1
|
Wu T, Yu Y, Tu X, Ye L, Wang J, Xie C, Kuang K, Yu Y, Zhuge W, Wang Z, Cui R, Zheng Y. Tubeimoside-I, an inhibitor of HSPD1, enhances cytotoxicity of oxaliplatin by activating ER stress and MAPK signaling pathways in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118754. [PMID: 39208999 DOI: 10.1016/j.jep.2024.118754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tubeimoside-I (TBM) promotes various cancer cell death by increasing the reactive oxygen species (ROS) production. However, the specific molecular mechanisms of TBM and its impact on oxaliplatin-mediated anti-CRC activity are not yet fully understood. AIM OF THE STUDY To elucidate the therapeutic effect and underlying molecular mechanism of TBM on oxaliplatin-mediated anti-CRC activity. MATERIALS AND METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing assays and flow cytometry were conducted to investigate the changes in cell phenotypes and ROS generation. Real-time quantitative PCR (qRT-PCR) and western blotting were performed to detect the expressions of related mRNA and proteins. Finally, mouse xenograft models demonstrated that synergistic anti-tumor effects of combined treatment with TBM and oxaliplatin. RESULTS The synergistic enhancement of the anti-tumor effects of oxaliplatin in colon cancer cells by TBM involved in the regulation of ROS-mediated endoplasmic reticulum (ER) stress, C-jun-amino-terminal kinase (JNK), and p38 MAPK signaling pathways. Mechanistically, TBM increased ROS generation in colon cancer cells by inhibiting heat shock protein 60 (HSPD1) expression. Knocking down HSPD1 increased TBM-induced antitumor activity and ROS generation in colon cancer cells. The mouse xenograft tumor models further validated that the combination therapy exhibited stronger anti-tumor effects than monotherapy alone. CONCLUSIONS Combined therapy with TBM and oxaliplatin might be an effective therapeutic strategy for some CRC patients.
Collapse
Affiliation(s)
- Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinyue Tu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lihua Ye
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaying Wang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenjun Xie
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Keke Kuang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weishan Zhuge
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhonglin Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yihu Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Xing F, Liu N, Wang C, Wang XD. Caffeic acid phenethyl ester promotes oxaliplatin sensitization in colon cancer by inhibiting autophagy. Sci Rep 2024; 14:14624. [PMID: 38918541 PMCID: PMC11199620 DOI: 10.1038/s41598-024-65409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Colon cancer ranks as the third most prevalent form of cancer globally, with chemotherapy remaining the primary treatment modality. To mitigate drug resistance and minimize adverse effects associated with chemotherapy, selection of appropriate adjuvants assumes paramount importance. Caffeic acid phenethyl ester (CAPE), a naturally occurring compound derived from propolis, exhibits a diverse array of biological activities. We observed that the addition of CAPE significantly augmented the drug sensitivity of colon cancer cells to oxaliplatin. In SW480 and HCT116 cells, oxaliplatin combined with 10 µM CAPE reduced the IC50 of oxaliplatin from 14.24 ± 1.03 and 84.16 ± 3.02 µM to 2.11 ± 0.15 and 3.92 ± 0.17 µM, respectively. We then used proteomics to detect differentially expressed proteins in CAPE-treated SW480 cells and found that the main proteins showing changes in expression after CAPE treatment were p62 (SQSTM1) and LC3B (MAP1LC3B). Gene ontology analysis revealed that CAPE exerted antitumor and chemotherapy-sensitization effects through the autophagy pathway. We subsequently verified the differentially expressed proteins using immunoblotting. Simultaneously, the autophagy inhibitor bafilomycin A1 and the mCherry-EGFP-LC3 reporter gene were used as controls to detect the effect of CAPE on autophagy levels. Collectively, the results indicate that CAPE may exert antitumor and chemotherapy-sensitizing effects by inhibiting autophagy, offering novel insights for the development of potential chemosensitizing agents.
Collapse
Affiliation(s)
- Fei Xing
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ning Liu
- Academic Center, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Can Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xu-Dong Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
4
|
Liu Q, Zhong Z, Zheng S, Chu Y, Sakamoto N, Kuno T, Fang Y. Identification and characterization of a novel antifungal compound tubeimoside I targeting cell wall. Microbiol Spectr 2024; 12:e0404723. [PMID: 38651884 PMCID: PMC11237440 DOI: 10.1128/spectrum.04047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Due to fungal diseases that threaten immunocompromised patients, along with the limited availability of antifungal agents, there is an urgent need for new antifungal compounds to treat fungal infections. Here, we aimed to identify potential antifungal drugs from natural products using the fission yeast Schizosaccharomyces pombe as a model organism since it shares many features with some pathogenic fungi. Here, we identified tubeimoside I (TBMS1), an extract from Chinese herbal medicine, that showed strong antifungal activity against S. pombe. To gain insight into the underlying mechanism, we performed transcriptomics analyses of S. pombe cells exposed to TBMS1. A significant proportion of the differential expressed genes were involved in cell wall organization or biogenesis. Additionally, TBMS1 treatment of S. pombe cells resulted in pleiotropic phenotypes, including increased sensitivity to β-glucanase, enhanced calcineurin activity, translocation of GFP-Prz1 to the nucleus, as well as enhanced dephosphorylation of Prz1, suggesting that TBMS1 disrupted cell wall integrity of S. pombe cells. Notably, calcofluor staining showed that abnormal deposits of cell wall materials were observed in the septum and cell wall of the TBMS1-treated cells, which were further corroborated by electron microscopy analysis. We also found that oxidative stress might be involved in the antifungal action of TBMS1. Moreover, we confirmed the antifungal activities of TBMS1 against several clinical isolates of pathogenic fungi. Collectively, our findings suggest that TBMS1, a novel antifungal compound, exerts its antifungal activity by targeting cell walls, which may pave the way for the development of a new class of antifungals. IMPORTANCE Fungal infections pose a serious threat to public health and have become an emerging crisis worldwide. The development of new antifungal agents is urgently needed. Here, we identified compound tubeimoside I (TBMS1) for the first time showing strong antifungal activity, and explored the underlying mechanisms of its antifungal action by using the model yeast Schizosaccharomyces pombe. Notably, we presented multiple evidence that TBMS1 exerts its antifungal activity through targeting fungal cell walls. Moreover, we verified the antifungal activities of TBMS1 against several pathogenic fungi. Our work indicated that TBMS1 may serve as a novel antifungal candidate, which provides an important foundation for designing and developing new cell wall-targeting agents for combating life-threatening fungal infections.
Collapse
Affiliation(s)
- Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Zhiqi Zhong
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Shunxin Zheng
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yunzhuo Chu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
5
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
7
|
Wei X, Ni J, Yuan L, Li X. Hematoporphyrin derivative photodynamic therapy induces apoptosis and suppresses the migration of human esophageal squamous cell carcinoma cells by regulating the PI3K/AKT/mTOR signaling pathway. Oncol Lett 2024; 27:17. [PMID: 38034489 PMCID: PMC10688503 DOI: 10.3892/ol.2023.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Esophageal cancer is one of the most common cancer types in humans worldwide. Photodynamic therapy (PDT) is a promising therapeutic strategy for the treatment of cancer. However, its underlying mechanism needs to be studied thoroughly. The present study focused on the antitumor effect and underlying mechanism of the use of hematoporphyrin derivative (HpD)-PDT against human esophageal squamous cell carcinoma cells via regulation of the PI3K/AKT/mTOR signaling pathway. A Cell Counting Kit-8 assay was used to measure cell viability. Migration was evaluated using a wound healing assay. An annexin V-FITC/PI kit was used to determine cell apoptosis rates. Protein expression levels were analyzed via western blotting. Reverse transcription-quantitative PCR was used to detect gene expression levels. A 2',7'-dichlorodihydrofluorescein diacetate kit was chosen to evaluate intracellular reactive oxygen species levels via flow cytometry. Cell viability and migration were decreased in KYSE-150 cells after HpD-PDT treatment. Cellular apoptosis was induced after HpD-PDT treatment, and the same trend was observed for autophagy. Furthermore, the PI3K/AKT/mTOR signaling pathway was inhibited. The viability and migration of KYSE-150 cells were significantly inhibited, and apoptosis was induced more effectively following treatment with a combination of HpD-PDT and the PI3K inhibitor, a final concentration of 20 µM LY294002. In conclusion, HpD-PDT could suppress esophageal cancer cell viability, induce apoptosis and inhibit migration by downregulating the PI3K/AKT/mTOR signaling pathway. Combination of HpD-PDT with PI3K inhibitor (LY294002) could enhance the therapeutic efficacy compared with that demonstrated by HpD-PDT alone. Further studies on combination therapy are required to achieve improved clinical outcomes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jinliang Ni
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Yuan
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xueliang Li
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
8
|
Song SR, Seo SU, Woo SM, Yoon JY, Yook S, Kwon TK. Tubeimoside-1 Enhances TRAIL-Induced Apoptotic Cell Death through STAMBPL1-Mediated c-FLIP Downregulation. Int J Mol Sci 2023; 24:11840. [PMID: 37511599 PMCID: PMC10380985 DOI: 10.3390/ijms241411840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Tubeimoside-1 (TBMS-1), a traditional Chinese medicinal herb, is commonly used as an anti-cancer agent. In this study, we aimed to investigate its effect on the sensitization of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Our results revealed that even though monotherapy using TBMS-1 or TRAIL at sublethal concentrations did not affect cancer cell death, combination therapy using TBMS-1 and TRAIL increased apoptotic cell death. Mechanistically, TBMS-1 destabilized c-FLIP expression by downregulating STAMBPL1, a deubiquitinase (DUB). Specifically, when STAMBPL1 and c-FLIP bound together, STAMBPL1 deubiquitylated c-FLIP. Moreover, STAMBPL1 knockdown markedly increased sensitivity to TRAIL by destabilizing c-FLIP. These findings were further confirmed in vivo using a xenograft model based on the observation that combined treatment with TBMS-1 and TRAIL decreased tumor volume and downregulated STAMBPL1 and c-FLIP expression levels. Overall, our study revealed that STAMBPL1 is essential for c-FLIP stabilization, and that STAMBPL1 depletion enhances TRAIL-mediated apoptosis via c-FLIP downregulation.
Collapse
Affiliation(s)
- So Rae Song
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji Yun Yoon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
9
|
UZUN M, ILHAN YS, BOZDAG A, YILMAZ M, ARTAS G, KULOGLU T. Asprosin, irisin, and meteorin-like protein immunoreactivity in different stages of colorectal adenocarcinoma. Pathol Res Pract 2023; 245:154432. [PMID: 37019019 DOI: 10.1016/j.prp.2023.154432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate the immunoreactivity of asprosin, irisin, and meteorin-like protein (METRNL) in different stages of colorectal adenocarcinoma, which is the most common malignancy of the gastrointestinal tract. MATERIALS AND METHODS Overall, 60 patients with colorectal adenocarcinoma, including 20 well (Group 1), moderately (Group 2), and poorly differentiated (Group 3) cases, respectively, and 20 with normal colonic mucosa, were examined using light microscopy for immunohistochemical staining of asprosin, METRNL, and irisin. RESULTS Compared with the control group, a significant increase in irisin and asprosin immunoreactivity was found in the grade 1 and 2 colorectal adenocarcinoma groups. Moreover, compared with the grade 1 and 2 groups, this immunoreactivity was significantly decreased in the grade 3 colorectal adenocarcinoma group. Although there was no significant difference in METRNL immunoreactivity between the grade 1 and control groups, a statistically significant increase in this immunoreactivity was found in the grade 2 group. In contrast, METRNL immunoreactivity was significantly decreased in the grade 3 group compared with the grade 2 group. CONCLUSION We found that in early-stage colorectal adenocarcinoma there was an increase in the immunoreactivity of asprosin and irisin, but in the advanced stage there was a decrease in immunoreactivity. Although METRNL immunoreactivity did not change in the control and grade 1 groups, it was found to increase significantly in the grade 2 group and decrease in the grade 3 group.
Collapse
|
10
|
Tubeimoside I Ameliorates Doxorubicin-Induced Cardiotoxicity by Upregulating SIRT3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9966355. [PMID: 36691640 PMCID: PMC9867588 DOI: 10.1155/2023/9966355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Cardiotoxicity linked to doxorubicin (DOX) is primarily caused by inflammation, oxidative stress, and apoptosis. The role of tubeimoside I (TBM) in DOX-induced cardiotoxicity remains ambiguous, despite growing evidence that it could reduce inflammation, oxidative stress, and apoptosis in various diseases. This study was designed to investigate the role of TBM in DOX-induced cardiotoxicity and uncover the underlying mechanisms. H9c2 cell line and C57BL/6 mice were used to construct an in vitro and in vivo model of DOX-induced myocardial injury, respectively. We observed that DOX treatment provoked inflammation, oxidative stress, and cardiomyocyte apoptosis, which were significantly alleviated by TBM administration. Mechanistically, TBM attenuated DOX-induced downregulation of sirtuin 3 (SIRT3), and SIRT3 inhibition abrogated the beneficial effects of TBM both in vitro and in vivo. In conclusion, TBM eased inflammation, oxidative stress, and apoptosis in DOX-induced cardiotoxicity by increasing the expression of SIRT3, suggesting that it holds great promise for treating DOX-induced cardiac injury.
Collapse
|
11
|
Tong Y, Lu G, Wang Z, Hao S, Zhang G, Sun H. Tubeimuside I improves the efficacy of a therapeutic Fusobacterium nucleatum dendritic cell-based vaccine against colorectal cancer. Front Immunol 2023; 14:1154818. [PMID: 37207216 PMCID: PMC10189021 DOI: 10.3389/fimmu.2023.1154818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Fusobacterium nucleatum (F. nucleatum) infection has been confirmed to be associated with the development, chemoresistance, and immune evasion of colorectal cancer (CRC). The complex relationship between the microorganism, host cells, and the immune system throughout all stages of CRC progression, which makes the development of new therapeutic methods difficult. Methods We developed a new dendritic cell (DC) vaccine to investigate the antitumor efficacy of CRC immunotherapy strategies. By mediating a specific mode of interaction between the bacteria, tumor, and host, we found a new plant-derived adjuvant, tubeimuside I (TBI), which simultaneously improved the DC vaccine efficacy and inhibited the F. nucleatum infection. Encapsulating TBI in a nanoemulsion greatly improved the drug efficacy and reduced the drug dosage and administration times. Results The nanoemulsion encapsulated TBI DC vaccine exhibited an excellent antibacterial and antitumor effect and improved the survival rate of CRC mice by inhibiting tumor development and progression. Discussion In this study, we provide a effective strategy for developing a DC-based vaccine against CRC and underlies the importance of further understanding the mechanism of CRC processes caused by F. nucleatum.
Collapse
Affiliation(s)
- Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoxiu Lu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanhu Hao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Guoxu Zhang, ; Hongwu Sun,
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Guoxu Zhang, ; Hongwu Sun,
| |
Collapse
|
12
|
Zhou Y, Liu J, Zhang J, Xu Y, Li W, Gao P, Xing Y, Huang L, Qin X, Jin S. Chinese endemic medicinal plant Bolbostemma paniculatum (Maxim.) Franquet: A comprehensive review. Front Pharmacol 2022; 13:974054. [PMID: 36160391 PMCID: PMC9490187 DOI: 10.3389/fphar.2022.974054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Bolbostemma paniculatum (Maxim.) Franquet is a unique species in China with a long history of medicinal use, which has the effects of detoxifying, dissolving lumps and dispersing swellings. And it is commonly used to treat many diseases, such as carbuncle and sore, acute mastitis, mammary cancer, scrofula and subcutaneous nodule traditionally. Modern clinical studies have found that B. paniculatum and its compounds can be used for the treatment of a variety of cancers, mastitis, hyperplasia of mammary glands, chronic lymphadenitis, cervical lymph tuberculosis and surgical wart skin diseases, and the curative effect is positive. At present, a variety of Chinese patent medicines containing B. paniculatum have been exploited and marketed in China for the treatment of cancers, breast diseases and flat warts. This review article comprehensively discussed the traditional application, botany, chemical components, pharmacological activities, and quality control of B. paniculatum, put forward some noteworthy issues and suggestions in current studies, and briefly discussed the possible development potential of this plant as well as future research perspectives. 96 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids and other components, of which triterpenoid saponins are the main bioactive components. The crude extracts and monomer compounds of B. paniculatum have a wide range of pharmacological activities, such as anti-tumor, antiviral, anti-inflammatory, immunoregulatory, and so on. Moreover, its anti-tumor mechanism involves many aspects, including inhibiting cell proliferation, promoting cell apoptosis, blocking the cell cycle, interfering with cell invasion and metastasis, suppressing angiogenesis, and regulating autophagy. While there is a lack of systematic and in-depth research on its anti-tumor active components and mechanism of action at the moment; and a tight connection between the chemical composition and pharmacological activity of B. paniculatum has also not been established. Besides, a systematic quality determination standard for B. paniculatum should also be built, in order to carry out further research.
Collapse
Affiliation(s)
- Yujiao Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianqiong Zhang
- Pediatric Department, Ya’an City Hospital of Traditional Chinese Medicine, Ya’an, Sichuan, China
| | - Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangni Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pang Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanghuan Xing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lehong Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| | - Shenrui Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| |
Collapse
|
13
|
Wang CL, Gao MZ, Gao DM, Guo YH, Gao Z, Gao XJ, Wang JQ, Qiao MQ. Tubeimoside-1: A review of its antitumor effects, pharmacokinetics, toxicity, and targeting preparations. Front Pharmacol 2022; 13:941270. [PMID: 35910383 PMCID: PMC9335946 DOI: 10.3389/fphar.2022.941270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tubeimoside-1 (TBMS-1), a natural triterpenoid saponin found in traditional Chinese herbal medicine Bolbostemmatis Rhizoma, is present in numerous Chinese medicine preparations. This review aims to comprehensively describe the pharmacology, pharmacokinetics, toxicity and targeting preparations of TBMS-1, as well the therapeutic potential for cancer treatement. Information concerning TBMS-1 was systematically collected from the authoritative internet database of PubMed, Web of Science, and China National Knowledge Infrastructure applying a combination of keywords involving “tumor,” “pharmacokinetics,” “toxicology,” and targeting preparations. New evidence shows that TBMS-1 possesses a remarkable inhibitory effect on the tumors of the respiratory system, digestive system, nervous system, genital system as well as other systems in vivo and in vitro. Pharmacokinetic studies reveal that TBMS-1 is extensively distributed in various tissues and prone to degradation by the gastrointestinal tract after oral administration, causing a decrease in bioavailability. Meanwhile, several lines of evidence have shown that TBMS-1 may cause adverse and toxic effects at high doses. The development of liver-targeting and lung-targeting preparations can reduce the toxic effect of TBMS-1 and increase its efficacy. In summary, TBMS-1 can effectively control tumor treatment. However, additional research is necessary to investigate in vivo antitumor effects and the pharmacokinetics of TBMS-1. In addition, to reduce the toxicity of TBMS-1, future research should aim to modify its structure, formulate targeting preparations or combinations with other drugs.
Collapse
Affiliation(s)
- Chang-Lin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming-Zhou Gao
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-Mei Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Hui Guo
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhan Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Ju Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie-Qiong Wang
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie-Qiong Wang, ; Ming-Qi Qiao,
| | - Ming-Qi Qiao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie-Qiong Wang, ; Ming-Qi Qiao,
| |
Collapse
|
14
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
15
|
Fan H, He Y, Xiang J, Zhou J, Wan X, You J, Du K, Li Y, Cui L, Wang Y, Zhang C, Bu Y, Lei Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol 2022; 53:102339. [PMID: 35636017 PMCID: PMC9144037 DOI: 10.1016/j.redox.2022.102339] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics. CPX induces cytoprotective autophagy and inhibits proliferation of cervical cancer cells by targeting PARK7. ROS generation attenuates the anticancer effect of CPX by inducing cytoprotective autophagy and inhibiting glycophagy. ROS-triggered glycogen clustering and inactivation of YAP1 are involved in the anti-cancer effects of CPX.
Collapse
Affiliation(s)
- Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiawei You
- Department of Basic Medicine, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Tan S, Zheng Z, Liu T, Yao X, Yu M, Ji Y. Schisandrin B Induced ROS-Mediated Autophagy and Th1/Th2 Imbalance via Selenoproteins in Hepa1-6 Cells. Front Immunol 2022; 13:857069. [PMID: 35419003 PMCID: PMC8996176 DOI: 10.3389/fimmu.2022.857069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Schisandrin B (Sch B) is well-known for its antitumor effect; however, its underlying mechanism remains confusing. Our study aimed to investigate the role of selenoproteins in Sch B-induced autophagy and Th1/Th2 imbalance in Hepa1-6 cells. Hepa1-6 cells were chosen to explore the antitumor mechanism and were treated with 0, 25, 50, and 100 μM of Sch B for 24 h, respectively. We detected the inhibition rate of proliferation, transmission electron microscopy (TEM), monodansylcadaverine (MDC) staining, reactive oxygen species (ROS) level and oxidative stress-related indicators, autophagy-related genes, related Th1/Th2 cytokines, and selenoprotein mRNA expression. Moreover, the heat map, principal component analysis (PCA), and correlation analysis were used for further bioinformatics analysis. The results revealed that Sch B exhibited well-inhibited effects on Hepa1-6 cells. Subsequently, under Sch B treatment, typical autophagy characteristics were increasingly apparent, and the level of punctate MDC staining enhanced and regulated the autophagy-related genes. Overall, Sch B induced autophagy in Hepa1-6 cells. In addition, Sch B-promoted ROS accumulation eventually triggered autophagy initiation. Results of Th1 and Th2 cytokine mRNA expression indicated that Th1/Th2 immune imbalance was observed by Sch B treatment in Hepa1-6 cells. Intriguingly, Sch B downregulated the majority of selenoprotein expression. Also, the heat map results observed significant variation of autophagy-related genes, related Th1/Th2 cytokines, and selenoprotein expression in response to Sch B treatment. PCA outcome suggested the key role of Txnrd1, Txnrd3, Selp, GPX2, Dio3, and Selr with its potential interactions in ROS-mediated autophagy and Th1/Th2 imbalance of Hepa1-6 cells. In conclusion, Sch B induced ROS-mediated autophagy and Th1/Th2 imbalance in Hepa1-6 cells. More importantly, the majority of selenoproteins were intimately involved in the process of autophagy and Th1/Th2 imbalance, Txnrd3, Selp, GPX2, Dio3, and Selr had considerable impacts on the process.
Collapse
Affiliation(s)
- Siran Tan
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Zhi Zheng
- Jiangxi Province People's Hospital, First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiaoyun Yao
- Jiangxi Cancer Hospital, Jiangxi TCM Cancer Center, Nanchang, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Yubin Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| |
Collapse
|
17
|
Zheng L, Fang S, Chen A, Chen W, Qiao E, Chen M, Shu G, Zhang D, Kong C, Weng Q, Xu S, Zhao Z, Ji J. Piperlongumine synergistically enhances the antitumour activity of sorafenib by mediating ROS-AMPK activation and targeting CPSF7 in liver cancer. Pharmacol Res 2022; 177:106140. [PMID: 35202819 DOI: 10.1016/j.phrs.2022.106140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/15/2023]
Abstract
Sorafenib, a multikinase inhibitor, is the first-line agent for advanced liver cancer. Sorafenib strongly inhibits both cell proliferation and tumour angiogenesis. However, the development of drug resistance hampers its anticancer efficacy. To improve the antitumour activity of sorafenib, we demonstrate that piperlongumine (PL), an alkaloid isolated from the fruits and roots of Piper longum L., enhances the cytotoxicity of sorafenib in HCCLM3 and SMMC7721 cells using the cell counting kit-8 test. Flow cytometry analysis indicated that PL and sorafenib cotreatment induced robust reactive oxygen species (ROS) generation and mitochondrial dysfunction, thereby increasing the number of apoptotic cells and the ratio of G2/M phase cells in both HCCLM3 and SMMC7721 cells. Furthermore, AMP-protein kinase (AMPK) signalling was activated by excess ROS accumulation and mediated growth inhibition in response to PL and sorafenib cotreatment. RNA-sequencing analysis indicated that PL treatment disrupted RNA processing in HCCLM3 cells. In particular, PL treatment decreased the expression of cleavage and polyadenylation specificity factor 7 (CPSF7), a subunit of cleavage factor I, in a time- and concentration-dependent manner in HCCLM3 and SMMC7721 cells. CPSF7 knockdown using a gene interference strategy promoted growth inhibition of PL or sorafenib monotherapy, whereas CPSF7 overexpression alleviated the cytotoxicity of sorafenib in cultured liver cancer cells. Finally, PL and sorafenib coadministration significantly reduced the weight and volume of HCCLM3 cell xenografts in vivo. Taken together, our data indicate that PL displays potential synergistic antitumour activity in combination with sorafenib in liver cancer.
Collapse
Affiliation(s)
- Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Aifang Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Enqi Qiao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Dengke Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chunli Kong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Suqin Xu
- Clinical Laboratory, Fuyuan Hospital of Yiwu, Jinhua 321000, China.
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Clinical College of the Affiliated Central Hospital, Lishui University, Lishui 323000, China.
| |
Collapse
|
18
|
Tubeimoside I Ameliorates Myocardial Ischemia-Reperfusion Injury through SIRT3-Dependent Regulation of Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5577019. [PMID: 34795840 PMCID: PMC8595016 DOI: 10.1155/2021/5577019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a phenomenon that reperfusion leads to irreversible damage to the myocardium and increases mortality in acute myocardial infarction (AMI) patients. There is no effective drug to treat MIRI. Tubeimoside I (TBM) is a triterpenoid saponin purified from Chinese traditional medicine tubeimu. In this study, 4 mg/kg TBM was given to mice intraperitoneally at 15 min after ischemia. And TBM treatment improved postischemic cardiac function, decreased infarct size, diminished lactate dehydrogenase release, ameliorated oxidative stress, and reduced apoptotic index. Notably, ischemia-reperfusion induced a significant decrease in cardiac SIRT3 expression and activity, while TBM treatment upregulated SIRT3's expression and activity. However, the cardioprotective effects of TBM were largely abolished by a SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against simulated ischemia/reperfusion (SIR) injury by attenuating oxidative stress and apoptosis, and siSIRT3 diminished its protective effects. Taken together, our results demonstrate for the first time that TBM protects against MIRI through SIRT3-dependent regulation of oxidative stress and apoptosis. TBM might be a potential drug candidate for MIRI treatment.
Collapse
|
19
|
Tan XP, He Y, Huang YN, Zheng CC, Li JQ, Liu QW, He ML, Li B, Xu WW. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm (Beijing) 2021; 2:453-466. [PMID: 34766155 PMCID: PMC8554656 DOI: 10.1002/mco2.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies currently. Despite advances in drug development, the survival and response rates in CRC patients are still poor. In our previous study, a library comprised of 1056 bioactive compounds was used for screening of drugs that could suppress CRC. Lomerizine 2HCl, which is an approved prophylactic drug for migraines, was selected for our studies. The results of in vitro and in vivo assays suggested that lomerizine 2HCl suppresses cell growth and promotes apoptosis in CRC cells. Moreover, lomerizine 2HCl inhibits cell migration and invasion of CRC. RNA sequencing analysis and Western blotting confirmed that lomerizine 2HCl can inhibit cell growth, migration, and invasion through PI3K/AKT/mTOR signaling pathway and induces protective autophagy in CRC. Meanwhile, autophagy inhibition by 3‐methyladenine (3‐MA) increases lomerizine 2HCl‐induced cell apoptosis. Taken together, these results imply that lomerizine 2HCl is a potential anticancer agent, and the combination of lomerizine 2HCl and autophagy inhibitors may serve as a novel strategy to increase the antitumor efficacy of agents in the treatment of CRC.
Collapse
Affiliation(s)
- Xiang-Peng Tan
- MOE Key Laboratory of Tumor Molecular Biology National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology and The First Affiliated Hospital of Jinan University Jinan University Guangzhou China
| | - Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Yun-Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Can-Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Jun-Qi Li
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Qin-Wen Liu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Ming-Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Wen-Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| |
Collapse
|
20
|
Siri M, Behrouj H, Dastghaib S, Zamani M, Likus W, Rezaie S, Hudecki J, Khazayel S, Łos MJ, Mokarram P, Ghavami S. Casein Kinase-1-Alpha Inhibitor (D4476) Sensitizes Microsatellite Instable Colorectal Cancer Cells to 5-Fluorouracil via Authophagy Flux Inhibition. Arch Immunol Ther Exp (Warsz) 2021; 69:26. [PMID: 34536148 PMCID: PMC8449776 DOI: 10.1007/s00005-021-00629-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Adjuvant chemotherapy with 5-fluorouracil (5-FU) does not improve survival of patients suffering from a form of colorectal cancer (CRC) characterized by high level of microsatellite instability (MSI-H). Given the importance of autophagy and multi-drug-resistant (MDR) proteins in chemotherapy resistance, as well as the role of casein kinase 1-alpha (CK1α) in the regulation of autophagy, we tested the combined effect of 5-FU and CK1α inhibitor (D4476) on HCT116 cells as a model of MSI-H colorectal cancer. To achieve this goal, the gene expression of Beclin1 and MDR genes, ABCG2 and ABCC3 were analyzed using quantitative real-time polymerase chain reaction. We used immunoblotting to measure autophagy flux (LC3, p62) and flow cytometry to detect apoptosis. Our findings showed that combination treatment with 5-FU and D4476 inhibited autophagy flux. Moreover, 5-FU and D4476 combination therapy induced G2, S and G1 phase arrests and it depleted mRNA of both cell proliferation-related genes and MDR-related genes (ABCG2, cyclin D1 and c-myc). Hence, our data indicates that targeting of CK1α may increase the sensitivity of HCT116 cells to 5-FU. To our knowledge, this is the first description of sensitization of CRC cells to 5-FU chemotherapy by CK1α inhibitor.
Collapse
Affiliation(s)
- Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wirginia Likus
- Department of Anatomy, School of Health Science in Katowice, Medical University of Silesia, ul. Medyków 18, 40-762, Katowice, Poland
| | - Sedigheh Rezaie
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
| | - Jacek Hudecki
- Laryngology Department, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Saeed Khazayel
- Department of Research and Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marek J Łos
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pathology, Unii Lubelskiej 1, Pomeranian Medical University, 71-344, Szczecin, Poland.
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran.
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada.
- Faculty of Medicine, Katowice School of Technology, Katowice, Poland.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
21
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
22
|
Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol 2021; 905:174186. [PMID: 34033817 DOI: 10.1016/j.ejphar.2021.174186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Sepsis-induced cardiac dysfunction (SICD) is one of the key complications in sepsis and it is associated with adverse outcomes and increased mortality. There is no effective drug to treat SICD. Previously, we reported that tubeimoside I (TBM) improved survival of septic mice. The aim of this study is to figure out whether TBM ameliorates SICD. Also, SIRT3 was reported to protects against SICD. Our second aim is to confirm whether SIRT3 plays essential roles in TBM's protective effects against SICD. Our results demonstrated that TBM could alleviate SICD and SICD's key pathological factor, inflammation, oxidative stress, and apoptosis were all reduced by TBM. Notably, SICD induced a significant decrease in cardiac SIRT3 expression, while TBM treatment could reverse SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we injected a specific SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) into mice before TBM treatment. Then the cardioprotective effects of TBM were largely abolished by 3-TYP. This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against LPS-induced injury, and siSIRT3 diminished these protective effects. Taken together, our results demonstrate that TBM protects against SICD via SIRT3. TBM might be a potential drug candidate for SICD treatment.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Ruiyu Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
23
|
Yang X, Li X, Luo M, Li C, Huang L, Li X, Huang B, Shen J, Luo S, Yan J. Tubeimoside I improves endothelial function in sepsis via activation of SIRT3. J Transl Med 2021; 101:897-907. [PMID: 33664465 DOI: 10.1038/s41374-021-00580-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by a deregulated host response to infection. Endothelial dysfunction is the initial factor leading to organ dysfunction and it is associated with increased mortality. There is no effective drug to treat sepsis-induced endothelial dysfunction. In this study, we detected a favorable effect of tubeimoside I (TBM) in ameliorating sepsis-induced endothelial dysfunction. To unveil the mechanism how TBM protects against sepsis-induced endothelial dysfunction, we examined TBM's effects on oxidative stress and apoptosis both in vivo and in vitro. TBM treatment alleviated oxidative stress by decreasing NOX2 and Ac-SOD2/SOD2 and decreased apoptosis by inhibiting cleaved caspse3 and Bax/Bcl-2. Notably, sepsis induced a significant decrease of SIRT3 expression in vascular endothelium, while TBM treatment reversed SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we knockdown SIRT3 using siRNA before TBM treatment. Then, the cytoprotective effects of TBM were largely abolished by siSIRT3. This suggests that SIRT3 plays an essential role in TBM's endothelial protective effects and TBM might be a potential drug candidate to treat sepsis-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xiang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Yang X, Li X, Luo M, Guo Y, Li C, Lv D, Cheng Z, Huang L, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I promotes angiogenesis via activation of eNOS-VEGF signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113642. [PMID: 33264658 DOI: 10.1016/j.jep.2020.113642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tubeimoside I (TBM) is a triterpenoid saponin purified from tubeimu (tuber of Bolbostemma paniculatum (Maxim.) Franquet). In traditional Chinese medicine, tubeimu had been used to treat acute mastitis, snake bites, detoxication, inflammatory diseases, and tumors for over 1000 years. AIM OF THE STUDY This study aimed to investigate whether TBM could promote angiogenesis and how to promote angiogenesis. MATERIALS AND METHODS In vivo, the pro-angiogenic effects of TBM were examined using the hindlimb ischemia model. After the ischemia operation, 1 mg/kg/day TBM was given via intraperitoneal injection for 28 days and the recovery of blood flow was monitored by Doppler scanner every 7 days. The capillary density in gastrocnemius muscle was detected by immunofluorescence. Expression of related proteins were determined by western blotting. In vitro, the pro-angiogenic effects of TBM on HUVECs were examined by Cell Counting Kit-8, scratch assay, endothelial cell tube formation assay and western blotting. RESULTS TBM improved recovery from hindlimb ischemia in C57BL/6 mice. TBM promoted endothelial cell viability, migration and tube formation in HUVECs. TBM could activate eNOS-VEGF signaling pathway by enhancing expression of eNOS. And TBM's pro-angiogenesis effects could be abolished by L-NAME (an inhibitor of eNOS). CONCLUSIONS TBM promoted angiogenesis via the activation of eNOS-VEGF signaling pathway and TBM could be a novel agent for therapeutic angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
25
|
Che N, Yang Z, Liu X, Li M, Feng Y, Zhang C, Li C, Cui Y, Xuan Y. Suppression of LETM1 inhibits the proliferation and stemness of colorectal cancer cells through reactive oxygen species-induced autophagy. J Cell Mol Med 2021; 25:2110-2120. [PMID: 33314691 PMCID: PMC7882971 DOI: 10.1111/jcmm.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) is a mitochondrial inner membrane protein that is highly expressed in various cancers. Although LETM1 is known to be associated with poor prognosis in colorectal cancer (CRC), its roles in autophagic cell death in CRC have not been explored. In this study, we examined the mechanisms through which LETM1 mediates autophagy in CRC. Our results showed that LETM1 was highly expressed in CRC tissues and that down-regulation of LETM1 inhibited cell proliferation and induced S-phase arrest. LETM1 silencing also suppressed cancer stem cell-like properties and induced autophagy in CRC cells. Additionally, the autophagy inhibitor 3-methyladenine reversed the inhibitory effects of LETM1 silencing on proliferation and stemness, whereas the autophagy activator rapamycin had the opposite effects. Mechanistically, suppression of LETM1 increased the levels of reactive oxygen species (ROS) and mitochondrial ROS by regulation of SOD2, which in turn activated AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), initiated autophagy, and inhibited proliferation and stemness. Our findings suggest that silencing LETM1 induced autophagy in CRC cells by triggering ROS-mediated AMPK/mTOR signalling, thus blocking CRC progression, which will enhance our understanding of the molecular mechanism of LETM1 in CRC.
Collapse
Affiliation(s)
- Nan Che
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Zhaoting Yang
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Xingzhe Liu
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Mengxuan Li
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Ying Feng
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Chengye Zhang
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Chao Li
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Yan Cui
- Department of OncologyAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Yanhua Xuan
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| |
Collapse
|
26
|
He C, Xia J, Gao Y, Chen Z, Wan X. Chlorin A-mediated photodynamic therapy induced apoptosis in human cholangiocarcinoma cells via impaired autophagy flux. Am J Transl Res 2020; 12:5080-5094. [PMID: 33042407 PMCID: PMC7540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a promising strategy for multiple cancers. Chlorin e6 and its derivative 131-[2'-(2-pyridyl)ethylamine] Chlorin e6 (Chlorin A) are effective photosensitizers, although their cytotoxic mechanisms have not yet been fully characterized. METHODS Cell viability and apoptosis were evaluated by CCK8 assay, TUNEL assay, and Annexin V/PI staining. The expression levels of different proteins were analyzed by Western blot analysis and immunofluorescence. The crosstalk between autophagy, endoplasmic reticulum stress (ERS), and mitochondrial dysfunction was investigated using reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), PERK inhibitor GSK2606414, autophagy inhibitor 3-MA, and mitochondrial stabilizer elamipretide. Furthermore, the extent of ROS production, lysosomal damage, autophagy flux, and mitochondrial membrane potential (MMP) were tracked using established probes. An in vivo xenograft model of cholangiocarcinoma (CCA) was established in BALB/c-nude mice by inoculation with EGI-1 cells, and Chlorin A was administered topically or intravenously, followed by light irradiation. RESULTS Chlorin A-PDT decreased the viability of CCA cells and induced apoptosis. Intriguingly, Chlorin A-PDT promoted autophagy via activation of ROS-induced ERS-related PERK/p-eif2α/CHOP axis, and blocked the ensuing autophagy flux by lysosomal damage. The PERK inhibitor GSK2606414 and NAC alleviated apoptosis and autophagy induced by Chlorin A-PDT. Furthermore, mitochondrial dysfunction aggravated ERS, and stabilizing the mitochondria reduced both apoptosis and autophagy. Finally, Chlorin A-PDT significantly reduced tumor growth in vivo. CONCLUSIONS Chlorin A-PDT induced apoptosis in CCA cells by initiating autophagy and impaired the autophagy flux via ROS-mediated ERS and lysosomal damage.
Collapse
Affiliation(s)
- Chongxin He
- Shanghai Key Laboratory of Pancreatic Diseases and Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jie Xia
- Department of Gastroenterology, The Second Hospital of Changzhou Affiliated to Nanjing Medical UniversityChangzhou, China
| | - Yinghua Gao
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua UniversityShanghai, China
| | - Zhilong Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua UniversityShanghai, China
| | - Xinjian Wan
- Shanghai Key Laboratory of Pancreatic Diseases and Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
27
|
Hseu YC, Lin RW, Shen YC, Lin KY, Liao JW, Thiyagarajan V, Yang HL. Flavokawain B and Doxorubicin Work Synergistically to Impede the Propagation of Gastric Cancer Cells via ROS-Mediated Apoptosis and Autophagy Pathways. Cancers (Basel) 2020; 12:cancers12092475. [PMID: 32882870 PMCID: PMC7564097 DOI: 10.3390/cancers12092475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Among various kinds of treatment strategies for cancers, combination therapy has attracted significant attention due to its beneficial effects than the individual effects of the same compounds. Based on this idea, this study has investigated the synergistic effects of combination treatment of a natural anti-cancer agent flavokawain B (FKB) and a chemotherapeutic agent Doxorubicin on human gastric cancer cells and the underlying molecular mechanisms were deciphered through in vitro and in vivo approaches. Experimental data obtained in this study provided promising application prospects of FKB + Doxrubicin combination treatment in human gastric cancer cells. Abstract Chalcone flavokawain B (FKB) possesses a chemopreventive and anti-cancer activity. Doxorubicin is a chemotherapeutic DNA intercalating agent widely used in malignancy treatment. The present study investigated whether synergistic effects exist between the combination of FKB (1.25–5 µg/mL) and doxorubicin (0.5 µg/mL) on the apoptosis and autophagy in human gastric cancer (AGS) cells, and the possible in vitro and in vivo mechanisms. The MTT assay measured cell viability. Various apoptotic-, autophagy-associated protein expression was determined by the Western blot technique. FKB+doxorubicin synergy was estimated by the Chou-Talalay combination index (CI) method. In vivo studies were performed on BALB/c mice. Results showed that compared to FKB/doxorubicin treatments, low doses of FKB+doxorubicin suppressed AGS cell growth. FKB potentiated doxorubicin-induced DNA fragmentation, apoptotic cell death, and enhanced doxorubicin-mediated mitochondrial, death receptor pathways. FKB+doxorubicin activated increased LC3-II accumulation, p62/SQSTM1 expression, and AVO formation as compared to the FKB/doxorubicin alone treatments indicating autophagy in these cells. The death mechanism in FKB+doxorubicin-treated AGS cells is due to the activation of autophagy. FKB+doxorubicin-mediated dysregulated Bax/Bcl-2, Beclin-1/Bcl-2 ratios suggested apoptosis, autophagy induction in AGS cells. FKB+doxorubicin-induced LC3-II/AVOs downregulation was suppressed due to an apoptotic inhibitor Z-VAD-FMK. Whereas, 3-methyladenine/chloroquine weakened FKB+doxorubicin-induced apoptosis (decreased DNA fragmentation/caspase-3). Activation of ERK/JNK may be involved in FKB+doxorubicin-induced apoptosis and autophagy. FKB+doxorubicin-triggered ROS generation, but NAC attenuated FKB+doxorubicin-induced autophagic (LC3 accumulation) and apoptotic (caspase-3 activation and PARP cleavage) cell death. FKB+doxorubicin blocked gastric cancer cell xenografts in nude mice in vivo as compared to FKB/doxorubicin alone treatments. FKB and doxorubicin wielded synergistic anti-tumor effects in gastric cancer cells and is a promising therapeutic approach.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, China Medical University, Taichung 40402, Taiwan; (R.-W.L.); (Y.-C.S.)
| | - Yi-Chun Shen
- Institute of Nutrition, China Medical University, Taichung 40402, Taiwan; (R.-W.L.); (Y.-C.S.)
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71004, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Correspondence: (V.T.); (H.-L.Y.); Tel.: +886-4-2205-3366 (ext. 7503) (H.-L.Y.); Fax: +886-4-2206-2891 (H.-L.Y.)
| | - Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung 40402, Taiwan; (R.-W.L.); (Y.-C.S.)
- Correspondence: (V.T.); (H.-L.Y.); Tel.: +886-4-2205-3366 (ext. 7503) (H.-L.Y.); Fax: +886-4-2206-2891 (H.-L.Y.)
| |
Collapse
|
28
|
Tubeimoside I improves survival of mice in sepsis by inhibiting inducible nitric oxide synthase expression. Biomed Pharmacother 2020; 126:110083. [DOI: 10.1016/j.biopha.2020.110083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
|
29
|
Xu X, Zhang C, Xia Y, Yu J. Over expression of METRN predicts poor clinical prognosis in colorectal cancer. Mol Genet Genomic Med 2019; 8:e1102. [PMID: 31859449 PMCID: PMC7057108 DOI: 10.1002/mgg3.1102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of meteorin (METRN) in colorectal cancer has not been reported previously. We aimed to explore the relationship between METRN and colorectal cancer (CRC) prognosis. METHODS Data were retrieved from the Gene Expression Omnibus database. Gene expression values were log2 transformed and normalized by quantile normalization. Missing values were imputed with the R impute package. Differentially expressed genes were analyzed using the R limma package. METRN expression was compared between normal and CRC tissues and among different stages and subtypes of CRC. We assessed the relationship between METRN and KRAS/BRAF mutations in CRC. Five-year overall (OS), disease-free (DFS), and disease-specific survival (DSS) rates were determined by Kaplan-Meier analysis and analyzed by log-rank test. RESULTS METRN was expressed at a higher level in CRC (p = .0011) than in normal tissues, especially in advanced stages (p = .0343). METRN expression levels were higher in the MSI (dMMR) subtype (p < .001) and usually with BRAF mutations (p < .0001). METRN overexpression was associated with poor prognosis and low OS (p = .01014), DFS (p = .0146), and DSS (p < .0001) rates. CONCLUSION METRN overexpression is a predictive factor for poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Xin Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xia
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Wang Y, Lina L, Xu L, Yang Z, Qian Z, Zhou J, Suoni L. Arctigenin enhances the sensitivity of cisplatin resistant colorectal cancer cell by activating autophagy. Biochem Biophys Res Commun 2019; 520:20-26. [DOI: 10.1016/j.bbrc.2019.09.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
|