ_0058106 expression level was significantly upregulated in tumor tissues than in corresponding normal tissues. We found that circ_0058106 upregulation promoted proliferation, migration and invasion of HSCC cells, while knockdown of circ_0058106 inhibited proliferation, migration and invasion of HSCC cells both in vitro and in vivo. Bioinformatics predicted circ_0058106 may interact with miR-185-3p. We verified circ_0058106 directly bound miR-185-3p and downregulated miR-185-3p expression by using dual-luciferase reporter assay and qRT-PCR. Moreover, we proved circ_0058106 promoted HSCC cells tumorigenesis and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway via miR-185-3p. In conclusion, our findings firstly confirmed the carcinogenic effect of circ_0058106 in promoting HSCC cells tumorigenesis, metastasis, invasion and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway through sponging miR-185-3p, indicating that circ_0058106 may be a new therapeutic target and prognostic marker for HSCC.
Collapse
Affiliation(s)
- Ce Li
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Jianing Xu
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Xinliang Pan
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University; NHC Key Laboratory of Otorhinolaryngology (Shandong University), 107 West Wenhua Road, 250012, Jinan, Shandong, China.
| |
Collapse
|
44
|
Chen Q, Lu H, Duan C, Zhu X, Zhang Y, Li M, Zhang D. PDCD4 Simultaneously Promotes Microglia Activation via PDCD4-MAPK-NF-κB Positive Loop and Facilitates Neuron Apoptosis During Neuroinflammation. Inflammation 2021; 45:234-252. [PMID: 34613548 DOI: 10.1007/s10753-021-01541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuroinflammation and neuron injury are common features of the central nervous system (CNS) diseases. It is of great significance to identify their shared key regulatory molecules and thus explore the potential therapeutic targets. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases, but its expression and biological function during CNS neuroinflammation remain unclear. In the present study, utilizing the lipopolysaccharide (LPS)-induced neuroinflammation model in mice, we reported an elevated expression of PDCD4 both in injured neurons and activated microglia of the inflamed brain. A similar change in PDCD4 expression was observed in vitro in the microglial activation model. Silencing PDCD4 by shRNA significantly inhibited the phosphorylation of MAPKs (p38, ERK, and JNK), prevented the phosphorylation and nuclear translocation of NF-κB p65, and thus attenuated the LPS-induced microglial inflammatory activation. Interestingly, LPS also required the MAPK/NF-κB signaling activation to boost PDCD4 expression in microglia, indicating the presence of a positive loop. Moreover, a persistent elevation of PDCD4 expression was detected in the H2O2-induced neuronal oxidative damage model. Knocking down PDCD4 significantly inhibited the expression of pro-apoptotic proteins BAX and Cleaved-PARP, suggesting the proapoptotic activity of PDCD4 in neurons. Taken together, our data indicated that PDCD4 may serve as a hub regulatory molecule that simultaneously promotes the microglial inflammatory activation and the oxidative stress-induced neuronal apoptosis within CNS. The microglial PDCD4-MAPK-NF-κB positive feedback loop may act as pivotal signaling for neuroinflammation which subsequently exaggerates neuronal injury, and thus may become a potential therapeutic target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Quan Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, People's Republic of China
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China. .,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, People's Republic of China. .,Rehabilitation Medicine Department, Affiliated Hospital 2 of Nantong University, 226001, Nantong, People's Republic of China.
| |
Collapse
|
45
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
46
|
FBXO22, ubiquitination degradation of PHLPP1, ameliorates rotenone induced neurotoxicity by activating AKT pathway. Toxicol Lett 2021; 350:1-9. [PMID: 34182063 DOI: 10.1016/j.toxlet.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the lacking of dopaminergic neurons. Many reports have illustrated that rotenone is applied to establish the experimental model of PD, which simulates PD-like symptoms. FBXO22 is a poorly understood protein that may be involved in neurological disorders. However, little is known about FBXO22 in PD. In this study, first, SH-SY5Y cells were treated with rotenone to construct PD model in vitro. It was discovered that the FBXO22 expression was down-regulated following rotenone treatment. Additionally, overexpression of FBXO22 reduced rotenone treatment-mediated cell apoptosis in SH-SY5Y cells. In view of the ubiquitination effect of FBXO22, our study uncovered that FBXO22 bound with and degraded PHLPP1 by ubiquitination. Next, the effects of PHLPP1 on AKT pathway in PD were further explored. It was demonstrated that PHLPP1 inactivated AKT pathway through down-regulating the pAKT/AKT and pmTOR/mTOR levels. Through rescue assays, the results showed that PHLPP1 overexpression partially reversed the reduction of rotenone induced neurotoxicity caused by FBXO22 overexpression. Finally, we found that overexpression of FBXO22 alleviated rotenone-induced PD symptoms in rat model. Moreover, it was discovered that l-dopa treatment could not affect the FBXO22 expression in PD. In conclusion, findings from our work proved that FBXO22 degraded PHLPP1 by ubiquitination to ameliorate rotenone induced neurotoxicity, which attributed to activate AKT pathway. This work suggested that FBXO22 may be an effective biological marker for PD treatment.
Collapse
|
47
|
Comparative Gene Signature of (-)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights. Nutrients 2021; 13:nu13051706. [PMID: 34069906 PMCID: PMC8157589 DOI: 10.3390/nu13051706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) heterogeneity and limited therapeutic options confer its phenotypic aggressiveness. The discovery of anti-TNBC natural products with valid molecular target(s) and defined pharmacodynamic profile would facilitate their therapeutic nutraceutical use by TNBC patients. The extra-virgin olive oil (EVOO) is a key Mediterranean diet ingredient. S-(−)-Oleocanthal (OC) leads the bioactive anti-tumor EVOO phenolic ingredients. A previous study reported the solid dispersion formulated OC with (+)-xylitol (OC-X) suppressed the in vivo progression and recurrence of the TNBC MDA-MB-231 cells. This study investigates the ability of OC-X formulation to suppress the in vivo heterogeneous BC initiation and progression utilizing advanced preclinical transgenic MMTV-PyVT and TNBC PDX mouse models. Furthermore, the clustering of the gene expression profiles in MMTV-PyVT and PDX mouse tumors treated with OC-X acquired by a Clariom S microarray analysis identified the distinctly affected genes. Several affected novel signature genes identified in response to OC-X treatments and proved overlapped in both mouse and human tumor models, shedding some lights toward understanding the OC anticancer molecular mechanism and assisting in predicting prospective clinical outcomes. This study provides molecular and preclinical evidences of OC-X potential as a nutraceutical suppressing heterogeneous TNBC model and offers preliminary gene-level therapeutic mechanistic insights.
Collapse
|
48
|
Morgan JJ, Crawford LJ. The Ubiquitin Proteasome System in Genome Stability and Cancer. Cancers (Basel) 2021; 13:2235. [PMID: 34066546 PMCID: PMC8125356 DOI: 10.3390/cancers13092235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Faithful DNA replication during cellular division is essential to maintain genome stability and cells have developed a sophisticated network of regulatory systems to ensure its integrity. Disruption of these control mechanisms can lead to loss of genomic stability, a key hallmark of cancer. Ubiquitination is one of the most abundant regulatory post-translational modifications and plays a pivotal role in controlling replication progression, repair of DNA and genome stability. Dysregulation of the ubiquitin proteasome system (UPS) can contribute to the initiation and progression of neoplastic transformation. In this review we provide an overview of the UPS and summarize its involvement in replication and replicative stress, along with DNA damage repair. Finally, we discuss how the UPS presents as an emerging source for novel therapeutic interventions aimed at targeting genomic instability, which could be utilized in the treatment and management of cancer.
Collapse
Affiliation(s)
| | - Lisa J. Crawford
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
49
|
Shi JY, Bi YY, Yu BF, Wang QF, Teng D, Wu DN. Alternative Splicing Events in Tumor Immune Infiltration in Colorectal Cancer. Front Oncol 2021; 11:583547. [PMID: 33996533 PMCID: PMC8117221 DOI: 10.3389/fonc.2021.583547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/05/2023] Open
Abstract
Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.
Collapse
Affiliation(s)
- Jian-Yu Shi
- Department of Proctology, Ping Yi People's Hospital, Linyi, China
| | - Yan-Yan Bi
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Bian-Fang Yu
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Qing-Feng Wang
- Department of Basic Pharmacology, College of Integration of Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan Teng
- Artificial Intelligence and Big Data College, HE University, Shenyang, China
| | - Dong-Ning Wu
- Clinical Evaluation Center, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Huang Y, Yang Y, Wang J, Yao S, Yao T, Xu Y, Chen Z, Yuan P, Gao J, Shen S, Ma J. miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem 2021; 296:100617. [PMID: 33811860 PMCID: PMC8095171 DOI: 10.1016/j.jbc.2021.100617] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis results from an imbalance between bone formation and bone resorption. Traditional drugs for treating osteoporosis are associated with serious side effects, and thus, new treatment methods are required. This study investigated the role of differentially expressed microRNAs during osteoclast differentiation and osteoclast activity during osteoarthritis as well as the associated underlying mechanisms. We used a microarray to screen microRNAs that decreased in the process of osteoclast differentiation and verified miR-21-5p to decrease significantly using RT-qPCR. In follow-up experiments, we found that miR-21-5p targets SKP2 to regulate osteoclast differentiation. In vivo, ovariectomized mice were used to simulate perimenopausal osteoporosis induced by estrogen deficiency, and miR-21-5p treatment inhibited bone resorption and maintained bone cortex and trabecular structure. These results suggest that miR-21-5p is a new therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yining Xu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|