1
|
Takeda Y, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Noda T, Takahashi H, Asaoka T, Shimizu J, Doki Y, Eguchi H. MicroRNA-26a-5p is a reliable biomarker in the adjuvant setting for pancreatic ductal adenocarcinoma. PLoS One 2024; 19:e0310328. [PMID: 39288140 PMCID: PMC11407630 DOI: 10.1371/journal.pone.0310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high recurrence rate even after radical resection because of subclinical tumors. To manage them, a reliable biomarker that can indicate the presence of subclinical tumors and predict their chemosensitivity is required. This study aimed to identify a miRNA as a biomarker that can be used to individualize postoperative adjuvant chemotherapy using postoperative peripheral blood samples. Integrating miRNA microarray data from the blood of 18 patients with PDAC and the in vitro results regarding the phenotypes of chemoresistant PDAC cells, a candidate miRNA was identified. The relationships between candidate miRNA expression and chemosensitivity were examined in vitro and in clinical samples from other cohorts of 33 patients with recurrence. Comprehensive analyses of blood samples detected 5 candidate miRNAs. Of these, miR-26a-5p was considered a candidate biomarker of chemosensitive phenotypes. In validation experiments, chemosensitivity was inversely correlated with miR-26a-5p expression in vitro. Moreover, the ability of miR-26a-5p to predict chemosensitivity was clinically evaluated using blood samples. Patients with high miR-26a-5p expression in the blood after radical resection exhibited a significantly longer survival time after recurrence. Thus, we concluded that miR-26a-5p is a potentially useful biomarker for managing patients with PDAC, especially those undergoing adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yu Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Junzo Shimizu
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Lopez-Cerda M, Lorenzo-Sanz L, da Silva-Diz V, Llop S, Penin RM, Bermejo JO, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Martin-Liberal J, Muñoz P. IGF1R signaling induces epithelial-mesenchymal plasticity via ITGAV in cutaneous carcinoma. J Exp Clin Cancer Res 2024; 43:211. [PMID: 39075581 PMCID: PMC11285232 DOI: 10.1186/s13046-024-03119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease. METHODS Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples. Phosphoproteomic analysis have revealed signaling pathways induced in epithelial plastic cancer cells that promote epithelial-mesenchymal plasticity (EMP) and tumor progression. These pathways have been validated by genetic and pharmacological inhibition assays. RESULTS We show that the emergence of epithelial cancer cells expressing integrin αV (ITGAV) promotes cSCC progression to a mesenchymal state. Consistently, ITGAV expression allows the identification of patients at risk of cSCC relapse above the currently employed clinical histopathological parameters. We also demonstrate that activation of insulin-like growth factor-1 receptor (IGF1R) pathway in epithelial cancer cells is necessary to induce EMP and mesenchymal state acquisition in response to tumor microenvironment-derived factors, while promoting ITGAV expression. Likewise, ITGAV knockdown in epithelial plastic cancer cells also blocks EMP acquisition, generating epithelial tumors. CONCLUSIONS Our results demonstrate that ITGAV is a prognostic biomarker of relapse in cSCCs that would allow improved patient stratification. ITGAV also collaborates with IGF1R to induce EMP in epithelial cancer cells and promotes cSCC progression, revealing a potential therapeutic strategy to block the generation of advanced mesenchymal cSCCs.
Collapse
Affiliation(s)
- Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
4
|
Martínez-Flores R, Lozano-Burgos C, Niklander SE, Fernández-Cuya M, Lopes MA, González-Arriagada WA. Relationship between aggressive features of oral squamous cell carcinoma and the immunoexpression of CX3CR1, CX3CL1 and ITGAV. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:79-87. [PMID: 38760287 DOI: 10.1016/j.oooo.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE We aimed to describe the association between CX3CR1, CX3CL1, and ITGAV immunoexpression with PNI and adverse oncologic outcomes in patients with OSCC. STUDY DESIGN Expression CX3CR1, CX3CL1, and ITGAV was assessed by immunohistochemistry in a cohort of 50 paraffin-embedded resections of OSCC. Survival analysis, Cox, and binary logistic regressions were undertaken to determine the impact on patient survival and predictive value for PNI. RESULTS CX3CL1 positive nerves exhibited a significant association with tumor budding (TB) (P = .043), whereas nerves positive for ITGAV were associated with PNI (P = .021), T3-T4 tumor size (P = .029), and III-IV stage (P = .044). Cases with ITGAV-positive nerves exhibited an odds ratio of 9.603 (P = .008) for PNI, whereas cases with CX3CL1-positive nerves exhibited and odds ratio of 4.682 (P = .033) for TB. A trend toward decreased 5-year overall survival (P = .078) and 5-year disease-specific survival (P = .09) was observed in relation to ITGAV-positive nerves. However, no independent predictors for poor survival were identified. CONCLUSIONS The expression of ITGAV was associated with PNI and advanced disease, whereas the expression of CX3CL1 was related to TB, suggesting that ITGAV and CX3CL1 are involved in their respective developments. Therefore, further investigations are encouraged to assess the potential utility of targeted therapies against CX3CL1 receptors in OSCC.
Collapse
Affiliation(s)
- René Martínez-Flores
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile; Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil; Unidad de Apoyo de Anatomía Patológica, Hospital Carlos Van Buren, Valparaíso, Chile; Unidad de Cirugía Maxilofacial y Odontología, Hospital Carlos Van Buren, Valparaíso, Chile
| | - Carlo Lozano-Burgos
- Unidad de Apoyo de Anatomía Patológica, Hospital Carlos Van Buren, Valparaíso, Chile
| | - Sven Eric Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| | | | - Márcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Wilfredo Alejandro González-Arriagada
- Universidad de Los Andes, Chile. Centro de Investigación e Innovación Biomédica; Universidad de Los Andes, Chile. Facultad de Odontología; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
5
|
Ke B, Jin P, Wang XJ, Liu N, Liang H, Zhang RP. Oncogenic and immunological role of EDIL3 in human tumours: From pan-cancer analysis to validation in gastric cancer. Heliyon 2024; 10:e32291. [PMID: 38882287 PMCID: PMC11180325 DOI: 10.1016/j.heliyon.2024.e32291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
Background Epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3) is a secreted extracellular matrix protein implicated in diverse physiological and pathological processes including embryonic development, angiogenesis, and anti-inflammatory responses. Recent reports have indicated that EDIL3 play critical roles in carcinogenesis and progression of many cancers. Herein, we performed a pan-cancer investigation to study the potential functions of EDIL3 in various cancers and experimentally validate its function in gastric cancer (GC). Methods We analysed EDIL3 expression profiles in different tumours using The Cancer Genome Atlas database. The Kaplan-Meier Plotter was used to investigate the prognostic value of EDIL3, while receiver operating characteristic curve was performed to analyze its diagnostic efficacy. Several bioinformatics tools were used to study the association between EDIL3 and promoter methylation, gene enrichment analysis, immune infiltration, immune-related genes, and drug sensitivity. Molecular biology experiments were conducted to validate the tumorigenic effects of EDIL3. Results EDIL3 is variably expressed in different cancers and is closely associated with clinical outcomes. An inverse correlation between EDIL3 and DNA methylation has been observed in 13 cancers. Enrichment analysis indicated that EDIL3 is correlated with many cellular pathways such as extracellular matrix receptor interactions and focal adhesion. EDIL3 was tightly associated with immune infiltration and immune checkpoints. EDIL3 knockdown can promote GC calls apoptosis while preventing proliferation, migration, and invasion in vitro. Conclusion EDIL3 is a promising prognostic, diagnostic, and immunological biomarker in various cancers, which could be applied as a new target for cancer therapy.
Collapse
Affiliation(s)
- Bin Ke
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, 300060, Tianjin, China
| | - Peng Jin
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, 300060, Tianjin, China
| | - Xue-Jun Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, 300060, Tianjin, China
| | - Ning Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, 300060, Tianjin, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, 300060, Tianjin, China
| | - Ru-Peng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, 300060, Tianjin, China
| |
Collapse
|
6
|
Creeden JF, Sevier J, Zhang JT, Lapitsky Y, Brunicardi FC, Jin G, Nemunaitis J, Liu JY, Kalinoski A, Rao D, Liu SH. Smart exosomes enhance PDAC targeted therapy. J Control Release 2024; 368:413-429. [PMID: 38431093 DOI: 10.1016/j.jconrel.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Exosomes continue to attract interest as a promising nanocarrier drug delivery technology. They are naturally derived nanoscale extracellular vesicles with innate properties well suited to shuttle proteins, lipids, and nucleic acids between cells. Nonetheless, their clinical utility is currently limited by several major challenges, such as their inability to target tumor cells and a high proportion of clearance by the mononuclear phagocyte system (MPS) of the liver and spleen. To overcome these limitations, we developed "Smart Exosomes" that co-display RGD and CD47p110-130 through CD9 engineering (ExoSmart). The resultant ExoSmart demonstrates enhanced binding capacity to αvβ3 on pancreatic ductal adenocarcinoma (PDAC) cells, resulting in amplified cellular uptake in in vitro and in vivo models and increased chemotherapeutic efficacies. Simultaneously, ExoSmart significantly reduced liver and spleen clearance of exosomes by inhibiting macrophage phagocytosis via CD47p110-130 interaction with signal regulatory proteins (SIRPα) on macrophages. These studies demonstrate that an engineered exosome drug delivery system increases PDAC therapeutic efficacy by enhancing active PDAC targeting and prolonging circulation times, and their findings hold tremendous translational potential for cancer therapy while providing a concrete foundation for future work utilizing novel peptide-engineered exosome strategies.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Jonathan Sevier
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, OH, USA
| | - F Charles Brunicardi
- Department of Surgery, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ge Jin
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jing-Yuan Liu
- Department of Medicine, University of Toledo, Toledo, OH, USA
| | | | | | - Shi-He Liu
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
7
|
Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, Scotti GM, Socci C, Cesana G, Olmi S, Morelli MJ, Falconi M, Giustina A, Bonini C, Piemonti L, Ruggiero E, Petrelli A. Fat-to-blood recirculation of partially dysfunctional PD-1 +CD4 Tconv cells is associated with dysglycemia in human obesity. iScience 2024; 27:109032. [PMID: 38380252 PMCID: PMC10877684 DOI: 10.1016/j.isci.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefano Olmi
- San Marco Hospital GSD, Zingonia, Bergamo, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Massimo Falconi
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
8
|
Mattson NM, Chan AKN, Miyashita K, Mukhaleva E, Chang WH, Yang L, Ma N, Wang Y, Pokharel SP, Li M, Liu Q, Xu X, Chen R, Singh P, Zhang L, Elsayed Z, Chen B, Keen D, Pirrotte P, Rosen ST, Chen J, LaBarge MA, Shively JE, Vaidehi N, Rockne RC, Feng M, Chen CW. A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens. Nat Struct Mol Biol 2024; 31:465-475. [PMID: 38316881 PMCID: PMC10948361 DOI: 10.1038/s41594-024-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
The plasma membrane is enriched for receptors and signaling proteins that are accessible from the extracellular space for pharmacological intervention. Here we conducted a series of CRISPR screens using human cell surface proteome and integrin family libraries in multiple cancer models. Our results identified ITGAV (integrin αV) and its heterodimer partner ITGB5 (integrin β5) as the essential integrin α/β pair for cancer cell expansion. High-density CRISPR gene tiling further pinpointed the integral pocket within the β-propeller domain of ITGAV for integrin αVβ5 dimerization. Combined with in silico compound docking, we developed a CRISPR-Tiling-Instructed Computer-Aided (CRISPR-TICA) pipeline for drug discovery and identified Cpd_AV2 as a lead inhibitor targeting the β-propeller central pocket of ITGAV. Cpd_AV2 treatment led to rapid uncoupling of integrin αVβ5 and cellular apoptosis, providing a unique class of therapeutic action that eliminates the integrin signaling via heterodimer dissociation. We also foresee the CRISPR-TICA approach to be an accessible method for future drug discovery studies.
Collapse
Affiliation(s)
- Nicole M Mattson
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Anthony K N Chan
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kazuya Miyashita
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Wen-Han Chang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaobao Xu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Priyanka Singh
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zeinab Elsayed
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bryan Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Denise Keen
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mark A LaBarge
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John E Shively
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mingye Feng
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Division of Epigenetic and Transcriptional Engineering, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
9
|
Zhang C, Wu D, Dong B, Liao G, Yu Y, Huang S, Luo F, Zhang B, Wu H, Li T, Wen D, Tai S. The scaffold of neutrophil extracellular traps promotes CCA progression and modulates angiogenesis via ITGAV/NFκB. Cell Commun Signal 2024; 22:103. [PMID: 38326837 PMCID: PMC10851487 DOI: 10.1186/s12964-024-01500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have garnered attention for their dual role in host defense and tumor promotion. With their involvement documented across a spectrum of tumors, their influence on the progression of cholangiocarcinoma (CCA) is of paramount interest. We employed immunohistochemistry and immunofluorescence to detect NET deposition in CCA tissues. Through in vitro and in vivo investigation, including CCA organoid and transposon-based models in PAD4 KO mice, we explored the effects of NETs on cell proliferation and metastasis. Molecular insights were gained through RNA sequencing, enzyme linked immunosorbent assay, and chromatin immunoprecipitation. Elevated intratumoral NET deposition within CCA tissues was associated with poor survival. The influence of NETs on CCA proliferation, migration and invasion was primarily mediated by NET-DNA. RNA sequencing unveiled the activation of the NFκB signaling pathway due to NET-DNA stimulation. NET-DNA pull-down assay coupled with mass spectrometry revealed the interaction between NET-DNA and αV integrin (ITGAV), culmination in the activation of the NFκB pathway. Furthermore, NET-DNA directly upregulated the expression of VEGF-A in cancer cells. The study unequivocally establishes NETs as facilitators of CCA progression, orchestrating proliferation, metastasis, and angiogenesis through ITGAV/NFκB pathway activation. This novel insight positions NETs as prospective therapeutic targets for managing CCA patients. By implementing a variety of methodologies and drawing intricate connections between NETs, DNA interactions, and signaling pathways, this research expands our comprehension of the complex interplay between the immune system and cancer progression, offering promising avenues for intervention.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Precision nutrition and health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, China
| | - Dehai Wu
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guanqun Liao
- Department of Hepatobiliary Surgery, Foshan Hospital Affiliated to Southern Medical University, Foshan, China
| | - Yang Yu
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shizhuan Huang
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Luo
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haotian Wu
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianwei Li
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dixiang Wen
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of hepatic surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Shen K, Chen B, Gao W. Integrated single-cell RNA sequencing analysis reveals a mesenchymal stem cell-associated signature for estimating prognosis and drug sensitivity in gastric cancer. J Cancer Res Clin Oncol 2023; 149:11829-11847. [PMID: 37410142 DOI: 10.1007/s00432-023-05058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play an important role in regulating all stages of the immune response, angiogenesis, and transformation of matrix components in the tumor microenvironment. The aim of this study was to identify the prognostic value of MSC-related signatures in patients with gastric cancer (GC). METHODS MSC marker genes were identified by analyzing single-cell RNA sequencing (scRNA-seq) data for GC from the Gene Expression Omnibus (GEO) database. Using bulk sequencing data from the Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD), as a training cohort, and data from GEO, as a validation cohort, we developed a risk model consisting of MSC prognostic signature genes, and classified GC patients into high- and low-MSC risk subgroups. Multifactorial Cox regression was used to evaluate whether MSC prognostic signature was an independent prognostic factor. An MSC nomogram was constructed combining clinical information and risk grouping. Subsequently, we evaluated the effect of MSC prognostic signature on immune cell infiltration, antitumor drugs and immune checkpoints and verified the expression of MSC prognostic signature by in vitro cellular assays. RESULTS In this study, 174 MSC marker genes were identified by analyzing scRNA-seq data. We identified seven genes (POSTN, PLOD2, ITGAV, MMP11, SDC2, MARCKS, ANXA5) to construct MSC prognostic signature. MSC prognostic signature was an independent risk factor in the TCGA and GEO cohorts. GC patients in the high-MSC risk group had worse prognoses. In addition, the MSC nomogram has a high clinical application value. Notably, the MSC signature can induce the development of a poor immune microenvironment. GC patients in the high MSC-risk group were more sensitive to anticancer drugs and tended to have higher levels of immune checkpoint markers. In qRT-PCR assays, the MSC signature was more highly expressed in GC cell lines. CONCLUSIONS The MSC marker gene-based risk signature developed in this study can not only be used to predict the prognosis of GC patients, but also has the potential to reflect the efficacy of antitumor therapies.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
11
|
Karamitopoulou E, Wenning AS, Acharjee A, Zlobec I, Aeschbacher P, Perren A, Gloor B. Spatially restricted tumour-associated and host-associated immune drivers correlate with the recurrence sites of pancreatic cancer. Gut 2023; 72:1523-1533. [PMID: 36792355 DOI: 10.1136/gutjnl-2022-329371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE Most patients with pancreatic ductal adenocarcinoma (PDAC) will experience recurrence after resection. Here, we investigate spatially organised immune determinants of PDAC recurrence. DESIGN PDACs (n=284; discovery cohort) were classified according to recurrence site as liver (n=93/33%), lung (n=49/17%), local (n=31/11%), peritoneal (n=38/13%) and no-recurrence (n=73/26%). Spatial compartments were identified by fluorescent imaging as: pancytokeratin (PanCK)+CD45- (tumour cells); CD45+PanCK- (leucocytes) and PanCK-CD45- (stromal cells), followed by transcriptomic (72 genes) and proteomic analysis (51 proteins) for immune pathway targets. Results from next-generation sequencing (n=194) were integrated. Finally, 10 tumours from each group underwent immunophenotypic analysis by multiplex immunofluorescence. A validation cohort (n=109) was examined in parallel. RESULTS No-recurrent PDACs show high immunogenicity, adaptive immune responses and are rich in pro-inflammatory chemokines, granzyme B and alpha-smooth muscle actin+ fibroblasts. PDACs with liver and/or peritoneal recurrences display low immunogenicity, stemness phenotype and innate immune responses, whereas those with peritoneal metastases are additionally rich in FAP+ fibroblasts. PDACs with local and/or lung recurrences display interferon-gamma signalling and mixed adaptive and innate immune responses, but with different leading immune cell population. Tumours with local recurrences overexpress dendritic cell markers whereas those with lung recurrences neutrophilic markers. Except the exclusive presence of RNF43 mutations in the no-recurrence group, no genetic differences were seen. The no-recurrence group exhibited the best, whereas liver and peritoneal recurrences the poorest prognosis. CONCLUSIONS Our findings demonstrate distinct inflammatory/stromal responses in each recurrence group, which might affect dissemination patterns and patient outcomes. These findings may help to inform personalised adjuvant/neoadjuvant and surveillance strategies in PDAC, including immunotherapeutic modalities.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Anna Silvia Wenning
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Animesh Acharjee
- University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Inti Zlobec
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Pauline Aeschbacher
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Taheri Baghmisheh S, Wu YY, Wu JE, Hsu KF, Chen YL, Hong TM. CASZ1 promotes migration, invasion, and metastasis of lung cancer cells by controlling expression of ITGAV. Am J Cancer Res 2023; 13:176-189. [PMID: 36777515 PMCID: PMC9906072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/27/2022] [Indexed: 02/14/2023] Open
Abstract
CASZ1, a zinc finger transcription factor with two isoforms, is known to play important roles in cardiac and neural development. The abnormal expression of CASZ1 is also frequently found in a variety of tumors but has different effects on different tumors; for example, it acts as a tumor suppressor in neuroblastoma but promotes cancer metastasis in ovarian cancer. However, the effect of CASZ1 in lung cancer, the most lethal cancer, remains unclear. Here, we found that the expression of CASZ1 in lung cancer is positively associated with cancer metastasis and poor prognosis. The overexpression of CASZ1b promotes lung cancer cell migration, invasion, and epithelial-mesenchymal transition and is associated with poor prognosis in lung cancer patients. The knockdown of CASZ1 resulted in the suppression of epithelial-mesenchymal transition, migration, and invasion of lung cancer cells and reduced metastasis in vivo. The results of an RNA-sequencing analysis of CASZ1-silenced cells showed that CASZ1 considerably affected the integrin-mediated pathways. CASZ1 bound to the ITGAV promoter and transcriptionally regulated ITGAV expression. Our findings demonstrate that CASZ1 plays an oncogenic role in lung cancer and that CASZ1 promotes lung cancer migration, invasion and metastasis is mediated by ITGAV.
Collapse
Affiliation(s)
- Sina Taheri Baghmisheh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yi-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jia-En Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Keng-Fu Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
13
|
Benesch MGK, Wu R, Menon G, Takabe K. High beta integrin expression is differentially associated with worsened pancreatic ductal adenocarcinoma outcomes. Am J Cancer Res 2022; 12:5403-5424. [PMID: 36628277 PMCID: PMC9827087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) are known to be worse in tumors with high integrin β1 expression, but targeted monotherapy against this integrin has not been effective. Seven other beta integrins are expressed in mammalian biology and they are known to have overlapping and compensatory signaling in biological systems. However, their roles in PDAC are poorly understood and have not been systematically compared to integrin β1 biology. In this study, we analyzed the clinical outcomes against beta integrin 1-8 (ITGB1-8) expression in PDAC samples from two large independent cohorts, The Cancer Genome Atlas (TCGA) and GSE21501. Biological function and tumor microenvironment composition were studied using Gene Set Enrichment Analysis and xCell. Expression of all eight beta integrins is significantly increased in PDACs relative to normal pancreatic tissues (all P<0.001). ITGB1, 2, 5, and 6 have similarly enriched gene patterns related to transforming growth factor (TGF)-β, epithelial mesenchymal transition, inflammation, stemness, and angiogenesis pathways. Homologous recombination defects and neoantigens are increased in high-ITGB4, 5, and 6 tumors, with decreased overall survival in high-ITGB1, 5, and 6 tumors compared to low expression tumors (hazard ratios 1.5-2.0). High-ITGB1, 2, and 5 tumors have increased fibroblast infiltration (all P<0.01) while endothelial cells are increased in high-ITGB2 and 3 tumors (all P<0.05). Overall, beta integrin expression does not correlate to immune cell populations in PDACs. Therefore, while all beta integrins are overexpressed in PDACs, they exert differential effects on PDAC biology. ITGB2, 5, and 6 have a similar profile to ITGB1, suggesting that future research in PDAC integrin therapy needs to consider the complementary signaling profiles mediated by these integrins.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Gopal Menon
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan,Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
14
|
Tang YL, Li GS, Li DM, Tang D, Huang JZ, Feng H, He RQ, Huang ZG, Dang YW, Kong JL, Gan TQ, Zhou HF, Zeng JJ, Chen G. The clinical significance of integrin subunit alpha V in cancers: from small cell lung carcinoma to pan-cancer. BMC Pulm Med 2022; 22:300. [PMID: 35927660 PMCID: PMC9354352 DOI: 10.1186/s12890-022-02095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the relationship between integrin subunit alpha V (ITGAV) and cancers, including small cell lung cancer (SCLC). METHODS Using large sample size from multiple sources, the clinical roles of ITGAV expression in SCLC were explored using differential expression analysis, receiver operating characteristic curves, Kaplan-Meier curves, etc. RESULTS: Decreased mRNA (SMD = - 1.05) and increased protein levels of ITGAV were detected in SCLC (n = 865). Transcription factors-ZEB2, IK2F1, and EGR2-may regulate ITGAV expression in SCLC, as they had ChIP-Seq (chromatin immunoprecipitation followed by sequencing) peaks upstream of the transcription start site of ITGAV. ITGAV expression made it feasible to distinguish SCLC from non-SCLC (AUC = 0.88, sensitivity = 0.78, specificity = 0.84), and represented a risk role in the prognosis of SCLC (p < 0.05). ITGAV may play a role in cancers by influencing several immunity-related signaling pathways and immune cells. Further, the extensive pan-cancer analysis verified the differential expression of ITGAV and its clinical significance in multiple cancers. CONCLUSION ITGAV served as a potential marker for prognosis and identification of cancers including SCLC.
Collapse
Affiliation(s)
- Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jie-Zhuang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
15
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
16
|
Lian J, Xu C, Chen X, Huang S, Wu D. Histone methyltransferase KMT2C plays an oncogenic role in prostate cancer. J Cancer Res Clin Oncol 2022; 148:1627-1640. [PMID: 35322299 DOI: 10.1007/s00432-022-03968-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Prostate cancer (PCa) is a leading cause of morbidity and mortality in males. Epigenetic modifier abnormalities are becoming a driving event in PCa. The specific role of KMT2C, a histone methyltransferase that is frequently aberrant in various tumors, is poorly understood in PCa. This study aimed to reveal the potential carcinogenic role of KMT2C in PCa. METHODS We first examined the expression levels of KMT2C in prostate cancer tissues. Then, we assessed the function of KMT2C in prostate cancer cell proliferation, colony formation, and migration. To explore the mechanism of the biological consequences, RNA-seq and CHIP-qPCR were performed. We also analyzed the effects of overexpression of the KMT2C downstream genes CLDN8 and ITGAV to reverse the effects of KMT2C on prostate cancer cells. RESULTS Herein, we first confirmed KMT2C overexpression in PCa at the transcript and protein levels. Knocking down KMT2C in VCaP and LNCaP cells inhibited cell viability, colony formation, and migration. Consistently, stable KMT2C depletion effectively decreased tumor growth by approximately 70% in vivo. Mechanistically, the results suggested that CLDN8 and ITGAV are two key downstream genes of KMT2C and further regulate the MAPK/ERK and EMT pathways. CONCLUSION Our study suggests that KMT2C plays an oncogenic role in PCa. One of the mechanisms may be the epigenetic regulation of CLDN8 and ITGAV by KMT2C to modulate tumor-signaling pathways. Therefore, KMT2C may serve as a potential therapeutic target for PCa patients.
Collapse
Affiliation(s)
- Jianpo Lian
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
17
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|