1
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Fetisov TI, Menyailo ME, Ikonnikov AV, Khozyainova AA, Tararykova AA, Kopantseva EE, Korobeynikova AA, Senchenko MA, Bokova UA, Kirsanov KI, Yakubovskaya MG, Denisov EV. Decoding Chemotherapy Resistance of Undifferentiated Pleomorphic Sarcoma at the Single Cell Resolution: A Case Report. J Clin Med 2024; 13:7176. [PMID: 39685635 DOI: 10.3390/jcm13237176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Undifferentiated pleomorphic sarcoma (UPS) is a highly malignant mesenchymal tumor that ranks as one of the most common types of soft tissue sarcoma. Even though chemotherapy increases the 5-year survival rate in UPS, high tumor heterogeneity frequently leads to chemotherapy resistance and consequently to recurrences. In this study, we characterized the cell composition and the transcriptional profile of UPS with resistance to chemotherapy at the single cell resolution. Methods: A 58-year-old woman was diagnosed with a 13.6 × 9.3 × 6.0 cm multi-nodular tumor with heterogeneous cysto-solid structure at the level of the distal metadiaphysis of the left thigh during magnetic resonance tomography. Morphological and immunohistochemical analysis led to the diagnosis of high-grade (G3) UPS. Neoadjuvant chemotherapy, surgery (negative resection margins), and adjuvant chemotherapy were conducted, but tumor recurrence developed. The UPS sample was used to perform single-cell RNA sequencing by chromium-fixed RNA profiling. Results: Four subpopulations of tumor cells and seven subpopulations of tumor microenvironment (TME) have been identified in UPS. The expression of chemoresistance genes has been detected, including KLF4 (doxorubicin and ifosfamide), ULK1, LUM, GPNMB, and CAVIN1 (doxorubicin), and AHNAK2 (gemcitabine) in tumor cells and ETS1 (gemcitabine) in TME. Conclusions: This study provides the first description of the single-cell transcriptome of UPS with resistance to two lines of chemotherapy, showcasing the gene expression in subpopulations of tumor cells and TME, which may be potential markers for personalized cancer therapy.
Collapse
Affiliation(s)
- Timur I Fetisov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Maxim E Menyailo
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexander V Ikonnikov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
| | - Anna A Khozyainova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anastasia A Tararykova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E Kopantseva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
| | - Anastasia A Korobeynikova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Maria A Senchenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ustinia A Bokova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Kirill I Kirsanov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Marianna G Yakubovskaya
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Evgeny V Denisov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 115093 Moscow, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| |
Collapse
|
3
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
4
|
Wang X, Hou Y, Lyu Y, Zhou J, Zhang X, Hassani MA, Huang D, Zhao Z, Zhou D, Xie F, Zhang X, Yan J. LncRNA IRAIN overcomes imatinib resistance in chronic myeloid leukemia via NF-κB/CD44 pathway inhibition. iScience 2024; 27:109851. [PMID: 38784023 PMCID: PMC11112338 DOI: 10.1016/j.isci.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The development of tyrosine kinase inhibitors (TKIs) has revolutionarily increased the overall survival of patients with chronic myeloid leukemia (CML). However, drug resistance remains a major obstacle. Here, we demonstrated that a BCR-ABL1-independent long non-coding RNA, IRAIN, is constitutively expressed at low levels in CML, resulting in imatinib resistance. IRAIN knockdown decreased the sensitivity of CD34+ CML blasts and cell lines to imatinib, whereas IRAIN overexpression significantly increased sensitivity. Mechanistically, IRAIN downregulates CD44, a membrane receptor favorably affecting TKI resistance, by binding to the nuclear factor kappa B subunit p65 to reduce the expression of p65 and phosphorylated p65. Therefore, the demethylating drug decitabine, which upregulates IRAIN, combined with imatinib, formed a dual therapy strategy which can be applied to CML with resistance to TKIs.
Collapse
Affiliation(s)
- Xijia Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Yutong Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Yizhu Lyu
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jiayin Zhou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Xin Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Zhijia Zhao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Dong Zhou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Fang Xie
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center of the Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| |
Collapse
|
5
|
Zhuang J, Zhang L, Zhang S, Zhang Z, Xie T, Zhao W, Liu Y. Membrane-associated RING-CH 7 inhibits stem-like capacities of bladder cancer cells by interacting with nucleotide-binding oligomerization domain containing 1. Cell Biosci 2024; 14:32. [PMID: 38462600 PMCID: PMC10926635 DOI: 10.1186/s13578-024-01210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Cancer stem-like capacities are major factors contributing to unfavorable prognosis. However, the associated molecular mechanisms underlying cancer stem-like cells (CSCs) maintain remain unclear. This study aimed to investigate the role of the ubiquitin E3 ligase membrane-associated RING-CH 7 (MARCH7) in bladder cancer cell CSCs. METHODS Male BALB/c nude mice aged 4-5 weeks were utilized to generate bladder xenograft model. The expression levels of MARCHs were checked in online databases and our collected bladder tumors by quantitative real-time PCR (q-PCR) and immunohistochemistry (IHC). Next, we evaluated the stem-like capacities of bladder cancer cells with knockdown or overexpression of MARCH7 by assessing their spheroid-forming ability and spheroid size. Additionally, we conducted proliferation, colony formation, and transwell assays to validate the effects of MARCH7 on bladder cancer CSCs. The detailed molecular mechanism of MARCH7/NOD1 was validated by immunoprecipitation, dual luciferase, and in vitro ubiquitination assays. Co-immunoprecipitation experiments revealed that nucleotide-binding oligomerization domain-containing 1 (NOD1) is a substrate of MARCH7. RESULTS We found that MARCH7 interacts with NOD1, leading to the ubiquitin-proteasome degradation of NOD1. Furthermore, our data suggest that NOD1 significantly enhances stem-like capacities such as proliferation and invasion abilities. The overexpressed MARCH7 counteracts the effects of NOD1 on bladder cancer CSCs in both in vivo and in vitro models. CONCLUSION Our findings indicate that MARCH7 functions as a tumor suppressor and inhibits the stem-like capacities of bladder tumor cells by promoting the ubiquitin-proteasome degradation of NOD1. Targeting the MARCH7/NOD1 pathway could be a promising therapeutic strategy for bladder cancer patients.
Collapse
Affiliation(s)
- Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Urology, Nanjing University, Nanjing, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhongqing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianlei Xie
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Yantao Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yang Z, Jiang Y, Wang L, Yu B, Cai H, Fan J, Zhang M. Prognosis and biological function of SGOL1 in clear cell renal cell carcinoma: a multiomics analysis. BMC Med Genomics 2024; 17:60. [PMID: 38383432 PMCID: PMC10882763 DOI: 10.1186/s12920-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Shugoshin-1 (SGOL1) is a mammalian ortholog of Shugoshin in yeast and is essential for precise chromosome segregation during mitosis and meiosis. Aberrant SGOL1 expression was reported to be closely correlated with the malignant progression of various tumors. However, the expression pattern and biological function of SGOL1 in clear cell renal cell carcinoma (ccRCC) are unclear. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases provide mRNA expression data and outcome information for ccRCC patients. Immunohistochemistry (IHC) of ccRCC tissue chips verified SGOL1 protein expression in ccRCC patients. Data processing and visualization were performed with the UALCAN, TISIDB, TIMER, GSCA, LinkedOmics, and starBase databases. Gene Ontology (GO) annotation and gene set enrichment analysis (GSEA) were used to identify SGOL1-related biological functions and signaling pathways. Immune infiltration analysis was performed using the TISIDB database, ssGSEA algorithm, and TCGA-KIRC cohort. The biological role of SGOL1 in ccRCC was investigated using a series of in vitro cytological assays, including the MTT assay, EdU staining assay, flow cytometry analysis, Transwell assay, and wound healing assay. RESULTS SGOL1 was highly expressed in ccRCC and linked to adverse clinicopathological parameters and unfavorable prognosis. Multivariate logistic regression and nomogram calibration suggested that SGOL1 might serve as an independent and reliable prognostic predictor of ccRCC. Functional enrichment analysis indicated that SGOL1 may be involved in the cell cycle, the p53 pathway, DNA replication, and T-cell activation. Furthermore, tumor microenvironment (TME) analysis suggested that SGOL1 was positively associated with Treg infiltration and immune checkpoint upregulation. In addition, we identified a potential SNHG17/PVT1/ZMIZ1-AS1-miR-23b-3p-SGOL1 axis correlated with ccRCC carcinogenesis and progression. Finally, we demonstrated that SGOL1 promoted ccRCC cell proliferation, migratory capacity, and invasion in vitro. CONCLUSIONS SGOL1 potentially functions as an oncogene in ccRCC progression and might contribute to the immunosuppressive TME by increasing Treg infiltration and checkpoint expression, suggesting that targeting SGOL1 could be a novel therapeutic strategy for the treatment of ccRCC patients.
Collapse
Affiliation(s)
- Zezhong Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yunzhong Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Binghe Yu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Address: No, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Address: No, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
7
|
Zhang M, Jiang Y, Wang J, Yue Y, Liu W, Wang L, Li Y, Wang W, Cai H, Yang Z, Ma M, Lu S, Fan J. NEIL3 promotes cell proliferation of ccRCC via the cyclin D1-Rb-E2F1 feedback loop regulation. DNA Repair (Amst) 2024; 133:103604. [PMID: 37992567 DOI: 10.1016/j.dnarep.2023.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Nei endonuclease VIII-like 3 (NEIL3), a novel tumor-related gene, is differentially expressed and involved in pathophysiological processes in multiple tumors. However, the potential biological functions and molecular mechanisms of NEIL3 in human clear cell renal cell carcinoma (ccRCC) have not been identified. In this research, we demonstrated that NEIL3, transcriptionally activated by E2F1, served as an oncogene to facilitate cell proliferation and cell cycle progression and contribute to tumorigenesis via the cyclin D1-Rb-E2F1 feedback loop in ccRCC. First, we found that NEIL3 expression was upregulated in ccRCC tissues and cell lines compared with matched adjacent nontumor tissues and renal tubular epithelial cells and was also positively correlated with adverse clinicopathological characteristics, such as advanced cancer stages and higher tumor grades, and acted as an independent prognostic marker in ccRCC. Mechanistically, we demonstrated that NEIL3 promoted cell proliferation, DNA replication and cell cycle progression in vitro and tumor growth in vivo. Furthermore, we found that NEIL3 overexpression activated the cyclin D1-Rb-E2F1 pathway, and the E2F1 upregulation transcriptionally activated NEIL3 expression, thus forming a feedback loop. In addition, there was a positive correlation between NEIL3 and E2F1 expression in clinical specimens of ccRCC. Taken together, our results suggest that NEIL3 serves as a proto-oncogene in ccRCC and presents as a novel candidate for ccRCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mengzhao Zhang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yunzhong Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jichang Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yangyang Yue
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Wei Liu
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Lu Wang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Li
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weiyi Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Hui Cai
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zezhong Yang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Minghai Ma
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Shaoying Lu
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jinhai Fan
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, #277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
8
|
Wu L, Chen J. Type 3 IP3 receptor: Its structure, functions, and related disease implications. Channels (Austin) 2023; 17:2267416. [PMID: 37818548 PMCID: PMC10569359 DOI: 10.1080/19336950.2023.2267416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca2+ homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca2+ from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
9
|
Wang L, Yue Y, Zhang L, Jing M, Ma M, Liu C, Li Y, Xu S, Wang K, Wang X, Fan J, Zhang M. PAQR5 inhibits the growth and metastasis of clear cell renal cell carcinoma by suppressing the JAK/STAT3 signaling pathway. Cell Oncol (Dordr) 2023; 46:1317-1332. [PMID: 37126128 DOI: 10.1007/s13402-023-00813-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) has a high degree of malignancy and poor overall prognosis in advanced and metastatic patients. Therefore, it is of great significance to find new prognostic biomarkers and therapeutic targets for ccRCC. The expression of progestin and adipoQ receptor family member 5 (PAQR5) is significantly downregulated in ccRCC compared with normal tissues, but its specific mechanism and potential biological function in ccRCC remain unclear. METHODS The expression pattern of PAQR5 and the correlation between the PAQR5 expression and clinicopathological parameters and various survival periods in ccRCC patients were analyzed by using multiple public databases and ccRCC tissues chip. Its prognostic value was analyzed by univariate/multivariate Cox regression. In addition, MTT assay, EdU staining assay, flow cytometry, wound healing assay, transwell migration and invasion assay, colony formation assay, immunofluorescence assay, and a xenograft tumor model were conducted to assess the biological function of PAQR5 in ccRCC in vitro and in vivo. RESULTS Our results indicated that the downregulation of PAQR5 was demonstrated in ccRCC tumor tissues and associated with poorer OS, DSS, and PFI. Meanwhile, the univariate/multivariate Cox regression analysis confirmed that PAQR5 might serve as an independent prognostic factor for ccRCC, and its low expression was tightly correlated with tumor progression and distant metastasis. Mechanistically, a series of gain- and loss-of-function assay revealed that PAQR5 could suppress the ccRCC proliferation, invasion, metastasis, and tumorigenicity in vitro and in vivo by inhibiting the JAK/STAT3 signaling pathway. CONCLUSION Our study revealed the tumor suppressor role of PAQR5 in ccRCC. PAQR5 is a valuable prognostic biomarker for ccRCC and may provide new strategies for clinical targeted therapy.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yangyang Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of education, Xi'an, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Deng B, Li A, Zhu Y, Zhou Y, Fei J, Miao Y. SHCBP1 contributes to the proliferation and self‑renewal of cervical cancer cells and activation of the NF‑κB signaling pathway through EIF5A. Oncol Lett 2023; 25:246. [PMID: 37153055 PMCID: PMC10161342 DOI: 10.3892/ol.2023.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/24/2023] [Indexed: 05/09/2023] Open
Abstract
Cervical cancer (CC) is the most common human papillomavirus-related disease. Continuous activation of the NF-κB signaling pathway has been observed in CC. SHC binding and spindle associated 1 (SHCBP1) contributes to tumorigenesis and activation of the NF-κB pathway in multiple cancer types, while its function in CC remains unclear. In the present study, three Gene Expression Omnibus datasets were used to identify differentially expressed genes (DEGs) in CC. Loss- and gain-of-function experiments were performed using stable SHCBP1-silenced and SHCBP1-overexpressing CC cells. To further explore the molecular mechanism of SHCBP1 in CC, small interfering RNA targeting eukaryotic translation initiation factor 5A (EIF5A) was transfected into stable SHCBP1-overexpressing CC cells. The results demonstrated that SHCBP1 was an upregulated DEG in CC tissues compared with healthy control cervical tissues. Functional experiments revealed the pro-proliferative and pro-stemness role of SHCBP1 in CC cells (CaSki and SiHa cells), in vitro. Furthermore, the NF-κB signaling pathway in CC cells was activated by SHCBP1. Increases in cell proliferation, stemness and activation of NF-κB, induced by SHCBP1 overexpression in CC cells, were reversed by EIF5A knockdown. Taken together, the results indicated that SHCBP1 serves an important role in regulation of CC cell proliferation, self-renewal and activation of NF-κB via EIF5A. The present study demonstrated a potential molecular mechanism underlying the progression of CC.
Collapse
Affiliation(s)
- Boya Deng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Correspondence to: Dr Boya Deng, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng, Hangzhou, Zhejiang 310009, P.R. China, E-mail:
| | - Ailin Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medicine Science and The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Jiang Y, Zhang M, Wang L, Zhang L, Ma M, Jing M, Li J, Song R, Zhang Y, Yang Z, Zhang Y, Pu Y, Qu X, Fan J. Potential mechanisms of osthole against bladder cancer cells based on network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2023; 23:122. [PMID: 37069622 PMCID: PMC10108473 DOI: 10.1186/s12906-023-03938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Osthole was traditionally used in treatment for various diseases. However, few studies had demonstrated that osthole could suppress bladder cancer cells and its mechanism was unclear. Therefore, we performed a research to explore the potential mechanism for osthole against bladder cancer. METHODS Internet web servers SwissTargetPrediction, PharmMapper, SuperPRED, and TargetNet were used to predict the Osthole targets. GeneCards and the OMIM database were used to indicate bladder cancer targets. The intersection of two target gene fragments was used to obtain the key target genes. Protein-protein interaction (PPI) analysis was performed using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Furthermore, we used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to explore the molecular function of target genes. AutoDock software was then used to perform molecular docking of target genes,osthole and co-crystal ligand. Finally, an in vitro experiment was conducted to validate bladder cancer inhibition by osthole. RESULTS Our analysis identified 369 intersection genes for osthole, the top ten target genes included MAPK1, AKT1, SRC, HRAS, HASP90AA1, PIK3R1, PTPN11, MAPK14, CREBBP, and RXRA. The GO and KEGG pathway enrichment results revealed that the PI3K-AKT pathway was closely correlated with osthole against bladder cancer. The osthole had cytotoxic effect on bladder cancer cells according to the cytotoxic assay. Additionally, osthole blocked the bladder cancer epithelial-mesenchymal transition and promoted bladder cancer cell apoptosis by inhibiting the PI3K-AKT and Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathways. CONCLUSIONS We found that osthole had cytotoxic effect on bladder cancer cells and inhibited invasion, migration, and epithelial-mesenchymal transition by inhibiting PI3K-AKT and JAK/STAT3 pathways in in vitro experiment. Above all, osthole might have potential significance in treatment of bladder cancer. SUBJECTS Bioinformatics, Computational Biology, Molecular Biology.
Collapse
Affiliation(s)
- Yunzhong Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Wang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minghai Ma
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minxuan Jing
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianpeng Li
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rundong Song
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanquan Zhang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zezhong Yang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaodong Zhang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanchun Pu
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowei Qu
- Department of Geriatrics, the Yan'an University Xianyang Hospital, Xian'yang, China
| | - Jinhai Fan
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.
| |
Collapse
|
12
|
Chi K, Xu H, Li H, Yang G, Zhou X, Gao XD. Expression of a Siglec-Fc Protein and Its Characterization. BIOLOGY 2023; 12:biology12040574. [PMID: 37106774 PMCID: PMC10135921 DOI: 10.3390/biology12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
The emerging importance of the Siglec-sialic acid axis in human disease, especially cancer, has necessitated the identification of ligands for Siglecs. Recombinant Siglec-Fc fusion proteins have been widely used as ligand detectors, and also as sialic acid-targeted antibody-like proteins for cancer treatment. However, the heterogenetic properties of the Siglec-Fc fusion proteins prepared from various expression systems have not been fully elucidated. In this study, we selected HEK293 and CHO cells for producing Siglec9-Fc and further evaluated the properties of the products. The protein yield in CHO (8.23 mg/L) was slightly higher than that in HEK293 (7.46 mg/L). The Siglec9-Fc possesses five N-glycosylation sites and one of them is located in its Fc domain, which is important for the quality control of protein production and also the immunogenicity of Siglec-Fc. Our glycol-analysis confirmed that the recombinant protein from HEK293 received more fucosylation, while CHO showed more sialylation. Both products revealed a high dimerization ratio and sialic acid binding activity, which was confirmed by the staining of cancer cell lines and bladder cancer tissue. Finally, our Siglec9-Fc product was used to analyze the potential ligands on cancer cell lines.
Collapse
Affiliation(s)
- Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huilin Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hanjie Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Dong Gao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Janke EK, Chalmers SB, Roberts-Thomson SJ, Monteith GR. Intersection between calcium signalling and epithelial-mesenchymal plasticity in the context of cancer. Cell Calcium 2023; 112:102741. [PMID: 37060674 DOI: 10.1016/j.ceca.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a form of cellular phenotypic plasticity and is considered a crucial step in the progression of many cancers. The calcium ion (Ca2+) acts as a ubiquitous second messenger and is implicated in many cellular processes, including cell death, migration, invasion and more recently EMT. Throughout this review, the complex interplay between Ca2+ signalling and EMT will be explored. An overview of the Ca2+ pathways that are remodelled as a consequence of EMT is provided and the role of Ca2+ signalling in regulating EMT and its significance is considered. Ca2+ signalling pathways may represent a therapeutic opportunity to regulate EMT. However, as will be described in this review, the complexity of these signalling pathways represents significant challenges that must be considered if Ca2+ signalling is to be manipulated with the aim of therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Ellen K Janke
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Silke B Chalmers
- Department of Biomedicine, Aarhus University, Nordre Ringgade 1, Aarhus C, 8000, Denmark
| | - Sarah J Roberts-Thomson
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| |
Collapse
|
14
|
Lei P, Zhang M, Li Y, Wang Z. High GTSE1 expression promotes cell proliferation, metastasis and cisplatin resistance in ccRCC and is associated with immune infiltrates and poor prognosis. Front Genet 2023; 14:996362. [PMID: 36999057 PMCID: PMC10043236 DOI: 10.3389/fgene.2023.996362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Clear cell renal cell carcinoma is the most common and fatal form of kidney cancer, accounting for 80% of new cases. Although it has been reported that GTSE1 is highly expressed in a variety of tumors and associated with malignant progression and poor clinical prognosis, its clinical significance, correlations with immune cell infiltration and biological function in ccRCC are still poorly understood.Methods: The gene expression, clinicopathological features, and clinical significance of GTSE1 were analyzed using multiple databases, including TCGA, GEO, TIMER, and UALCAN Kaplan–Meier survival analysis, gene set enrichment analysis gene ontology enrichment Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Tumor-infiltrating immune cells and immunomodulators were extracted and analyzed using TCGA-KIRC profiles. Protein‒protein interactions were built using the STRING website. The protein level of GTSE1 in ccRCC patients was detected by immunohistochemistry using a ccRCC tissue chip. Finally, MTT assays, colony-formation assays, cell flow cytometry analyses, EdU-staining assays, wound-healing assays, and transwell migration and invasion assays were conducted to assess the biological function of GTSE1 in vitro.Results: GTSE1 was overexpressed in ccRCC tissues and cells, and GTSE1 overexpression was associated with adverse clinical-pathological factors and poor clinical prognosis. Meanwhile, the functional enrichment analysis indicated that GTSE1 and its coexpressed genes were mainly related to the cell cycle, DNA replication, and immunoreaction, such as T-cell activation and innate immune response, through multiple signaling pathways, including the P53 signaling pathway and T-cell receptor signaling pathway. Furthermore, we observed a significant relationship between GTSE1 expression and the levels of infiltrating immune cells in ccRCC. Biological functional studies demonstrated that GTSE1 could promote the malignant progression of ccRCC by promoting cell proliferation, cell cycle transition, migration, and invasion capacity and decreasing the sensitivity of ccRCC cells to cisplatin.Conclusion: Our results indicate that GTSE1, serving as a potential oncogene, can promote malignant progression and cisplatin resistance in ccRCC. Additionally, high GTSE1 expression contributes to an increased level of immune cell infiltration and is associated with a worse prognosis, providing a potential target for tumor therapy in ccRCC.
Collapse
Affiliation(s)
- Pu Lei
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
- Department of Urology, Yulin City No. 2 Hospital, Yulin, Shaanxi, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
- *Correspondence: Ziming Wang,
| |
Collapse
|
15
|
Xu D, Wang Y, Chen Y, Zheng J. Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes. Cancer Immunol Immunother 2023; 72:647-664. [PMID: 36036290 DOI: 10.1007/s00262-022-03269-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Tang F, Yu H, Wang X, Shi J, Chen Z, Wang H, Wan Z, Fu Q, Hu X, Zuhaer Y, Liu T, Yang Z, Peng J. NCAPG promotes tumorigenesis of bladder cancer through NF-κB signaling pathway. Biochem Biophys Res Commun 2022; 622:101-107. [PMID: 35843088 DOI: 10.1016/j.bbrc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
The non-SMC condensin I complex subunit G (NCAPG) is a subunit of the condensin complex, many studies have shown that NCAPG is aberrantly expressed in different tumors and closely associated with poor prognosis, but its role in bladder cancer is unclear. In this paper, we found that NCAPG expression was upregulated in bladder cancer in tumor-related databases, and further verified the expression of NCAPG in bladder cancer tissues as well as bladder cancer cell lines by tissue microarray, qPCR, and WB. Next, we explored the changes in bladder cancer cell proliferation as well as migration after NCAPG knockdown by cell growth curve, colony formation, soft agar assay, and xenograft model. Finally, we examined the changes in downstream signaling pathways after NCAPG knockdown using RNA-Seq, and we found that the NF-κB signaling pathway was inhibited with NCAPG gene knockdown, which was verified by luciferase reporter assay as well as WB. In conclusion, our results illustrate that NCAPG knockdown can inhibit the proliferation of bladder cancer cells through the NF-κB signaling pathway. This finding demonstrates that NCAPG could be a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Feng Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Departmentof Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China
| | - Jiageng Shi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhizhuang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Hu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yisha Zuhaer
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
circIFT80 Functions as a ceRNA for miR-142, miR-568, and miR-634 and Promotes the Progression of Colorectal Cancer by Targeting β-Catenin. DISEASE MARKERS 2022; 2022:8081246. [PMID: 35783013 PMCID: PMC9247842 DOI: 10.1155/2022/8081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common form of malignant tumor and is characterized by high rates of proliferation and metastases. Circular RNAs (circRNAs) are a form of noncoding and closed loop RNA molecules and play vital roles in the progression of various types of cancer in humans. Here, we used circRNA microarray sequencing technology to analyze the different circRNAs between CRC tissues and normal tissues and explore the role of circIFT80 in progression of colorectal cancer. In this present study, we found that circIFT80 was abnormally overexpression in colorectal cancer tissues and tumor cells. While knockout circIFT80 in HT29 cell or SW480 cells, the proliferation, and migration of the cells were inhibited, the cell cycle was arrested in G2/M phase, and the cell apoptosis was increased. And then, we found circIFT80-positive correlation with CTNNB1 (β-catenin) by sponging miR-142, miR-568, and miR-634 upregulated the gene expression. These miRNAs which targeted β-catenin mRNA were confirmed by dual-luciferase reporter system and RNA-pulldown. In addition, xenograft tumor experiments showed that circIFT80 accelerated the tumorigenesis of CRC in vivo. In conclusion, our work reveals the impacts of circIFT80 as ceRNA in the progression of CRC, by which sponging miR-142, miR-568, and miR-634 enhanced the expression levels of β-catenin and activation Wnt/β-catenin pathway. Collectively, our data indicate that circIFT80 serves as an oncogene in CRC and represents a novel candidate for diagnosis and treatment.
Collapse
|
18
|
MZF1 Transcriptionally Activated MicroRNA-328-3p Suppresses the Malignancy of Stomach Adenocarcinoma via Inhibiting CD44. J Immunol Res 2022; 2022:5819295. [PMID: 35669102 PMCID: PMC9167131 DOI: 10.1155/2022/5819295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-328-3p (miR-328-3p) plays a critical role in mediating the progression of multiple types of cancers. To date, no study has concentrated on the molecular mechanism of miR-328-3p in mediating stomach adenocarcinoma (STAD). In this study, it was found that miR-328-3p was downregulated in STAD, and inhibition of miR-328-3p significantly promoted the growth, migration, invasion, and stemness of STAD cells, while miR-328-3p overexpression exerted reverse effects. Through bioinformatics analysis, it was uncovered that a cluster of differentiation 44 (CD44) was upregulated in STAD and closely associated with the prognosis of STAD patients. Mechanistically, we identified CD44 as the target gene of miR-328-3p. Notably, knockdown of CD44 abolished the promoting function of miR-328-3p inhibitor in the development of STAD. Moreover, myeloid zinc finger protein 1 (MZF1) was confirmed as an upstream transcription factor for miR-328-3p, which is involved in enhancing miR-328-3p expression. In addition, the role of MZF1 downregulation in the malignant traits of STAD cells was blocked by miR-328-3p overexpression. More importantly, upregulation of miR-328-3p efficiently suppressed STAD tumor growth in vivo. Collectively, our findings illustrated that MZF1-mediated miR-328-3p acted as a cancer suppressor in STAD progression via regulation of CD44, which suggested the possibility of the MZF1/miR-328-3p/CD44 axis as a novel promising therapeutic candidate for STAD.
Collapse
|
19
|
Zheng W, Bai X, Zhou Y, Yu L, Ji D, Zheng Y, Meng N, Wang H, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Transcriptional ITPR3 as potential targets and biomarkers for human pancreatic cancer. Aging (Albany NY) 2022; 14:4425-4444. [PMID: 35580861 PMCID: PMC9186782 DOI: 10.18632/aging.204080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Inositol 1,4,5-Triphosphate Receptor Family (ITPRs) are necessary intracellular Ca2+-release channel encoders and participate in mammalian cell physiological and pathological processes. Previous studies have suggested that ITPRs participate in tumorigenesis of multiple cancers. Nevertheless, the diverse expression profiles and prognostic significance of three ITPRs in pancreatic cancer have yet to be uncovered. In this work, we examined the expression levels and survival dates of ITPRs in patients with pancreatic cancer. As a result, we identified that ITPR1 and ITPR3 expression levels are significantly elevated in cancerous specimens. Survival data revealed that over-expression of ITPR2 and ITPR3 resulted in unfavourable overall survival and pathological stage. The multivariate Cox logistic regression analysis showed that ITPR3 could be an independent risk factor for PAAD patient survival. Moreover, to investigate how ITPRs work, co-expressed genes, alterations, protein-protein interaction, immune infiltration, methylation, and functional enrichment of ITPRs were also analyzed. Then, we evaluated these findings in clinical samples. Moreover, the gain and loss of function of ITPR3 were also conducted. The electron microscope assay was employed to explore the role of ITPR3 in pancreatic cancer cell lines' endoplasmic reticulum stress. In summary, our findings demonstrated that ITPR3 has the potential to be drug targets and biomarkers for human pancreatic cancer.
Collapse
Affiliation(s)
- Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department II of Gastroenterology, Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xue Bai
- Department of Clinic of Internal Medicine I, Ulm University, Ulm 89081, Germany
| | - Yongxu Zhou
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Daolin Ji
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Hepatopancreatobiliary Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
20
|
Zhou J, Wu L, Xu P, Li Y, Ji Z, Kang X. Filamin A Is a Potential Driver of Breast Cancer Metastasis via Regulation of MMP-1. Front Oncol 2022; 12:836126. [PMID: 35359350 PMCID: PMC8962737 DOI: 10.3389/fonc.2022.836126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Recurrent metastasis is a major fatal cause of breast cancer. Regretfully, the driving force and the molecular beneath have not been fully illustrated yet. In this study, a cohort of breast cancer patients with locoregional metastasis was recruited. For them, we collected the matched samples of the primary tumor and metastatic tumor, and then we determined the mutation profiles with whole-exome sequencing (WES). On basis of the profiles, we identified a list of deleterious variants in eight susceptible genes. Of them, filamin A (FLNA) was considered a potential driver gene of metastasis, and its low expression could enhance 5 years’ relapse survival rate by 15%. To prove the finding, we constructed a stable FLNA knockout tumor cell line, which manifested that the cell abilities of proliferation, migration, and invasion were significantly weakened in response to the gene knockout. Subsequently, xenograft mouse experiments further proved that FLNA knockout could inhibit local or distal metastasis. Putting all the results together, we consolidated that FLNA could be a potential driver gene to metastasis of breast cancer, in particular triple-negative breast cancer. Additional experiments also suggested that FLNA might intervene in metastasis via the regulation of MMP-1 expression. In summary, this study demonstrates that FLNA may play as a positive regulator in cancer proliferation and recurrence. It provides new insight into breast cancer metastasis and suggests a potential new therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lvying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pengyan Xu
- Department of Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yue Li
- Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Xinmei Kang, ; Zhiliang Ji,
| | - Xinmei Kang
- Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Xinmei Kang, ; Zhiliang Ji,
| |
Collapse
|
21
|
Wei YL, Wen B, Gao JZ, Chen ZZ. Brain transcriptome analysis reveals genes involved in parental care behaviour in discus fish (Symphysodon haraldi). Gen Comp Endocrinol 2021; 309:113793. [PMID: 33887271 DOI: 10.1016/j.ygcen.2021.113793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Parental care is common in mammals and allows offspring to obtain milk, a substance rich in a range of nutritional and non-nutritional factors crucial to the survival of newborns. The discus fish Symphysodon spp., an Amazonian cichlid, shows an unusual behaviour: Free-swimming fry bite on their parents' skin mucus for growth and development during the first month after hatching. This is similar to the breastfeeding behaviour of mammals, but little is known about the regulatory mechanism by which discus secrete 'milk' and the related genes involved in parental care. Here, transcriptome sequencing was performed by using the brain tissues of female discus fish in parental and non-parental care. The results showed that a total of 86 differentially expressed genes (71 up-regulated genes and 15 down-regulated genes) were obtained by comparing parental with non-parental discus fish, including up-regulated LAPTM, FOXB, SOX1S, OTX2 and NR1F2, and down-regulated EDNRB, PRKCD, H1-5 and HBE. Through functional enrichment analysis, a total of 20 pathways were identified, e.g., estrogen signaling pathway, inflammatory mediator regulation of TRP channels, vascular smooth muscle contraction, GnRH signaling pathway, neurotrophin signaling pathway, NOD-like receptor signaling pathway, Jak-STAT signaling pathway, Fc gamma R-mediated phagocytosis, serotonergic synapse, autophagy-animal and cytokine-cytokine receptor interaction. These pathways and related genes might play important roles in the regulation of discus 'milk' secretion.
Collapse
Affiliation(s)
- Yu-Ling Wei
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|