1
|
Asdemir A, Özgür A. Molecular mechanism of anticancer effect of heat shock protein 90 inhibitor BIIB021 in human bladder cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5167-5177. [PMID: 38240781 PMCID: PMC11166791 DOI: 10.1007/s00210-024-02950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 06/12/2024]
Abstract
Bladder cancer is a type of urologic malignancy that exhibits significant morbidity, mortality, and treatment costs. Inhibition of heat shock protein 90 (HSP90) activity has been a promising pharmacological strategy for blocking of bladder cancer pathogenesis. BIIB021 is a next-generation HSP90 inhibitor which interrupts ATP hydrolysis process of HSP90 and inhibits the stabilization and correct folding of client proteins. In current study, we aimed to investigate the molecular mechanism of the anticancer activity of BIIB021 in human bladder cancer T24 cells. Our results revealed that nanomolar concentration of BIIB021 decreased viability of T24 cell. BIIB021 downregulated HSP90 expression in T24 cells and inhibited the refolding activity of luciferase in the presence of T24 cell lysate. PCR array data indicated a significant alteration in transcript levels of cancer-related genes involved in metastases, apoptotic cell death, cell cycle, cellular senescence, DNA damage and repair mechanisms, epithelial-to-mesenchymal transition, hypoxia, telomeres and telomerase, and cancer metabolism pathways in T24 cells. All findings hypothesize that BIIB021 could exhibit as effective HSP90 inhibitor in the future for treatment of bladder cancer patients.
Collapse
Affiliation(s)
- Aydemir Asdemir
- Faculty of Medicine, Department of Urology, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
2
|
Guan Z, Liu J, Zheng L. Effect of radiotherapy on head and neck cancer tissues in patients receiving radiotherapy: a bioinformatics analysis-based study. Sci Rep 2024; 14:6304. [PMID: 38491080 PMCID: PMC10943217 DOI: 10.1038/s41598-024-56753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Radiotherapy is pivotal in treating head and neck cancers including nasopharyngeal, tongue, hypopharyngeal, larynx, maxillary sinus, parotid gland, and oral cancers. It holds the potential for curative effects and finds application in conjunction with chemotherapy, either as a radical method to preserve organ function or as an adjuvant postoperative treatment. We used bioinformatics analysis to investigate the effects of radiotherapy on head and neck cancer tissues in patients who had received radiotherapy. In this study, the expression and mutation profiles of The Cancer Genome Atlas-Head-Neck Squamous Cell Carcinoma were downloaded from the UCSC-Xena database, categorizing patients into two groups-those receiving radiotherapy and those not receiving radiotherapy. Subsequently, differential expression analysis and gene set enrichment analysis (GSEA) were performed. Following this, single-sample GSEA (ssGSEA) scores related to glucose and lipid metabolism were compared between the two groups. Additionally, immune cell infiltration analysis and single-cell verification were performed. Finally, the mutation profiles of the two groups were compared. The analyses revealed that patients receiving radiotherapy exhibited prolonged survival, enhanced apoptosis in head and neck cancer tissue, and diminished keratinocyte proliferation and migration. A comparison of ssGSEA scores related to glucose and lipid metabolism between the two groups indicated a reduction in glycolysis, tricarboxylic acid cycle activity, and fat synthesis in tissues treated with radiotherapy, suggesting that radiotherapy can effectively inhibit tumour cell energy metabolism. Analyses of immune cell infiltration and single-cell verification suggested decreased infiltration of immune cells post-radiotherapy in head and neck cancer tissues. A comparison of mutation profiles revealed a higher frequency of TP53, TTN, and CDKN2A mutations in patients receiving radiotherapy for head and neck cancer. In conclusion, the bioinformatics analyses delved into the effect of radiotherapy on patients with head and neck carcinoma. This study provides a theoretical framework elucidating the molecular mechanisms underlying radiotherapy's efficacy in treating head and neck cancer and presents scientific recommendations for drug therapy following radiotherapy.
Collapse
Affiliation(s)
- Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshedong Road, Zhengzhou, 450052, Henan, China
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshedong Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY, Hong SH. Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics 2024; 14:460-479. [PMID: 38169528 PMCID: PMC10758057 DOI: 10.7150/thno.87329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Platinum-based chemotherapy is commonly used for treating solid tumors, but drug resistance often limits its effectiveness. Cancer-associated fibroblast (CAF)-derived extracellular vesicle (EV), which carry various miRNAs, have been implicated in chemotherapy resistance. However, the molecular mechanism through which CAFs modulate cisplatin resistance in oral squamous cell carcinoma (OSCC) is not well understood. We employed two distinct primary CAF types with differential impacts on cancer progression: CAF-P, representing a more aggressive cancer-promoting category, and CAF-D, characterized by properties that moderately delay cancer progression. Consequently, we sought to investigate whether the two CAF types differentially affect cisplatin sensitivity and the underlying molecular mechanism. Methods: The secretion profile was examined by utilizing an antibody microarray with conditioned medium obtained from the co-culture of OSCC cells and two types of primary CAFs. The effect of CAF-dependent factors on cisplatin resistance was investigated by utilizing conditioned media (CM) and extracellular vesicle (EVs) derived from CAFs. The impacts of candidate genes were confirmed using gain- and loss-of-function analyses in spheroids and organoids, and a mouse xenograft. Lastly, we compared the expression pattern of the candidate genes in tissues from OSCC patients exhibiting different responses to cisplatin. Results: When OSCC cells were cultured with conditioned media (CM) from the two different CAF groups, cisplatin resistance increased only under CAF-P CM. OSCC cells specifically expressed insulin-like growth factor binding protein 3 (IGFBP3) after co-culture with CAF-D. Meanwhile, IGFBP3-knockdown OSCC cells acquired cisplatin resistance in CAF-D CM. IGFBP3 expression was promoted by GATA-binding protein 1 (GATA1), a transcription factor targeted by miR-876-3p, which was enriched only in CAF-P-derived EV. Treatment with CAF-P EV carrying miR-876-3p antagomir decreased cisplatin resistance compared to control miRNA-carrying CAF-P EV. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, there was a positive correlation between IGFBP3 and GATA1 expression and cisplatin sensitivity in OSCC tissues from patients. Conclusion: These results provide insights for overcoming cisplatin resistance, especially concerning EVs within the tumor microenvironment. Furthermore, it is anticipated that the expression levels of GATA1 and miR-876-3p, along with IGFBP3, could aid in the prediction of cisplatin resistance.
Collapse
Affiliation(s)
- Soo Hyun Kang
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Kah-Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Mee-Seon Kim
- Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Sung-Tak Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
4
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
5
|
Pan H, Huan C, Hou Y, Yan P, Yang F, Jiang L, Gao S. Porcine IGFBP3 promotes porcine circovirus type 2 replication via PERK/eIF2α mediated DNA damage. Vet Microbiol 2023; 287:109897. [PMID: 37922860 DOI: 10.1016/j.vetmic.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The infection of porcine circovirus type 2 (PCV2) triggers activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway and leads to DNA damage. Insulin-like growth factor-binding protein 3 (IGFBP3) may interact with the endoplasmic reticulum (ER). It remains unclear whether IGFBP3 regulates DNA damage via ER stress to mediate PCV2 replication. In this study, we observed an upregulation of porcine IGFBP3 expression during PCV2 infection, and overexpression of IGFBP3 enhanced the expression of PCV2 Cap protein, PCV2 DNA copy number, and viral titers in PK-15 B6 cells and 3D4/21 cells. Additionally, overexpression of IGFBP3 induced an increase in the DNA damage marker γH2AX by activating the PERK/eIF2α pathway without concomitant activation of ATF4, IRE1α, and ATF6α/GRP78 pathways in PK-15 B6 cells and 3D4/21 cells. Knockdown of IGFBP3 had a reverse effect on PCV2 replication in PK-15 B6 cells and 3D4/21 cells. Furthermore, treatment with etoposide enhanced PCV2 replication while KU57788 decreased it. GSK2606414 and salubrinal limited both DNA damage and viral replication. Therefore, our findings suggest that porcine IGFBP3 promotes PCV2 replication through the PERK/eIF2α pathway-mediated induction of DNA damage in PK-15 B6 cells and 3D4/21 cells. Our study provides a basis for exploring novel antiviral strategies via the extensive understanding of the relationships between host cellular proteins and viral replication.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Ping Yan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Fan Yang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
6
|
Zhu K, Gao T, Wang Z, Zhang L, Tan K, Lv Z. RNA N6-methyladenosine reader IGF2BP3 interacts with MYCN and facilitates neuroblastoma cell proliferation. Cell Death Discov 2023; 9:151. [PMID: 37156775 PMCID: PMC10167253 DOI: 10.1038/s41420-023-01449-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Neuroblastoma (NB) is a kind of typical life-threatening extracranial tumor in children. N6-methyladenosine (m6A) modification is closely related to multiple cancer pathological processes. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is a top-ranked prognostic risk gene in NB; however, its function is uncertain. The expression of m6A-associated enzymes in patients with NB was analyzed using the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The IGF2BP3 level in NB cell lines and primary samples was tested using quantitative real-time polymerase chain reaction (qRT-PCR), western blot method, and immunohistochemical analysis. The IGF2BP3 function in cell proliferation was clarified based on many functional in vitro and in vivo experiments. The interaction between IGF2BP3 and N-myc was researched via RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and chromatin immunoprecipitation (ChIP) assays. The 16 m6A-regulated enzymes in NB were researched, and the result indicated that IGF2BP3 overexpression was related to cancer progression, COG risk, and survival based on the GEO and TARGET databases. Besides, the IGF2BP3 and MYCN levels were positively correlated. IGF2BP3 expression levels increased in MYCN-amplified NB clinical samples and cells. Knockdown of IGF2BP3 inhibited N-myc expression and NB cell proliferation in vitro and in vivo. IGF2BP3 regulates MYCN RNA stability by modifying m6A. In addition, we demonstrated that N-myc is a transcription factor that directly promotes IGF2BP3 expression in NB cells. IGF2BP3 regulates the proliferation of NB cells via m6A modification of MYCN. N-myc also acts as a transcription factor that regulates IGF2BP3 expression. A positive feedback loop between IGF2BP3 and N-myc facilitates NB cell proliferation.
Collapse
Affiliation(s)
- Kai Zhu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Tingting Gao
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhiru Wang
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liaoran Zhang
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
7
|
Wang X, Li J, Zhang W, Wang F, Wu Y, Guo Y, Wang D, Yu X, Li A, Li F, Xie Y. IGFBP-3 promotes cachexia-associated lipid loss by suppressing insulin-like growth factor/insulin signaling. Chin Med J (Engl) 2023; 136:974-985. [PMID: 37014770 PMCID: PMC10278738 DOI: 10.1097/cm9.0000000000002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Progressive lipid loss of adipose tissue is a major feature of cancer-associated cachexia. In addition to systemic immune/inflammatory effects in response to tumor progression, tumor-secreted cachectic ligands also play essential roles in tumor-induced lipid loss. However, the mechanisms of tumor-adipose tissue interaction in lipid homeostasis are not fully understood. METHODS The yki -gut tumors were induced in fruit flies. Lipid metabolic assays were performed to investigate the lipolysis level of different types of insulin-like growth factor binding protein-3 (IGFBP-3) treated cells. Immunoblotting was used to display phenotypes of tumor cells and adipocytes. Quantitative polymerase chain reaction (qPCR) analysis was carried out to examine the gene expression levels such as Acc1 , Acly , and Fasn et al . RESULTS In this study, it was revealed that tumor-derived IGFBP-3 was an important ligand directly causing lipid loss in matured adipocytes. IGFBP-3, which is highly expressed in cachectic tumor cells, antagonized insulin/IGF-like signaling (IIS) and impaired the balance between lipolysis and lipogenesis in 3T3-L1 adipocytes. Conditioned medium from cachectic tumor cells, such as Capan-1 and C26 cells, contained excessive IGFBP-3 that potently induced lipolysis in adipocytes. Notably, neutralization of IGFBP-3 by neutralizing antibody in the conditioned medium of cachectic tumor cells significantly alleviated the lipolytic effect and restored lipid storage in adipocytes. Furthermore, cachectic tumor cells were resistant to IGFBP-3 inhibition of IIS, ensuring their escape from IGFBP-3-associated growth suppression. Finally, cachectic tumor-derived ImpL2, the IGFBP-3 homolog, also impaired lipid homeostasis of host cells in an established cancer-cachexia model in Drosophila . Most importantly, IGFBP-3 was highly expressed in cancer tissues in pancreatic and colorectal cancer patients, especially higher in the sera of cachectic cancer patients than non-cachexia cancer patients. CONCLUSION Our study demonstrates that tumor-derived IGFBP-3 plays a critical role in cachexia-associated lipid loss and could be a biomarker for diagnosis of cachexia in cancer patients.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunzi Wu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yulin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Dong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinfeng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Blatt S, Kämmerer PW, Krüger M, Surabattula R, Thiem DGE, Dillon ST, Al-Nawas B, Libermann TA, Schuppan D. High-Multiplex Aptamer-Based Serum Proteomics to Identify Candidate Serum Biomarkers of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15072071. [PMID: 37046731 PMCID: PMC10093013 DOI: 10.3390/cancers15072071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Improved serological biomarkers are needed for the early detection, risk stratification and treatment surveillance of patients with oral squamous cell carcinoma (OSCC). We performed an exploratory study using advanced, highly specific, DNA-aptamer-based serum proteomics (SOMAscan, 1305-plex) to identify distinct proteomic changes in patients with OSCC pre- vs. post-resection and compared to healthy controls. A total of 63 significantly differentially expressed serum proteins (each p < 0.05) were found that could discriminate between OSCC and healthy controls with 100% accuracy. Furthermore, 121 proteins were detected that were significantly altered between pre- and post-resection sera, and 12 OSCC-associated proteins reversed to levels equivalent to healthy controls after resection. Of these, 6 were increased and 6 were decreased relative to healthy controls, highlighting the potential relevance of these proteins as OSCC tumor markers. Pathway analyses revealed potential pathophysiological mechanisms associated with OSCC. Hence, quantitative proteome analysis using SOMAscan technology is promising and may aid in the development of defined serum marker assays to predict tumor occurrence, progression and recurrence in OSCC, and to guide personalized therapies.
Collapse
|
9
|
Saikia M, Bhattacharyya DK, Kalita JK. Identification of Potential Biomarkers Using Integrative Approach: A Case Study of ESCC. SN COMPUTER SCIENCE 2023; 4:114. [PMID: 36573207 PMCID: PMC9769493 DOI: 10.1007/s42979-022-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
This paper presents a consensus-based approach that incorporates three microarray and three RNA-Seq methods for unbiased and integrative identification of differentially expressed genes (DEGs) as potential biomarkers for critical disease(s). The proposed method performs satisfactorily on two microarray datasets (GSE20347 and GSE23400) and one RNA-Seq dataset (GSE130078) for esophageal squamous cell carcinoma (ESCC). Based on the input dataset, our framework employs specific DE methods to detect DEGs independently. A consensus based function that first considers DEGs common to all three methods for further downstream analysis has been introduced. The consensus function employs other parameters to overcome information loss. Differential co-expression (DCE) and preservation analysis of DEGs facilitates the study of behavioral changes in interactions among DEGs under normal and diseased circumstances. Considering hub genes in biologically relevant modules and most GO and pathway enriched DEGs as candidates for potential biomarkers of ESCC, we perform further validation through biological analysis as well as literature evidence. We have identified 25 DEGs that have strong biological relevance to their respective datasets and have previous literature establishing them as potential biomarkers for ESCC. We have further identified 8 additional DEGs as probable potential biomarkers for ESCC, but recommend further in-depth analysis.
Collapse
Affiliation(s)
- Manaswita Saikia
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Dhruba K Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Jugal K Kalita
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Colorado Springs, CO 80918 USA
| |
Collapse
|
10
|
Ding TY, Peng YH, Hong CQ, Huang BL, Liu CT, Luo Y, Chu LY, Zhang B, Li XH, Qu QQ, Xu YW, Wu FC. Serum insulin-like growth factor binding protein 3 as a promising diagnostic and prognostic biomarker in esophagogastric junction adenocarcinoma. Discov Oncol 2022; 13:128. [PMID: 36409444 PMCID: PMC9679126 DOI: 10.1007/s12672-022-00591-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Esophagogastric junction adenocarcinoma (EJA) lacks serum biomarkers to assist in diagnosis and prognosis. Here, we aimed to evaluate the diagnostic and prognostic value of serum insulin-like growth factor binding protein 3 (IGFBP3) in EJA patients. METHODS 320 participants were recruited from November 2016 to January 2020, who were randomly divided into a training cohort (112 normal controls and 102 EJA patients including 24 early-stage patients) and a validation cohort (56 normal controls and 50 EJA patients including 12 early-stage patients). We used receiver operating characteristics curve (ROC) to evaluate diagnostic value. The predictive performance of the nomogram was evaluated by the concordance index (C-index). RESULTS Serum IGFBP3 levels were significantly lower in early-stage EJA or EJA patients than those in controls (P < 0.01). Measurement of serum IGFBP3 demonstrated an area under curve of 0.819, specificity 90.18% and sensitivity 43.14% in training cohort. Similar results were observed in validation cohort (0.804, 87.50%, 42.00%). Importantly, serum IGFBP3 had a satisfactory diagnostic value for early-stage EJA (0.822, 90.18%, 45.83% and 0.811, 84.48%, 50.00% in training and validation cohorts, respectively). Furthermore, survival analysis demonstrated that lower serum IGFBP3 level was related to poor prognosis (P < 0.05). Cox multivariate analysis revealed that serum IGFBP3 was an independent prognostic factor (HR = 0.468, P = 0.005). Compared with TNM stage, a nomogram based on serum IGFBP3, tumor size and TNM stage indicated an improved C-index in prognostic prediction (0.625 vs. 0.735, P = 0.001). CONCLUSIONS We found that serum IGFBP3 was a potential diagnostic and prognostic marker of EJA. Meanwhile, the nomogram might predict the prognosis of EJA more accurately and efficiently.
Collapse
Affiliation(s)
- Tian-Yan Ding
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510000, Guangdong, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510000, Guangdong, China
| | - Yun Luo
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ling-Yu Chu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Biao Zhang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xin-Hao Li
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qi-Qi Qu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Institute, Guangzhou, 510000, Guangdong, China
| | - Fang-Cai Wu
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
11
|
Zhao H, Jiang H, Zhang H, Sun Z, Lin Q, Wang T, Yu T, Zhang Y. Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Rescue Tendon Injury in Rat via the miR-19 a/IGFBP3 Axis. Stem Cells Int 2022; 2022:4197473. [PMID: 36132169 PMCID: PMC9484934 DOI: 10.1155/2022/4197473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Adipose-derived mesenchymal stem cells (ADSCs) are increasingly applied in tendon repair. However, the underlying mechanisms of ADSC-derived extracellular vesicles (EVs) in tendon healing are largely unknown. In this study, we investigated the effect of the EVs secreted by ADSCs on the recovery of tendon injuries and its potential mechanism. Materials and Methods We injected ADSCs into the injured tendon, followed by the evaluation of the tissue morphology, tenocyte proliferation, and oxidative stress. Then, the injured tenocytes were treated with EVs secreted by ADSCs, and oxidative stress and proliferation of tenocytes in vitro were detected. After the overexpression and knockdown of miR-19a and its target protein IGFBP3, the oxidative stress and proliferation of tenocytes in vitro were assessed. Finally, the injured tendon was treated with EVs, and the tissue morphology and proliferation of the injured tendon in vivo were examined. Results ADSC-derived EVs were found to inhibit oxidative stress and promote proliferation of tenocytes isolated from an injury model of rats. EVs were shown to carry miR-19a which regulated the expression of IGFBP3 through binding to 3'UTR of IGFBP3 mRNA. In addition, IGFBP3 promotes oxidative stress and inhibits proliferation of tenocytes. Finally, we found that ADSC-derived EVs promoted tendon wound healing in vivo. Conclusions Our data suggest that treatment with ADSC-derived EVs ameliorates tendon injury by inhibiting oxidative stress and promoting proliferation in tenocytes. miR-19a carried by ADSC-derived EVs regulates IGFBP3 expression through binding to its 3'UTR.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Hongyuan Jiang
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Haoyun Zhang
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Zewen Sun
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Qian Lin
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Tianrui Wang
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Tengbo Yu
- Department of Orthopedics, Qingdao University Hospital, Qingdao 266000, China
| | - Yingze Zhang
- Trauma and Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
12
|
Upregulated IGFBP3 with Aging Is Involved in Modulating Apoptosis, Oxidative Stress, and Fibrosis: A Target of Age-Related Erectile Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6831779. [PMID: 35154570 PMCID: PMC8831074 DOI: 10.1155/2022/6831779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022]
Abstract
Aging has been deemed the primary factor in erectile dysfunction (ED). Herein, age-related changes in the erectile response and histomorphology were detected, and the relationship between aging and ED was investigated based on gene expression levels. Thirty male Sprague–Dawley (SD) rats were randomly divided into 6 groups, and intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured. Subsequently, the corpus cavernosum (CC) was harvested and prepared for histological examinations of apoptosis, oxidative stress (OS), and fibrosis. Then, the microarray dataset (GSE10804) was analyzed to identify differentially expressed genes (DEGs) in ED progression, and hub genes were selected. In addition, aged CC smooth muscle cells (CCSMCs) were isolated to evaluate the function of the hub gene by siRNA interference, qRT–PCR, immunofluorescence staining, enzyme-linked immunosorbent assay, western blot analysis, CCK-8 assay, EdU staining, and flow cytometry approaches. The ICP/MAP and smooth muscle cell (SMC)/collagen ratios declined with aging, while apoptosis and OS levels increased with aging. The enriched functions and pathways of the DEGs were investigated, and 15 hub genes were identified, among which IGFBP3 was significantly upregulated. The IGFBP3 upregulation was verified in the CC of aging rats. Furthermore, aged CCSMCs were transfected with siRNA to knock down IGFBP3 expression. The viability and proliferation of the CCSMCs increased, while apoptosis, OS, and fibrosis decreased. Our findings demonstrate that the erectile response of SD rats declines in parallel with enhanced CC apoptosis, OS, and fibrosis with aging. Upregulation of IGFBP3 plays an important role; furthermore, downregulation of IGFBP3 improves the viability and proliferation of CCSMCs and alleviates apoptosis, OS, and fibrosis. Thus, IGFBP3 is a potential therapeutic target for age-related ED.
Collapse
|
13
|
Identification of Aging-Related Genes Associated with Prognostic Value and Immune Microenvironment Characteristics in Diffuse Large B-Cell Lymphoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3334522. [PMID: 35069971 PMCID: PMC8777392 DOI: 10.1155/2022/3334522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a complex invasive tumour that occurs mainly among the elderly. Therefore, we analysed the relationship between ageing-related genes (AG) and DLBCL prognosis. Datasets related to DLBCL and human AGs were downloaded and screened from the Gene Expression Omnibus (GEO) database and HAGR website, respectively. LASSO and Cox regression were used to analyse AGs in the dataset and construct an AG predictive model related to DLBCL prognosis. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment were used to analyse the function of the AG predictive model. The immune microenvironment and immune cell infiltration in DLBCL and their relationship with the AG prediction model were also analysed. After the analysis, 118 AGs were identified as genes related to DLBCL prognosis. Using the LASSO and Cox regression analyses, 9 AGs (PLAU, IL7R, MYC, S100B, IGFBP3, NR3C1, PTK2, TBP, and CLOCK) were used to construct an AG prognostic model. In the training and verification sets, this model exhibited excellent predictive ability for the prognosis of patients with DLBCL who have different clinical characteristics. Further analysis revealed that the high- and low-risk groups of the AG prognostic model were significantly correlated with immune cell infiltration and tumour microenvironment in DLBCL. Functional enrichment analysis also showed that the genes in the AG model were associated with immune-related functions and pathways. In conclusion, we constructed an AG model with a strong predictive function in DLBCL, with the ability to predict the prognosis of patients with different clinical features. This model provides new ideas and potential therapeutic targets for the study of the pathogenesis of DLBCL.
Collapse
|
14
|
Bakker EY, Fujii M, Krstic-Demonacos M, Demonacos C, Alhammad R. Protein disulfide isomerase A1‑associated pathways in the development of stratified breast cancer therapies. Int J Oncol 2022; 60:16. [PMID: 35014681 PMCID: PMC8776328 DOI: 10.3892/ijo.2022.5306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
The oxidoreductase protein disulfide isomerase A1 (PDIA1) functions as a cofactor for many transcription factors including estrogen receptor α (ERα), nuclear factor (NF)-κB, nuclear factor erythroid 2-like 2 (NRF2) and regulates the protein stability of the tumor suppressor p53. Taking this into account we hypothesized that PDIA1, by differentially modulating the gene expression of a diverse subset of genes in the ERα-positive vs. the ERα-negative breast cancer cells, might modify dissimilar pathways in the two types of breast cancer. This hypothesis was investigated using RNA-seq data from PDIA1-silenced MCF-7 (ERα-positive) and MDA-MB-231 (ERα-negative) breast cancer cells treated with either interferon γ (IFN-γ) or etoposide (ETO), and the obtained data were further analyzed using a variety of bioinformatic tools alongside clinical relevance assessment via Kaplan-Meier patient survival curves. The results highlighted the dual role of PDIA1 in suppressing carcinogenesis in the ERα(+) breast cancer patients by negatively regulating the response to reactive oxygen species (ROS) and promoting carcinogenesis by inducing cell cycle progression. In the ERα(−) breast cancer patients, PDIA1 prevented tumor development by modulating NF-κB and p53 activity and cell migration and induced breast cancer progression through control of cytokine signaling and the immune response. The findings reported in this study shed light on the differential pathways regulating carcinogenesis in ERα(+) and ERα(−) breast cancer patients and could help identify therapeutic targets selectively effective in ERα(+) vs. ERα(−) patients.
Collapse
Affiliation(s)
- Emyr Yosef Bakker
- School of Medicine, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Fukuoka 820‑8555, Japan
| | | | - Constantinos Demonacos
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Rashed Alhammad
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Guo J, Liu X, Zeng Y, Liang T, Tang K, Guo J, Zheng W. Comprehensive Analysis of the Effects of Genetic Ancestry and Genetic Characteristics on the Clinical Evolution of Oral Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:678464. [PMID: 34950653 PMCID: PMC8689072 DOI: 10.3389/fcell.2021.678464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), a kind of malignant cancer, is associated with increasing morbidity and mortality. Patients with different genetic ancestries may respond differently to clinical treatment. The limited understanding of the influence of genetic ancestry and genetic characteristics on OSCC impedes the development of precision medicine. To provide a reference for clinical treatment, this study comprehensively analyzed multigenomic differences in OSCC patients with different genetic ancestries and their impact on prognosis. An analysis of data from OSCC patients with different genetic ancestries in The Cancer Genome Atlas (TCGA) showed that the overall survival (OS) of African (AFR) patients was lower than that of primarily European (EUR) patients, and differences were also observed in the tumor-stroma ratio (TSR) and tumor-infiltrating lymphocytes (TILs), which are associated with prognosis. FAT1 is a key mutant gene in OSCC, and it has inconsistent effects on clinical evolution for patients with diverse genetic characteristics. PIKfyve and CAPN9 showed a significant difference in mutation frequency between EUR and AFR; PIKfyve was related to Ki-67 expression, suggesting that it could promote tumor proliferation, and CAPN9 was related to the expression of Bcl-2, promoting tumor cell apoptosis. A variant methylation locus, cg20469139, was correlated with the levels of PD-L1 and Caspase-7 and modulated tumor cell apoptosis. A novel ceRNA model was constructed based on genetic ancestries, and it could accurately evaluate patient prognosis. More importantly, although T cell dysfunction scores could determine the potential of tumor immune escape, the efficacy was obviously affected by patients' genetic ancestries. To provide patients with more precise, personalized therapy and to further improve their quality of life and 5-year survival rate, the influence of genetic ancestry should be fully considered when selecting treatments.
Collapse
Affiliation(s)
- Junfeng Guo
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoping Liu
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Yi Zeng
- Department of Stomatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Taotao Liang
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junfeng Guo
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Weiwei Zheng
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| |
Collapse
|
16
|
Pan W, Wang K, Li J, Li H, Cai Y, Zhang M, Wang A, Wu Y, Gao W, Weng W. Restoring HOXD10 Exhibits Therapeutic Potential for Ameliorating Malignant Progression and 5-Fluorouracil Resistance in Colorectal Cancer. Front Oncol 2021; 11:771528. [PMID: 34790580 PMCID: PMC8591167 DOI: 10.3389/fonc.2021.771528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that hypermethylation of HOXD10 plays an important role in human cancers. However, the biological and clinical impacts of HOXD10 overmethylation and its downstream targets in colorectal cancer remain unknown. We evaluated the methylation level of HOXD10 in paired cancer and normal tissues (n = 42) by using pyrosequencing, followed by validation of the methylation status of HOXD10 from The Cancer Genome Atlas (TCGA) datasets with 302 cancer tissues and 38 normal tissues. The biological function of HOXD10 was characterized in cell lines. We further evaluated the effects of HOXD10 and its targets on chemoresistance in our established resistant cell lines and clinical cohort (n = 66). HOXD10 was found frequently methylated in colorectal cancer, and its hypermethylation correlates with its low expression level, advanced disease, and lymph node metastasis. Functionally, HOXD10 acts as a tumor suppressor gene, in which HOXD10-expressing cells showed suppressed cell proliferation, colony formation ability, and migration and invasion capacity. Mechanistically, DNMT1, DNMT3B, and MeCP2 were recruited in the HOXD10 promoter, and demethylation by 5-Aza-2′-deoxycytidine (5-Aza-CdR) treatment or MeCP2 knockdown can sufficiently induce HOXD10 expression. HOXD10 regulates the expressions of miR-7 and IGFBP3 in a promoter-dependent manner. Restoration of the expression of HOXD10 in 5-fluorouracil (5-FU)-resistant cells significantly upregulates the expressions of miR-7 and IGFBP3 and enhances chemosensitivity to 5-FU. In conclusion, we provide novel evidence that HOXD10 is frequently methylated, silenced, and contributes to the development of colorectal cancers. Restoration of HOXD10 activates the expressions of miR-7 and IGFBP3 and results in an inhibited phenotype biologically, suggesting its potential therapeutic relevance in colorectal cancer (CRC).
Collapse
Affiliation(s)
- Weijie Pan
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaijing Wang
- Department of Hepatological Surgery, General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayong Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuchan Cai
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aili Wang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yazhou Wu
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of General Surgery, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|