1
|
Sun B, Shen K, Zhao R, Li Y, Lin J. Clarithromycin attenuates airway epithelial-mesenchymal transition in ovalbumin-induced asthmatic mice through modulation of Kv1.3 channels and PI3K/Akt signaling. Int Immunopharmacol 2024; 139:112624. [PMID: 39002519 DOI: 10.1016/j.intimp.2024.112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Airway epithelial-mesenchymal transition (EMT) is the important pathological feature of airway remodeling in asthma. While macrolides are not commonly used to treat asthma, they have been shown to have protective effects on the airways, in which mechanisms are not yet fully understood. This study aims to investigate the impact of clarithromycin on airway EMT in asthma and its potential mechanism. The results revealed an increase in Kv1.3 expression in the airways of ovalbumin (OVA)-induced asthmatic mice, with symptoms and pathological changes being alleviated after treatment with the Kv1.3 inhibitor 5-(4-phenoxybutoxy)psoralen (PAP-1). Clarithromycin was found to attenuate airway epithelial-mesenchymal transition through the inhibition of Kv1.3 and PI3K/Akt signaling. Further experiments in vitro confirmed that PAP-1 could mitigate EMT by modulating the PI3K/Akt signaling in airway epithelial cells undergoing transformation into mesenchymal cells. These findings confirmed that clarithromycin might have a certain protective effect on asthma-related airway remodeling and represent a promising treatment strategy.
Collapse
Affiliation(s)
- Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunlu Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruiheng Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Liu Y, Li F, Wang Q, Zhang Y, Tian S, Li B. Anlotinib inhibits growth of human esophageal cancer TE-1 cells by negative regulating PI3K/Akt signaling pathway. Discov Oncol 2024; 15:134. [PMID: 38678128 PMCID: PMC11055845 DOI: 10.1007/s12672-024-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Anlotinib is effective in treatment of many kinds of malignant cancer, but its antineoplastic effects on esophageal cancer remains unclear. This study aims to investigate its impact on esophageal cancer and the underlying mechanisms. Anlotiniband 5-fluorouracil + cisplatin (5-FU + DDP) was administered separately to human esophageal cancer TE- 1 cells tumor xenograft mouse models every 3 days. Tumor size and body weight were measured before each treatment and at the end of the experiment. In vitro studies were conducted using TE- 1 cells to examine the effects of Anlotinib. Cell viability, migration, proliferation, apoptosis, cell cycle, their regulatory proteins and the transcriptomic changes were analyzed. Anlotinib reduced tumor size, tumor weight, and the ratio of tumor weight to body weight in vivo. It decreased the viability of TE- 1 cells, with a 50% growth-inhibitory concentration of 9.454 μM for 24 h, induced apoptosis, and arrested TE- 1 cell cycle in the S phase. It inhibited migration and proliferation while negatively regulating the PI3K/Akt signaling pathway. Enhanced expressions of P21, Bax, and lowered expressions of cyclin A1, cyclin B1, CDK1, PI3K, Akt, p-Akt, and Bcl-2 were observed after Anlotinib treatment. Anlotinib exhibits antineoplastic activity against human esophageal cancer TE- 1 cells by negatively regulating the PI3K/Akt signaling pathway, consequently altering the expressions of proteins related to proliferation, apoptosis, and the cell cycle.
Collapse
Affiliation(s)
- Yueli Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Fan Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Avenue, Haikou, China
| | - Qiongyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Avenue, Haikou, China
| | - Yunfei Zhang
- Department of Biostatistics, New York University, Jersey City, NJ, USA
| | - Shuhong Tian
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, No. 3 Xueyuan Road, Haikou, China.
| | - Biao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Avenue, Haikou, China.
| |
Collapse
|
3
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
4
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Ge Y, Jia B, Zhang P, Chen B, Liu L, Shi Y, Huang S, Liu X, Wang R, Xie Y, Li Z, Dong J. TBX15 facilitates malignant progression of glioma by transcriptional activation of TXDNC5. iScience 2024; 27:108950. [PMID: 38327797 PMCID: PMC10847739 DOI: 10.1016/j.isci.2024.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
T-box transcription factor 15 (TBX15) plays important role in various cancers; however, its expression and role in glioma is still unclear. In this study, our findings indicated that TBX15 was increased in gliomas compared to normal brain tissues, and high levels of TBX15 were related to poor survival. Furthermore, TBX15 silencing in glioma cells not only inhibited their proliferation, migration, and invasion in vitro, but also weakened their ability to recruit macrophages and polarize the latter to the M2 subtype. Mechanism study indicated that thioredoxin domain containing 5 (TXNDC5) lies downstream of TBX15. Furthermore, rescue assays verified that the role of TBX15 in glioma cells is dependent on TXNDC5. Moreover, sh-TBX15 loaded into DNA origami nanocarrier suppressed the malignant phenotype of glioma in vitro and in vivo. Taken together, the TBX15/TXNDC5 axis is involved in the genesis and progression of glioma, and is a potential therapeutic target.
Collapse
Affiliation(s)
- Yuyuan Ge
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Zhang
- Department of Neurosurgery, People’s Hospital of Rugao, Nantong 226500, China
- Department of Neurosurgery, Rugao Clinical College, Jiangsu Health Vocational College, Nantong 226500, China
| | - Baomin Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Shi
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shilu Huang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xinglei Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
6
|
Sim HJ, Kim MR, Song MS, Lee SY. Kv3.4 regulates cell migration and invasion through TGF-β-induced epithelial-mesenchymal transition in A549 cells. Sci Rep 2024; 14:2309. [PMID: 38280903 PMCID: PMC10821870 DOI: 10.1038/s41598-024-52739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. This process induces cell migration and invasion, which are closely related to cancer metastasis and malignancy. EMT consists of various intermediate states that express both epithelial and mesenchymal traits, called partial EMT. Recently, several studies have focused on the roles of voltage-gated potassium (Kv) channels associated with EMT in cancer cell migration and invasion. In this study, we demonstrate the relationship between Kv3.4 and EMT and confirm the effects of cell migration and invasion. With TGF-β treatment, EMT was induced and Kv3.4 was also increased in A549 cells, human lung carcinoma cells. The knockdown of Kv3.4 blocked the EMT progression reducing cell migration and invasion. However, the Kv3.4 overexpressed cells acquired mesenchymal characteristics and increased cell migration and invasion. The overexpression of Kv3.4 also has a synergistic effect with TGF-β in promoting cell migration. Therefore, we conclude that Kv3.4 regulates cancer migration and invasion through TGF-β-induced EMT and these results provide insights into the understanding of cancer metastasis.
Collapse
Affiliation(s)
- Hun Ju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Mi Ri Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Min Seok Song
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Duranti C, Iorio J, Bagni G, Chioccioli Altadonna G, Fillion T, Lulli M, D'Alessandro FN, Montalbano A, Lastraioli E, Fanelli D, Coppola S, Schmidt T, Piazza F, Becchetti A, Arcangeli A. Integrins regulate hERG1 dynamics by girdin-dependent Gαi3: signaling and modeling in cancer cells. Life Sci Alliance 2024; 7:e202302135. [PMID: 37923359 PMCID: PMC10624597 DOI: 10.26508/lsa.202302135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
The hERG1 potassium channel is aberrantly over expressed in tumors and regulates the cancer cell response to integrin-dependent adhesion. We unravel a novel signaling pathway by which integrin engagement by the ECM protein fibronectin promotes hERG1 translocation to the plasma membrane and its association with β1 integrins, by activating girdin-dependent Gαi3 proteins and protein kinase B (Akt). By sequestering hERG1, β1 integrins make it avoid Rab5-mediated endocytosis, where unbound channels are degraded. The cycle of hERG1 expression determines the resting potential (Vrest) oscillations and drives the cortical f-actin dynamics and thus cell motility. To interpret the slow biphasic kinetics of hERG1/β1 integrin interplay, we developed a mathematical model based on a generic balanced inactivation-like module. Integrin-mediated cell adhesion triggers two contrary responses: a rapid stimulation of hERG1/β1 complex formation, followed by a slow inhibition which restores the initial condition. The protracted hERG1/β1 integrin cycle determines the slow time course and cyclic behavior of cell migration in cancer cells.
Collapse
Affiliation(s)
- Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Ginevra Chioccioli Altadonna
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Thibault Fillion
- Department of Physics, University of Florence, and Florence Section of INFN, Florence, Italy
- Université d'Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301, Orléans, France
| | - Matteo Lulli
- Department of Experimental and Clinical Biochemical Sciences, Section of General Pathology, University of Florence, Florence, Italy
| | - Franco Nicolas D'Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alberto Montalbano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
| | - Duccio Fanelli
- Department of Physics, University of Florence, and Florence Section of INFN, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
| | - Stefano Coppola
- Department of Physics, University of Leiden, Leiden, Netherlands
| | - Thomas Schmidt
- Department of Physics, University of Leiden, Leiden, Netherlands
| | - Francesco Piazza
- Department of Physics, University of Florence, and Florence Section of INFN, Florence, Italy
- Université d'Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301, Orléans, France
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
| |
Collapse
|
8
|
Montalbano A, Sala C, Altadonna GC, Becchetti A, Arcangeli A. High throughput clone screening on overexpressed hERG1 and Kv1.3 potassium channels using ion channel reader (ICR) label free technology. Heliyon 2023; 9:e20112. [PMID: 37767500 PMCID: PMC10520782 DOI: 10.1016/j.heliyon.2023.e20112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Pharmacological studies aimed at the development of newly synthesized drugs directed against ion channels (as well as genetic studies of ion channel mutations) involve the development and use of transfected cells. However, the identification of the best clone, in terms of transfection efficiency, is often a time consuming procedure when performed through traditional methods such as manual patch-clamp. On the other hand, the use of other faster techniques, such as for example the IF, are not informative on the effective biological functionality of the transfected ion channel(s). In the present work, we used the high throughput automated ion channel reader (ICR) technology (ICR8000 Aurora Biomed Inc.) that combine atomic absorption spectroscopy with a patented microsampling process to accurately measure ion flux in cell-based screening assays. This technology indeed helped us to evaluate the transfection efficiency of hERG1 and hKv1.3 channels respectively on the HEK-293 and CHO cellular models. Moreover, as proof of the validity of this innovative method, we have corroborated these data with the functional characterization of the potassium currents carried out by the same clones through patch-clamp recordings. The results obtained in our study are promising and represent a valid methodological strategy to screen a large number of clones simultaneously and to pharmacologically evaluate their functionality within an extremely faster timeframe.
Collapse
Affiliation(s)
- Alberto Montalbano
- Department of Experimental and Clinical Medicine, University of Florence, I-50134, Florence, Italy
| | - Cesare Sala
- Department of Experimental and Clinical Medicine, University of Florence, I-50134, Florence, Italy
| | | | - Andrea Becchetti
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, I-20126, Milano, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, I-50134, Florence, Italy
| |
Collapse
|
9
|
Zhu J, Tang J, Wu Y, Qiu X, Jin X, Zhang R. RNF149 confers cisplatin resistance in esophageal squamous cell carcinoma via destabilization of PHLPP2 and activating PI3K/AKT signalling. Med Oncol 2023; 40:290. [PMID: 37658961 DOI: 10.1007/s12032-023-02137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 09/05/2023]
Abstract
Chemo-resistance has been identified as a crucial factor contributing to tumor recurrence and a leading cause of worse prognosis in patients with ESCC. Therefore, unravel the critical regulators and effective strategies to overcome drug resistance will have a significant clinical impact on the disease. In our study we found that RNF149 was upregulated in ESCC and high RNF149 expression was associated with poor prognosis with ESCC patients. Functionally, we have demonstrated that overexpression of RNF149 confers CDDP resistance to ESCC; however, inhibition of RNF149 reversed this phenomenon both in vitro and in vivo. Mechanistically, we demonstrated that RNF149 interacts with PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and induces E3 ligase-dependent protein degradation of PHLPP2, substantially activating the PI3K/AKT signalling pathway in ESCC. Additionally, we found that inhibition of PI3K/AKT signalling pathway by AKT siRNA or small molecule inhibitor significantly suppressed RNF149-induced CDDP resistance. Importantly, RNF149 locus was also found to be amplified not only in ESCC but also in various human cancer types. Our data suggest that RNF149 might function as an oncogenic gene. Targeting the RNF149/PHLPP2/PI3K/Akt axis may be a promising prognostic factor and valuable therapeutic target for malignant tumours.
Collapse
Affiliation(s)
- Jinrong Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiuren Tang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongqi Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiangyu Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
11
|
Xia C, Liu C, Ren S, Cai Y, Zhang Q, Xia C. Potassium channels, tumorigenesis and targeted drugs. Biomed Pharmacother 2023; 162:114673. [PMID: 37031494 DOI: 10.1016/j.biopha.2023.114673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
Potassium channels play an important role in human physiological function. Recently, various molecular mechanisms have implicated abnormal functioning of potassium channels in the proliferation, migration, invasion, apoptosis, and cancer stem cell phenotype formation. Potassium channels also mediate the association of tumor cells with the tumor microenvironment. Meanwhile, potassium channels are important targets for cancer chemotherapy. A variety of drugs exert anti-cancer effects by modulating potassium channels in tumor cells. Therefore, there is a need to understand how potassium channels participate in tumor development and progression, which could reveal new, novel targets for cancer diagnosis and treatment. This review summarizes the roles of voltage-gated potassium channels, calcium-activated potassium channels, inwardly rectifying potassium channels, and two-pore domain potassium channels in tumorigenesis and the underlying mechanism of potassium channel-targeted drugs. Therefore, the study lays the foundation for rational and effective drug design and individualized clinical therapeutics.
Collapse
Affiliation(s)
- Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
12
|
Li Z, Qiao X, Liu XM, Shi SH, Qiao X, Xu JY. Blocking xCT and PI3K/Akt pathway synergized with DNA damage of Riluzole-Pt(IV) prodrugs for cancer treatment. Eur J Med Chem 2023; 250:115233. [PMID: 36863224 DOI: 10.1016/j.ejmech.2023.115233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Cancer treatment requires the participation of multiple targets/pathways, and single approach is hard to effectively curb the proliferation and metastasis of carcinoma cells. In this work, we conjugated FDA-approved riluzole and platinum(II) drugs into a series of unreported riluzole-Pt(IV) compounds, which were designed to simultaneously target DNA, the solute carrier family 7 member 11 (SLC7A11, xCT), and the human ether a go-go related gene 1 (hERG1), to exert synergistic anticancer effect. Among them, c,c,t-[PtCl2(NH3)2(OH)(glutarylriluzole)] (compound 2) displayed excellent antiproliferative activity with IC50 value of 300-times lower than that of cisplatin in HCT-116, and optimal selectivity index between carcinoma and human normal liver cells (LO2). Mechanism studies indicated that compound 2 released riluzole and active Pt(II) species after entering cells to exhibit a prodrug behavior against cancer, which obviously increased DNA-damage and cell apoptosis, as well as suppressed metastasis in HCT-116. Compound 2 persisted in the xCT-target of riluzole and blocked the biosynthesis of glutathione (GSH) to trigger oxidative stress, which could boost the killing to cancer cells and reduce Pt-drug resistance. Meanwhile, compound 2 significantly inhibited invasion and metastasis of HCT-116 cells by targeting hERG1 to interrupt the phosphorylation of phosphatidylinositide 3-kinases/proteinserine-threonine kinase (PI3K/Akt), and reverse epithelial-mesenchymal transformation (EMT). Based on our results, the riluzole-Pt(IV) prodrugs studied in this work could be regarded as a new class of very promising candidates for cancer treatment compared to traditional platinum drugs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Shu-Hao Shi
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
13
|
Kocatürk B. Identification of thioredoxin domain containing family members' expression pattern and prognostic value in diffuse gliomas via in silico analysis. Cancer Med 2023; 12:3830-3844. [PMID: 36106447 PMCID: PMC9939227 DOI: 10.1002/cam4.5169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are the most prevalent primary tumors of the central nervous system. Their aggressive nature and the obstacles arising during therapy highlights the importance of finding new prognostic markers and therapy targets for gliomas. TXNDC genes are members of the thioredoxin superfamily and were shown to play a role in redox homeostasis, protein folding, electron transfer and also acting as cellular adapters. The well known contribution of these processes in cancer progression prompted us to investigate if TXNDC family members may also play a role in carcinogenesis, in particular diffuse gliomas. METHODS The present study used in silico analysis tools GEPIA, UCSC Xena, Gliovis, cBioPortal, and Ivy GAP to evaluate the expression pattern, prognostic value and clinical significance of TXNDC family members in diffuse gliomas. RESULTS Our analysis showed that TXNDC family members' expression pattern differ between tumors and healthy tissues and among tumors with different grades. The detailed analysis of TXNDC5 in glioma pathogenesis revealed that TXNDC5 expression is associated with more aggressive clinical and molecular features and poor therapy success both in LGG and GBM samples. Kaplan-Meier survival curves represented a worse prognosis for patients with leveated TXNDC5 levels in LGG and all grade glioma patients. The levels of TXNDC5 was shown to be possibly regulated by hypoxia-ER stress axis and a potential mechanism for TXNDC5-driven glioma progression was found to be extracellular matrix (ECM) production which is known to promote tumor aggressiveness. CONCLUSIONS Our results uncovered the previously unknown role of TXNDC family members in glioma pathogenesis and showed that TXNDC5 levels could serve as a predictor of clinical outcome and therapy success and may very well be used for targeted therapy.
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
14
|
Wang X, Li H, Chang X. The role and mechanism of TXNDC5 in diseases. Eur J Med Res 2022; 27:145. [PMID: 35934705 PMCID: PMC9358121 DOI: 10.1186/s40001-022-00770-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 01/20/2023] Open
Abstract
Thioredoxin domain-containing protein 5 (TXNDC5) is a member of the protein disulfide isomerase (PDI) family. It can promote the formation and rearrangement of disulfide bonds, ensuring proper protein folding. TXNDC5 has three Trx-like domains, which can act independently to introduce disulfide bonds rapidly and disorderly. TXNDC5 is abnormally expressed in various diseases, such as cancer, rheumatoid arthritis (RA), etc. It can protect cells from oxidative stress, promote cell proliferation, inhibit apoptosis and promote the progression of disease. Aberrant expression of TXNDC5 in different diseases suggests its role in disease diagnosis. In addition, targeting TXNDC5 in the treatment of diseases has shown promising application prospects. This article reviews the structure and function of TXNDC5 as well as its role and mechanism in cancer, RA and other diseases.
Collapse
Affiliation(s)
- Xueling Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, No 16 Jiangsu Road, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China.
| |
Collapse
|
15
|
LINC02154 promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing SPC24 promoter activity and activating the PI3K-AKT signaling pathway. Cell Oncol (Dordr) 2022; 45:447-462. [PMID: 35543858 DOI: 10.1007/s13402-022-00676-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Abnormal expression of long non-coding RNAs (lncRNAs) has been associated with the initiation and progression of hepatocellular carcinoma but, as yet, the clinicopathologic significance and potential role of Linc02154 in HCC remains to be determined. Here, we aimed to investigate the potential role and mode of action of Linc02154 in HCC. METHODS The expression of Linc02154 in 20 pairs of HCC/normal tissues and 7 HCC cell lines was detected by qRT-PCR. The localization of Linc02154 in HCC cells was detected using fluorescence in situ hybridization and nuclear-plasma separation assays. MTS, EdU incorporation, colony formation, flow cytometry, scratch wound-healing and transwell assays were performed to assess the role of Linc02154 in HCC cell proliferation, migration and invasion in vitro, and BALB/c nude mice xenografts were used to evaluate its role in vivo. RNA sequencing and Western blotting were used to evaluate the regulatory effect of Linc02154 on SPC24 gene expression. A dual-luciferase reporter assay was used to assess a putative interaction of Linc02154 with the SPC24 promoter. RESULTS We identified a new lncRNA, Linc02154, that is highly expressed in HCC cells and tissues of patients with a poor overall survival. Functional experiments revealed that exogenous Linc02154 expression in MHCC-97H and SK-Hep1 cells promoted their proliferation, migration and invasion in vitro and their tumorigenesis in vivo. Using a dual luciferase reporter assay we found that Linc02154 can enhance SPC24 promoter (-500 bp ~ -1000 region) activity. Exogenous over-expression of Linc02154 led to up-regulation of SPC24 by activating PI3K/AKT and its downstream signals, including cell cycle progression and EMT-associated gene expression. CONCLUSION Our data suggest that Linc02154 may serve as a valuable biomarker of HCC and as a potential therapeutic target.
Collapse
|
16
|
Luo Q, Du R, Liu W, Huang G, Dong Z, Li X. PI3K/Akt/mTOR Signaling Pathway: Role in Esophageal Squamous Cell Carcinoma, Regulatory Mechanisms and Opportunities for Targeted Therapy. Front Oncol 2022; 12:852383. [PMID: 35392233 PMCID: PMC8980269 DOI: 10.3389/fonc.2022.852383] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), is the most common type of esophageal cancer worldwide, mainly occurring in the Asian esophageal cancer belt, including northern China, Iran, and parts of Africa. Phosphatidlinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important cellular signaling pathways, which plays a crucial role in the regulation of cell growth, differentiation, migration, metabolism and proliferation. In addition, mutations in some molecules of PI3K/Akt/mTOR pathway are closely associated with survival and prognosis in ESCC patients. A large number of studies have found that there are many molecules in ESCC that can regulate the PI3K/Akt/mTOR pathway. Overexpression of these molecules often causes aberrant activation of PI3K/Akt/mTOR pathway. Currently, several effective PI3K/Akt/mTOR pathway inhibitors have been developed, which can play anticancer roles either alone or in combination with other inhibitors. This review mainly introduces the general situation of ESCC, the composition and function of PI3K/Akt/mTOR pathway, and regulatory factors that interact with PI3K/Akt/mTOR signaling pathway. Meanwhile, mutations and inhibitors of PI3K/Akt/mTOR pathway in ESCC are also elucidated.
Collapse
Affiliation(s)
- Qian Luo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Guojing Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Lu H, Gao L, Lv J. Circ_0078710 promotes the development of liver cancer by upregulating TXNDC5 via miR-431-5p. Ann Hepatol 2022; 27:100551. [PMID: 34606982 DOI: 10.1016/j.aohep.2021.100551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Liver cancer, with high recurrence and metastasis rate, is a common malignant tumor. Circular RNA_0078710 (circ_0078710) has been shown to be take part in the advance of hepatocellular carcinoma. However, the interaction between circ_0091579 and microRNA-431-5p (miR-431-5p) in liver cancer has not been studied. MATERIALS AND METHODS The expressions of circ_0078710, miR-431-5p and Thioredoxin domain-containing 5 (TXNDC5) in liver cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of cric_0078710 in liver cancer cells was assessed by Cell Counting Kit-8 (CCK-8) assay, Transwell, flow cytometry and Dual-luciferase reporter assay. Glycolysis metabolism was examined by lactate production, glucose uptake and ATP level. The protein levels of ki-67, bax and TXNEC5 were tested by western blot. The role of circ_0078710 in vivo was determined by animal study. RESULTS Circ_0078710 and TXNDC5 were notably expressed in liver cancer tissues and cells. Circ_0078710 knockdown diminished proliferation, migration, invasion and glycolytic metabolism of huh7 and Hep3B cells, and accelerated cell apoptosis. MiR-431-5p is the target of circ_0078710, and silence circ_0078710 can inhibit the malignant behavior and glycolysis of hepatocellular carcinoma (HCC) cells by releasing miR-431-5p. In addition, TXNDC5 was a target of miR-431-5p, and overexpression of TXNDC5 restored cell proliferation and glycolysis inhibition due to miR-431-5p. Animal experiments made clear the anti-tumor effect of circ_0078710 knockdown. CONCLUSION Circ_0078710 promotes the progression of liver cancer by regulating TXNDC5 expression by targeting miR-431-5p. These results demonstrate that circ_0078710 could be a remedy target for liver cancer.
Collapse
Affiliation(s)
- Huajun Lu
- Department of Hepatobiliary Surgery, Laiyang Central Hospital, Yantai 265200, Shandong Province, China
| | - Lili Gao
- Department of Hepatobiliary Surgery, Laiyang Central Hospital, Yantai 265200, Shandong Province, China
| | - Jixiang Lv
- Department of Hepatobiliary Surgery, Laiyang Central Hospital, Yantai 265200, Shandong Province, China.
| |
Collapse
|
18
|
Thioredoxin Domain Containing 5 Suppression Elicits Serum Amyloid A-Containing High-Density Lipoproteins. Biomedicines 2022; 10:biomedicines10030709. [PMID: 35327511 PMCID: PMC8945230 DOI: 10.3390/biomedicines10030709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Thioredoxin domain containing 5 (TXNDC5) is a protein disulfide isomerase involved in several diseases related to oxidative stress, energy metabolism and cellular inflammation. In a previous manuscript, a negative association between fatty liver development and hepatic Txndc5 expression was observed. To study the role of TXNDC5 in the liver, we generated Txndc5-deficient mice. The absence of the protein caused an increased metabolic need to gain weight along with a bigger and fatter liver. RNAseq was performed to elucidate the putative mechanisms, showing a substantial liver overexpression of serum amyloid genes (Saa1, Saa2) with no changes in hepatic protein, but discrete plasma augmentation by the gene inactivation. Higher levels of malonyldialdehyde, apolipoprotein A1 and platelet activating factor-aryl esterase activity were also found in serum from Txndc5-deficient mice. However, no difference in the distribution of high-density lipoproteins (HDL)-mayor components and SAA was found between groups, and even the reactive oxygen species decreased in HDL coming from Txndc5-deficient mice. These results confirm the relation of this gene with hepatic steatosis and with a fasting metabolic derive remedying an acute phase response. Likewise, they pose a new role in modulating the nature of HDL particles, and SAA-containing HDL particles are not particularly oxidized.
Collapse
|
19
|
The aberrant upregulation of exon 10-inclusive SREK1 through SRSF10 acts as an oncogenic driver in human hepatocellular carcinoma. Nat Commun 2022; 13:1363. [PMID: 35296659 PMCID: PMC8927159 DOI: 10.1038/s41467-022-29016-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Deregulation of alternative splicing is implicated as a relevant source of molecular heterogeneity in cancer. However, the targets and intrinsic mechanisms of splicing in hepatocarcinogenesis are largely unknown. Here, we report a functional impact of a Splicing Regulatory Glutamine/Lysine-Rich Protein 1 (SREK1) variant and its regulator, Serine/arginine-rich splicing factor 10 (SRSF10). HCC patients with poor prognosis express higher levels of exon 10-inclusive SREK1 (SREK1L). SREK1L can sustain BLOC1S5-TXNDC5 (B-T) expression, a targeted gene of nonsense-mediated mRNA decay through inhibiting exon-exon junction complex binding with B-T to exert its oncogenic role. B-T plays its competing endogenous RNA role by inhibiting miR-30c-5p and miR-30e-5p, and further promoting the expression of downstream oncogenic targets SRSF10 and TXNDC5. Interestingly, SRSF10 can act as a splicing regulator for SREK1L to promote hepatocarcinogenesis via the formation of a SRSF10-associated complex. In summary, we demonstrate a SRSF10/SREK1L/B-T signalling loop to accelerate the hepatocarcinogenesis. Alternative splicing is dysregulated in hepatocellular carcinoma. Here, the authors investigate the role of the splice variant of Splicing Regulatory Glutamic Acid and Lysine Rich Protein 1 (SREK1) and its upstream regulator, Serine/arginine-rich splicing factor 10 (SRSF10) in sustaining the oncogenic signal.
Collapse
|
20
|
Yue Z, Cao M, Hong A, Zhang Q, Zhang G, Jin Z, Zhao L, Wang Q, Fang F, Wang Y, Sun J. m 6A Methyltransferase METTL3 Promotes the Progression of Primary Acral Melanoma via Mediating TXNDC5 Methylation. Front Oncol 2022; 11:770325. [PMID: 35117988 PMCID: PMC8804213 DOI: 10.3389/fonc.2021.770325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
m6A modification is one of the most important post-transcriptional modifications in RNA and plays an important role in promoting translation or decay of RNAs. The role of m6A modifications has been highlighted by increasing evidence in various cancers, which, however, is rarely explored in acral melanoma. Here, we demonstrated that m6A level was highly elevated in acral melanoma tissues, along with the expression of METTL3, one of the most important m6A methyltransferase. Besides, higher expression of METTL3 messenger RNA (mRNA) correlated with a higher stage in primary acral melanoma patients. Knockdown of METTL3 decreased global m6A level in melanoma cells. Furthermore, METTL3 knockdown suppressed the proliferation, migration, and invasion of melanoma cells. In METTL3 knockdown xenograft mouse models, we observed decreased volumes and weights of melanoma tissues. Mechanistically, we found that METTL3 regulates certain m6A-methylated transcripts, thioredoxin domain containing protein 5 (TXNDC5), with the confirmation of RNA-seq, MeRIP-seq, and Western blot. These data suggest that METTL3 may play a key role in the progression of acral melanoma, and targeting the m6A dependent-METTL3 signaling pathway may serve as a promising therapeutic strategy for management of patients of acral melanomas.
Collapse
Affiliation(s)
- Zhanghui Yue
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Meng Cao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Anlan Hong
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qian Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhibin Jin
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing, China
| | - Liang Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Fang Fang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
21
|
Liyanage DS, Omeka WKM, Sandamalika WMG, Udayantha HMV, Jeong T, Lee S, Lee J. PDI family thioredoxin from disk abalone (Haliotis discus discus): Responses to stimulants (PAMPs, bacteria, and viral) and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2022; 120:261-270. [PMID: 34848304 DOI: 10.1016/j.fsi.2021.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxin, a highly conserved class of proteins involved in redox signaling, is found in a range of organisms from bacteria to higher-level eukaryotes. Thioredoxin acts as an active regulatory enzyme to eliminate excessive reactive oxygen species, thereby preventing cellular damage. In this study, the cDNA sequence of thioredoxin domain-containing 5 (AbTXNDC5) from the disk abalone transcriptomic database was characterized. An in silico analysis of AbTXNDC5 was performed, and its spatial and temporal expression patterns in hemocytes and gills in response to bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), viral hemorrhagic septicemia virus, and pathogen-associated molecular pattern molecules were observed. Furthermore, AbTXNDC5 expression was examined in different developmental stages. Functional assays to explore insulin disulfide reduction, anti-apoptotic activity, and protection against hypoxic cell death of AbTXNDC5 were conducted through recombinant proteins or overexpression in cells. AbTXNDC5 contains a 1179-bp open reading frame coding for 392 amino acids. Conserved thiol-disulfide cysteine residues within two Cys-X-X-Cys motifs were found in AbTXNDC5. Quantitative real-time polymerase chain reaction indicated that healthy digestive tract and hemocyte tissues expressed high levels of AbTXNDC5 mRNA, which may protect the host from invading pathogens. Immune-challenged abalone hemocytes and gills exhibited upregulated expression of AbTXNDC5 at different time points. rAbTXNDC5 also exhibited a functional insulin disulfide reductase activity. AbTXNDC5 conferred protection to cultured cells from apoptosis and hypoxia-induced stress, compared to the pcDNA3.1(+) transfected control cells. Therefore, AbTXNDC5 can be considered an important gene in abalones in relation to the primary immune system and regulation of redox homeostasis and confers protection from stress.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
22
|
Shiozaki A, Marunaka Y, Otsuji E. Roles of Ion and Water Channels in the Cell Death and Survival of Upper Gastrointestinal Tract Cancers. Front Cell Dev Biol 2021; 9:616933. [PMID: 33777930 PMCID: PMC7991738 DOI: 10.3389/fcell.2021.616933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ion and water channels were recently shown to be involved in cancer cell functions, and various transporter types have been detected in upper gastrointestinal tract (UGI) cancers. Current information on the expression and roles of these channels and transporters in the death and survival of UGI cancer cells was reviewed herein, and the potential of their regulation for cancer management was investigated. Esophageal cancer (EC) and gastric cancer (GC) cells and tissues express many different types of ion channels, including voltage-gated K+, Cl-, and Ca2+, and transient receptor potential (TRP) channels, which regulate the progression of cancer. Aquaporin (AQP) 1, 3, and 5 are water channels that contribute to the progression of esophageal squamous cell carcinoma (ESCC) and GC. Intracellular pH regulators, including the anion exchanger (AE), sodium hydrogen exchanger (NHE), and vacuolar H+-ATPases (V-ATPase), also play roles in the functions of UGI cancer cells. We have previously conducted gene expression profiling and revealed that the regulatory mechanisms underlying apoptosis in ESCC cells involved various types of Cl- channels, Ca2+ channels, water channels, and pH regulators (Shimizu et al., 2014; Ariyoshi et al., 2017; Shiozaki et al., 2017, 2018a; Kobayashi et al., 2018; Yamazato et al., 2018; Konishi et al., 2019; Kudou et al., 2019; Katsurahara et al., 2020, 2021; Matsumoto et al., 2021; Mitsuda et al., 2021). We have also previously demonstrated the clinicopathological and prognostic significance of their expression in ESCC patients, and shown that their pharmacological blockage and gene silencing had an impact on carcinogenesis, indicating their potential as targets for the treatment of UGI cancers. A more detailed understanding of the molecular regulatory mechanisms underlying cell death and survival of UGI cancers may result in the application of cellular physiological methods as novel therapeutic approaches.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Chen Z, Che D, Gu X, Lin J, Deng J, Jiang P, Xu K, Xu B, Zhang T. Upregulation of PEDF Predicts a Poor Prognosis and Promotes Esophageal Squamous Cell Carcinoma Progression by Modulating the MAPK/ERK Signaling Pathway. Front Oncol 2021; 11:625612. [PMID: 33718190 PMCID: PMC7953146 DOI: 10.3389/fonc.2021.625612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
Invasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with esophageal squamous cell carcinoma (ESCC). The lack of effective treatment strategies for metastatic ESCC is the major cause of the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying ESCC metastasis and identify potential biomarkers for targeted therapy. Herein, we reported that PEDF is significantly correlated with tumor cell invasion and metastasis in ESCC. The high expression of PEDF is an independent unfavorable prognostic factor for ESCC patients’ overall survival (OS). We successfully developed and verified a nomogram to predict the preoperative OS of ESCC patients, and the actual and nomogram-predicted 1-, 3-, and 5-year survival rates had good consistency. The receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) values for 1-, 3- and 5- survival were 0.764, 0.871, and 0.91, respectively. Overexpression of PEDF significantly promoted the migration and invasion of ESCC cells in vitro, while silencing PEDF yielded the opposite effects. Elevated levels of PEDF altered the expression of proteins involved in epithelial–mesenchymal transition (EMT), as indicated by the upregulation of N-cadherin and the downregulation of α-catenin and E-cadherin in ESCC cells. Mechanistically, PEDF promoted tumor cell motility and EMT by activating the MAPK/ERK signaling pathway. In conclusion, our results reveal that PEDF is involved in ESCC metastasis and could act as a prognostic factor for ESCC. Our research provides a fresh perspective into the mechanism of ESCC metastasis.
Collapse
Affiliation(s)
- Zui Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Deng
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Jiang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kaixiong Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ting Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Yao L, Ye PC, Tan W, Luo YJ, Xiang WP, Liu ZL, Fu ZM, Lu F, Tang LH, Xiao JW. Decreased expression of the long non-coding RNA HOXD-AS2 promotes gastric cancer progression by targeting HOXD8 and activating PI3K/Akt signaling pathway. World J Gastrointest Oncol 2020; 12:1237-1254. [PMID: 33250958 PMCID: PMC7667460 DOI: 10.4251/wjgo.v12.i11.1237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been shown to be associated with many tumors. However, the specific mechanism of lncRNAs in the occurrence and development of gastric cancer (GC) has not been fully elucidated.
AIM To explore the expression level and molecular mechanism of HOXD-AS2 in GC tissues and cells, and analyze its significance in the prognosis of GC.
METHODS Real-time quantitative PCR was used to detect the expression of HOXD-AS2 in 79 pairs of GC tissues and five cell lines. The pcHOXD-AS2 plasmid vector was constructed and transfected into SGC-7901 and SNU-1 GC cells. Matrigel Transwell and wound healing assays were used to confirm the effect of HOXD-AS2 on invasion and migration of GC cells. Cell counting kit-8 assay and flow cytometry were used to verify the effect of HOXD-AS2 on the proliferation, cell cycle, and apoptosis of GC cells. The relevant regulatory mechanism between HOXD-AS2 and HOXD8 and PI3K/Akt signaling pathway was verified by Western blot analysis.
RESULTS The low expression of lncRNA HOXD-AS2 was associated with lymph node metastasis and tumor-node-metastasis stage in GC. In vitro functional experiments demonstrated that overexpression of HOXD-AS2 inhibited GC cell progression. Mechanistic studies revealed that HOXD-AS2 regulated the expression of its nearby gene HOXD8 and inhibited the activity of the PI3K/Akt signaling pathway.
CONCLUSION These results indicate that downregulation of HOXD-AS2 significantly promotes the progression of GC cells by regulating HOXD8 expression and activating the PI3K/Akt signaling pathway. HOXD-AS2 may be a novel diagnostic biomarker and effective therapeutic target for GC.
Collapse
Affiliation(s)
- Lin Yao
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China, The Hepatobiliary Research Institute, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, The Hepatobiliary Research Institute, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Peng-Cheng Ye
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, The Hepatobiliary Research Institute, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Wang Tan
- Department of Gastrointestinal Surgery, Yaan People’s Hospital, Yaan 625000, Sichuan Province, China
| | - Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wan-Ping Xiang
- Department of Thoracic Surgery, Nanchong Central Hospital, Nanchong 637000, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Zhi-Ming Fu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, The Hepatobiliary Research Institute, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Fei Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, The Hepatobiliary Research Institute, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Han Tang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, The Hepatobiliary Research Institute, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
26
|
Wang J, Ling R, Zhou Y, Gao X, Yang Y, Mao C, Chen D. SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:2855-2869. [PMID: 32765792 PMCID: PMC7403634 DOI: 10.3892/ol.2020.11853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP1) is dysregulated in a variety of types of human cancer. However, the functional roles of SREBP1 in esophageal squamous cell carcinoma (ESCC) remain poorly understood. The present study investigated the function of SREBP1 in cell proliferation and motility. Microarray datasets in Oncomine, reverse transcription-quantitative PCR and western blot analysis revealed that SREBP1 was overexpressed in ESCC tumors when compared with normal tissues. In addition, SREBP1 overexpression was significantly associated with tumor differentiation, lymphatic metastasis and Ki67 expression. Results suggested that silencing SREBP1 inhibited the proliferation, migration and invasion of ESCC cells, whereas overexpression of SREBP1 had opposite effects on proliferation and metastasis. In addition, loss of SREBP1 significantly increased E-cadherin and decreased N-cadherin, Vimentin, Snail, matrix metalloproteinase 9 and vascular endothelial growth factor C expression levels, which were restored via SREBP1-overexpression. Mechanistically, loss of SREBP1 suppressed T-cell factor 1/lymphoid enhancer factor 1 (TCF1/LEF1) activity and downregulated TCF1/LEF1 target proteins, including CD44 and cyclin D1. Moreover, knockdown of SREBP1 downregulated the expression levels of stearoyl-CoA desaturase 1 (SCD1), phosphorylated glycogen synthase kinase-3β and nuclear β-catenin. Furthermore, the inhibitors of SREBP1 and/or SCD1 and small interfering RNA-SCD1 efficiently inhibited the activation of the Wnt/β-catenin pathway driven by constitutively active SREBP1. Finally, in vivo results indicated that SREBP1-knockdown suppressed the proliferation and metastasis of ESCC. Taken together, these findings demonstrated that SREBP1 exerts oncogenic effects in ESCC by promoting proliferation and inducing epithelial-mesenchymal transition via the SCD1-induced activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yun Yang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
27
|
Xia M, Shao J, Qiao M, Luo Z, Deng X, Ke Q, Dong X, Shen L. Identification of LCA-binding Glycans as a Novel Biomarker for Esophageal Cancer Metastasis using a Lectin Array-based Strategy. J Cancer 2020; 11:4736-4745. [PMID: 32626520 PMCID: PMC7330695 DOI: 10.7150/jca.43806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer (EC) is a unique and heterogeneous disease diagnosed mostly at advanced stages. Altered glycans presented on cell surfaces are involved in the occurrence and development of malignancy. However, the effects of glycans on EC progression are largely unexplored. Here, a lectin array was utilized to detect the glycan profiling of the normal esophageal mucosal epithelial cell line and two EC cell lines. The binding of Lens culinaris lectin (LCA) to EC cells was found to be stronger than that of the normal cells. Lectin immunohistochemical staining revealed that LCA-binding glycans were markedly elevated in EC tissues compared to adjacent non-cancerous tissues. LCA staining was significantly associated with lymph node metastasis, depth of invasion, TNM stage and poor overall survival of EC patients. Added LCA to block LCA recognized glycans could inhibit the migration and invasion of EC cells. Further analysis revealed that blocking the biosynthesis of LCA-binding glycans by tunicamycin attenuated cellular migratory and invasive abilities. Additionally, a membrane glycoprotein CD147 was recognized as a binder of LCA. There was a positive correlation between LCA-binding glycans and CD147 expression in clinical samples. Interestingly, CD147 inhibition also reduced cell migration and invasion. These findings indicated that LCA-binding glycans may function as a novel indicator to predict metastasis for patients with EC.
Collapse
Affiliation(s)
- Min Xia
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun Shao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Meimei Qiao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoxia Dong
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan,Hubei 442000, P.R. China
| |
Collapse
|
28
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
29
|
Shen Z, Chai T, Luo F, Liu Z, Xu H, Zhang P, Kang M, Chen S. Loss of miR-204-5p Promotes Tumor Proliferation, Migration, and Invasion Through Targeting YWHAZ/PI3K/AKT Pathway in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:4679-4690. [PMID: 32547097 PMCID: PMC7263804 DOI: 10.2147/ott.s243215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE MicroRNAs dysregulation has been confirmed in multiple malignancies. This paper reported the molecular mechanism of miR-204-5p in esophageal squamous cell carcinoma (ESCC). METHODS miR-204-5p expression in 30 ESCC tumor tissues and 10 normal tissues was downloaded from RNA-seq data. ESCC tissues/normal tissues of 97 ESCC patients were collected. TE-1 and KYSE510 cells were transfected by miR-204-5p mimic, inhibitor, siYWHAZ or their corresponding controls. The phenotype of cells was detected by CCK-8 assay, transwell experiment, and flow cytometry. Luciferase reporter gene assay and RNA-binding protein immunoprecipitation (RIP) were performed to verify the targeting relationship between miR-204-5p and YWHAZ. miR-204-5p and YWHAZ expression in tissues/cells was detected by qRT-PCR and Western blot. Xenograft tumor experiment was performed. RESULTS miR-204-5p expression was declined in ESCC patients and cells, which was indicated the poor outcome of patients. Compared with siNC group, TE-1 cells in miR-204-5p inhibitor group had higher OD450 value, less cell percentage in G1 phase, and more cell percentage in S phase, lower apoptosis percentage, and higher migration and invasion cell numbers. Moreover, KYSE510 cells of miR-204-5p mimic group showed lower OD450 value, more cell percentage in G1 phase and less cell percentage in S phase, higher apoptosis percentage, and lower migration and invasion cell numbers than control. YWHAZ was directly inhibited by miR-204-5p. Relative to siNC group, TE-1 cells of miR-inhibitor group exhibited higher YWHAZ protein expression, higher OD450 value, less cell percentage in G1 phase and more cell percentage in S phase, lower apoptosis percentage, higher migration and invasion cell numbers, and higher p-PI3K/PI3K and p-AKT/AKT protein expression, while siYWHAZ rescued the effects of miR-inhibitor. miR-204-5p up-regulation inhibited ESCC growth in vivo. CONCLUSION miR-204-5p inhibits ESCC progression by targeted inhibition of YWHAZ/PI3K/AKT.
Collapse
Affiliation(s)
- Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Tianci Chai
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Fei Luo
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Zhun Liu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou350001, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou350122, People’s Republic of China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, People’s Republic of China
| |
Collapse
|
30
|
Yin H, Wang L, Li F, Wang D, Zhang Z, Yu B, Liu Y. ET-1 promotes the growth and metastasis of esophageal squamous cell carcinoma via activating PI3K/Akt pathway. Transl Cancer Res 2020; 9:3282-3292. [PMID: 35117695 PMCID: PMC8799244 DOI: 10.21037/tcr.2020.04.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/08/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide. Previous studies confirmed that endothelin-1 (ET-1) serves as an oncogene and therapeutic target in various tumors. However, the role and mechanism of ET-1 in the progression of ESCC remains largely unclear. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA level of ET-1 in ESCC tissues and cell lines. Cell counting kit-8 (CCK-8), flow cytometry and Transwell assay were performed to examine the proliferation, cell cycle arrest, invasion and migration capacity of ESCC cells. Western blot was applied to measure the expression of ET-1 and PI3K/Akt pathway-related proteins. Furthermore, we also assessed the effect of ET-1 on tumor growth in vivo. RESULTS ET-1 was highly expressed in ESCC tissues and associated with poor outcomes. Knockdown of ET-1 significantly inhibited the proliferation, migration and invasion capacity of ESCC cells and promoted cell cycle arrest. Mechanistically, silencing of ET-1 exerts anti-proliferation and anti-metastasis activities via inactivation of the PI3K/Akt signaling pathway in ESCC in vitro and in vivo. CONCLUSIONS These findings uncover the effective suppression of cell proliferation and metastasis through silencing of ET-1 and blocking the PI3K/Akt signaling pathway, which is an attractive therapeutic regimen for the treatment of ESCC.
Collapse
Affiliation(s)
- Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lunqing Wang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Fei Li
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Dongfei Wang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Zhe Zhang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yange Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
31
|
Gao X, Yang J. Identification of Genes Related to Clinicopathological Characteristics and Prognosis of Patients with Colorectal Cancer. DNA Cell Biol 2020; 39:690-699. [PMID: 32027181 DOI: 10.1089/dna.2019.5088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to identify genes with clinical significance in colorectal cancer (CRC). Gene expression profiles of 585 CRC tissues and 61 normal colorectal tissues from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to identify differentially expressed genes (DEGs) between CRC and normal colorectal tissues. DAVID and KOBAS tools were used to explore Gene Ontology (GO) and KEGG pathways enriched by DEGs, respectively. In addition, TCGA data sets were also used to identify prognostic factors and develop a prognostic prediction model for CRC. A total of 353 DEGs including 117 upregulated and 236 downregulated genes in CRC were identified based on GSE32323 data set. These DEGs were significantly enriched in the biological process related to the regulation of cell proliferation and 50 signaling pathways, such as "TGF-beta signaling pathway," "Wnt signaling pathway," and "Jak-STAT signaling pathway." GCG, ADH1B, SLC4A4, ZG16, and CLCA4 were the top five downregulated in CRC. FOXQ1, LGR5, CLDN1, KRT23, and DPEP1 were the top five upregulated in CRC. KRT23 expression could affect tumor stage and regional lymph node metastasis in CRC patients. FOXQ1 expression could affect tumor distant metastasis in CRC patients. Survival analysis indicated that SLC4A4 expression was associated with the prognosis of CRC patients. Prognostic prediction model developed based on age, tumor stage, and SLC4A4 expression exhibited an efficient performance in predicting 1-, 3-, and 5-year overall survival of CRC patients. In conclusion, the current study identified several genes and pathways related to CRC, which provided new insight in understanding molecular mechanism of tumorigenesis and development of CRC.
Collapse
Affiliation(s)
- Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Jiaojiao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Tai yuan, China
| |
Collapse
|
32
|
Huang CM, Huang CS, Hsu TN, Huang MS, Fong IH, Lee WH, Liu SC. Disruption of Cancer Metabolic SREBP1/miR-142-5p Suppresses Epithelial-Mesenchymal Transition and Stemness in Esophageal Carcinoma. Cells 2019; 9:cells9010007. [PMID: 31861383 PMCID: PMC7016574 DOI: 10.3390/cells9010007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
: Elevated activity of sterol regulatory element-binding protein 1 (SREBP1) has been implicated in the tumorigenesis of different cancer types. However, the functional roles of SREBP1 in esophageal cancer are not well appreciated. Here, we aimed to investigate the therapeutic potential of SREBP1 and associated signaling in esophageal cancer. Our initial bioinformatics analyses showed that SREBP1 expression was overexpressed in esophageal tumors and correlated with a significantly lower overall survival rate in patients. Additionally, tumor suppressor miR-142-5p was predicted to target SREBP1/ZEB1 and a lower miR-142-5p was correlated with poor prognosis. We then performed in vitro experiments and showed that overexpressing SREBP1 in OE33 cell line led to increased abilities of colony formation, migration, and invasion; the opposite was observed in SREBP1-silenced OE21cells and SREBP1-silencing was accompanied by the reduced mesenchymal markers, including vimentin (Vim) and ZEB1, while E-cadherin and tumor suppressor miR-142-5p were increased. Subsequently, we first demonstrated that both SREBP1 and ZEB1 were potential targets of miR-142-5p, followed by the examination of the regulatory circuit of miR-142-5p and SREBP1/ZEB1. We observed that increased miR-142-5p level led to the reduced tumorigenic properties, such as migration and tumor sphere formation, and both observations were accompanied by the reduction of ZEB1 and SREBP1, and increase of E-cadherin. We then explored the potential therapeutic agent targeting SREBP1-associated signaling by testing fatostatin (4-hydroxytamoxifen, an active metabolite of tamoxifen). We found that fatostatin suppressed the cell viability of OE21 and OE33 cells and tumor spheres. Interestingly, fatostatin treatment reduced CD133+ population in both OE21 and OE33 cells in concert of increased miR-142-5p level. Finally, we evaluated the efficacy of fatostatin using a xenograft mouse model. Mice treated with fatostatin showed a significantly lower tumor burden and better survival rate as compared to their control counterparts. The treatment of fatostatin resulted in the reduced staining of SREBP1, ZEB1, and Vim, while E-cadherin and miR-142-5p were increased. In summary, we showed that increased SREBP1 and reduced miR-142-5p were associated with increased tumorigenic properties of esophageal cancer cells and poor prognosis. Preclinical tests showed that suppression of SREBP1 using fatostatin led to the reduced malignant phenotype of esophageal cancer via the reduction of EMT markers and increased tumor suppressor, miR-142-5p. Further investigation is warranted for the clinical use of fatostatin for the treatment of esophageal malignancy.
Collapse
Affiliation(s)
- Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taitung City 950, Taiwan;
| | - Chin-Sheng Huang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (T.-N.H.); (M.-S.H.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Tung-Nien Hsu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (T.-N.H.); (M.-S.H.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Mao-Suan Huang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-S.H.); (T.-N.H.); (M.-S.H.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
- Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Wei-Hwa Lee
- Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
- Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan
- Correspondence: (W.-H.L.); (S.-C.L.); Tel.: +886-2-2490088 (ext. 8742) (W.-H.L.); +886-2-87927192 (S.-C.L.); Fax: +886-2-2248-0900 (W.-H.L.); +886-2-87927193 (S.-C.L.)
| | - Shao-Cheng Liu
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: (W.-H.L.); (S.-C.L.); Tel.: +886-2-2490088 (ext. 8742) (W.-H.L.); +886-2-87927192 (S.-C.L.); Fax: +886-2-2248-0900 (W.-H.L.); +886-2-87927193 (S.-C.L.)
| |
Collapse
|
33
|
Yu C, Sun P, Zhou Y, Shen B, Zhou M, Wu L, Kong M. Inhibition of AKT enhances the anti-cancer effects of Artemisinin in clear cell renal cell carcinoma. Biomed Pharmacother 2019; 118:109383. [DOI: 10.1016/j.biopha.2019.109383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
|